
TMA4300 Spring 2014 – Solution

Problem 1

a) The Box-Muller algorithm can be used to generate random samples from a normal
distribution with mean equal to zero and variance equal to one. The algorithm
produces from two uniformly distributed random variables on (0, 1), two standard
normal distributed samples. The algorithm proceeds as follows:

1. Generate two random variables u1 and u2 from U(0, 1).

2. Compute

x1 =
√
−2 log u1 cos(2 · π · u2)

x2 =
√
−2 log u1 sin(2 · π · u2)

3. Then x1 and x2 are N (0, 1) distributed.

To transform the samples so that they are N (µ, σ2) distributed, proceed as follows:

y1 = µ+ σ · x1
y2 = µ+ σ · x2

If only one sample or an odd number of samples is required, we return only one of
y1 and y2.

b) To sample from a mixture of two normal distributions we use the methods based
on mixtures. That means we first decide in which component of the mixture we
are, i.e. we sample a random variable u ∼ U(0, 1) and compare with the mixture
weight w. If u < w we are in the first component, and otherwise in the second
component. Then conditioned on the component we proceed as follows: If in the
first component, sample y ∼ N (µ1, σ

2
1) using the method detailed in 1a) otherwise

sample y ∼ N (µ2, σ
2
2). This way y follows the provided mixture density.
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Problem 2

a) Let π(x) be the distribution of interest with x = (x1, . . . , xp). Gibbs sampling
is an MCMC scheme where we sequentially sample from the full-conditional dis-
tributions π(xi|x−i). Here, x−i refers to vector x but without the i-th element.
That means to obtain samples xi from the joint target distribution π(x) do the
following:

1. Select starting values x0 and set i = 0.

2. Repeatedly:

Sample x1i+1|· ∼ π(x1|x2i , . . . , x
p
i )

Sample x2i+1|· ∼ π(x2|x1i+1, x
3
i , . . . , x

p
i )

...

Sample xp−1i+1 |· ∼ π(xp−1|x1i+1, x
2
i+1, . . . , x

p−2
i+1 , x

p
i )

Sample xpi+1|· ∼ π(xp|x1i+1, . . . , x
p−1
i+1 )

where |· denotes conditioning on the most recent updates of all other elements
of x.

3. Increment i and go to step 2.

Of course, the full-conditionals must be known and ideally it is easy to sample from
them. If for some components we need a Metropolis-Hastings step, we talk about
Metropolis-within-Gibbs. Note, it is possible to sample blocks of the xj together.

b) The full-conditional distributions can be derived from the posterior distribution:

p(η,θ, κz, κθ|y) ∝
∏
i,j

p(yij|ηij) · p(ηij|θj, κz) · p(θ|κθ) · p(κz) · p(κθ)

The full-conditionals follow by omitting all terms of the posterior distribution that
do not depend on the parameter(s) of interest. Thus we get that:

p(κz|.) ∝
∏
i,j

p(ηij|θj, κz) · p(κz)

∝
I∏
i=1

J∏
j=1

κ1/2 exp(−κz
2

(ηij − θj)2) · καz−1z exp(−βzκz)

∝ κ
I·J
2

+αz−1
z exp(−κz(βz +

1

2

∑
i,j

(ηij − θj)2)

Thus, κz|. ∼ Gamma( I·J
2

+ αz, βz + 1
2

∑
i,j(ηij − θj)2).
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p(κθ|.) ∝ p(θ|κθ)p(κθ)

∝ κ
J−1
2

θ exp(−κθ
2
θ>Rθ) · καθ−1θ exp(−βθκθ)

∝ κ
J−1
2

+αθ−1
θ exp(−κθ(βθ +

1

2
θ>Rθ))

Thus, κθ|. ∼ Gamma(J−1
2

+ αθ, βθ + 1
2
θ>Rθ).

p(ηij|.) ∝ p(yij|ηij)p(ηij|θj, κz)

∝ exp(ηij)
yij exp(−Eij exp(ηij)) exp(−κz

2
(ηij − θj)2)

∝ exp(−κz
2

(ηij − θj)2 + yijηij − Eij exp(ηij))

This is no standard distribution.

p(θ|.) ∝
∏
i

∏
j

exp
(
−κz

2
(ηij − θj)2

)
· exp

(
−κθ

2
θ>Rθ

)
= exp

(
−κz

2

∑
i

∑
j

(ηij − θj)2 −
κθ
2
θ>Rθ

)

= exp

−κz
2

∑
i

θ1 − ηi1...
θJ − ηiJ


>θ1 − ηi1...

θJ − ηiJ

− κθ
2
θ>Rθ


Thus, θ|. ∼ N (Q−1m,Q−1), with

Q = κθR + κz · II m = κz ·

(
I∑
i=1

ηi1, . . . ,

I∑
i=1

ηiJ

)>

Problem 3

a) – The “burn-in” period refers to the iterations the sampler needs to converge to
the stationary/target distribution. The first iterations are strongly influenced
by the starting value of the Markov chain. Including these samples would
make the estimation of characteristics of the target distribution less accurate.
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– We have here a random walk proposal. A new value x? is sampled from a
normal distribution centered around the current value x. As the proposal
distribution is symmetric i.e. π(x|x?) = π(x?|x) we obtain that the proposal
ratio is equal to one and thus the log-proposal ratio is equal to zero.

b) – According to the traceplots, the acceptance rate will be high for this sampler,
as only very small changes are proposed in each iteration and essentially all
proposals are accepted.

– The parameter sd is a tuning parameter for the algorithm, and will determine
how often values x? are accepted or rejected. To explore the parameter space
more efficiently, a higher value of sd should be used. Then newly proposed
values, x?, will be a bit more far away from the current value, x. Therefore
the proposal will be accepted less often.

c) – It means, that the estimated number of independent samples needed to obtain
an estimate with the same precision as the MCMC based on 1000 samples is
23. Thus, the algorithm is not very efficient as samples are highly correlated.

– The quantity q = P (X > 0) can be estimated by

1

n

n∑
i=1

I(xi > 0),

where xi refers to the i-th, i = 1, . . . , n, out of n posterior samples and I(.)
denotes the indicator function.

Problem 4

a) Cross-validation can be use to estimate the misclassification rate of a statistical
classification method. k-fold cross-validation involves randomly dividing the set of
observations into k groups, or folds, A1, . . . , Ak of approximately equal size. For
the j-th fold (test set), we fit the model to the other k − 1 folds (training set)
of the data, and count the number of misclassifications of the fitted model when
predicting the j-th part of the data. We do this for j = 1, 2, . . . , k and combine
the k estimates into the misclassification rate as follows:

1

n

k∑
j=1

∑
i∈Aj

1(yi 6= ŷ−Aj(xi))

 .
b) Leave-one-out cross-validation (LOOCV) is a special case of k-fold cross-validation

in which k is set equal to n.

The most obvious advantage of k-fold cross-validation with k < n is computational.
LOOCV requires fitting the statistical learning method n times, whereas say 10-
fold cross-validation requires fitting the classifier only ten times.
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LOOCV will give approximately unbiased estimates for the true misclassification
rate, since each training set contains n− 1 observations, which is almost as many
as the number of observations in the full data set. Since statistical methods tend
to perform worse when trained on fewer observations, this suggests that LOOCV
is almost unbiased. And performing k-fold CV for, say, k = 5 or k = 10 will
lead to an intermediate level of bias, since each training set contains (k − 1)n/k
observations. Therefore, from the perspective of bias reduction, LOOCV is to be
preferred to k-fold CV.

However, the LOOCV can have high variance as the n training sets are so similar to
one another. When we perform LOOCV, we are in effect averaging the outputs of
n fitted models, each of which is trained on an almost identical set of observations;
therefore, these outputs are highly (positively) correlated with each other. In
contrast, when we perform k-fold CV with k < n, we are averaging the outputs
of k fitted models that are somewhat less correlated with each other, since the
overlap between the training sets in each model is smaller. Since the mean of
many highly correlated quantities has higher variance than does the mean of many
quantities that are not as highly correlated, the test error estimate resulting from
LOOCV tends to have higher variance than does the test error estimate resulting
from k-fold CV.
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