
TMA4300 Computer Intensive Statistical Methods
Exercise 2, Spring 2016

Note: The solution to ALL exercises must be handed in no later than 13th of April 2016, 12:00

noon.

Note 2: All “helper” files mentioned throughout the exercise text are available from the course webpage.

Preliminary steps: Please install the packages fields, INLA and spam by typing in the R-terminal

install.packages("fields")

install.packages("spam")

install.packages("INLA", repos="http://www.math.ntnu.no/inla/R/testing")

The goal is to carry out a spatial analysis on mortality rates of oral cavity cancer in males in Germany

during a 5-year period, 1986–1990, for n = 544 districts. Observed counts are yi, expected counts are Ei.

Figure 1 shows standardised mortality rates (SMR) yi
Ei

.The data is available in R by

library(spam) # load the data

str(Oral) # see structure of data

#’data.frame’: 544 obs. of 3 variables:

# $ Y : int 18 62 44 12 18 27 20 29 39 21 . . .

# $ E : num 16.4 45.9 44.7 16.3 26.9 . . .

# $ SMR: num 1.101 1.351 0.985 0.735 0.668 . . .

attach(Oral) # allow direct referencing to Y and E

# load some libraries to generate nice map plots

library(fields)

library(colorspace)

col <- diverge_hcl(8) # blue - red

# use a function provided by spam to plot the map together with the mortality rates

germany.plot(Oral$Y/Oral$E, col=col, legend=TRUE)

Assuming observed counts to be conditionally independent Poisson, the model is

yi | ηi ∼ Pois(Ei exp(ηi)), i = 1, . . . , n. (1)

The log relative risk, η = (η1, . . . , ηn)T , is then decomposed into

η = u + v .

Component u = (u1, . . . , un)T is spatially structured with smoothing parameter κu. Component v =

(v1, . . . , vn)T is unstructured white-noise with precision parameter κv, i.e. v ∼ N (0, κ−1
v I). (Note: An

equivalent model would be η = µ1+ u + v , but would then require an additional sum to zero constraint

on u to make the intercept µ identifiable.)

A common way to introduce a spatially correlated effect is to assume that neighbouring districts are

more similar than distant districts. For this purpose, a neighbourhood has to be defined for each district.

In geographical applications a common assumption is that two districts are neighbours if they share a

common border. If we consider a single district, and condition on only the neighbours with which it

shares a border, this is a first-order autoregressive process, or intrinsic Gaussian Markov random field

(?) with density

p(u | κu) ∝ κ(n−1)/2
u exp

−κu
2

∑
i∼j

(ui − uj)2
 (2)

= κ(n−1)/2
u exp

(
−κu

2
uTRu

)
. (3)
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Figure 1: Standardised mortality rates (SMR) yi/Ei.

The sum in (2) goes over all pairs of neighbouring districts i ∼ j which is defined by the geographical

map. The neighbourhood structure is consequently defined in the structure matrix R where

Rij =


ni i = j

−1 i ∼ j
0 otherwise.

Here, ni denotes the number of neighbouring districts of district i. The distribution of η, conditional on

the spatial component u and κv, is

η | u , κv ∼ N (u , κ−1
v I). (4)

The precision terms κv and κu are assigned gamma prior distributions

κu ∼ Gamma(αu, βu),

κv ∼ Gamma(αv, βv).

where Gamma(α, β) denotes the gamma density with shape parameter α and rate parameter β. Here,

we will use αu = αv = 1 and βu = βv = 0.01.

To analyse the data and its underlying spatial structure we will implement a Gibbs sampler with individual

parameter updates based on the full conditional distributions. One parameter, η, does not have a

“standard” full conditional density and will require a Metropolis-Hastings step.
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Exercise 1 (Derivations [no programming needed ])

(a) Derive the posterior distribution p(η,u , κu, κv | y) and show that it is proportional to

κ
n−1
2 +αu−1

u κ
n
2 +αv−1
v exp

(
−βuκu − βvκv −

κv
2

(η − u)T (η − u)− κu
2
uTRu +

∑
i

(yiηi − Ei exp(ηi))

)
.

(b) Due to the non-normality, sampling from the posterior will require a Metropolis–Hastings step.

To obtain a proposal distribution that is easy to sample from, here a Gaussian, approximate the

function

f(ηi) = yiηi − Ei exp(ηi)

with a second order Taylor series expansion, f̃(ηi) at a point zi. Show that the approximation can

be written as

f̃(ηi) = ai + biηi −
1

2
ciη

2
i , (5)

with ai = Ei exp(zi) · (zi − 1
2z

2
i − 1), bi = yi + Ei exp(zi) · (zi − 1) and ci = Ei exp(zi).

(c) – Derive the full conditional densities p(κu | y , κv,η,u) and p(κv | y , κu,η,u).

– Derive full conditional posterior densities for p(u | y , κv, κu,η) and p(η | y , κv, κu,u). Notice

that the first one is a standard density that is straightforward to sample from. Show that the

second density can be written as

p(η | y , κv, κu,u) ∝ exp

(
−1

2
ηT (κvI)η + ηT (κvu) + ηTy − exp(η)TE

)
.

and consequently be approximated using (5) by a normal density written in canonical form as

q(η | z,y ,u , κu, κv) ∝ exp

(
−1

2
ηT (κvI + diag(c))η + ηT (κvu + b)

)
,

where b = (b1, . . . , bn)T , c = (c1, . . . , cn)T . Of note, the first argument in the condition of

q(· | ·), denoted by z, represents the vector at which the Taylor approximation is computed.
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Exercise 2 (Implementation of the MCMC sampler)

After a suitable burn-in period, a posterior sample size of at least M = 50000 (depending on the initial

values) is recommended. Let m index the current iteration. The steps required for a single iteration are:

1. Draw κ
(m)
u using full conditional p(κu | y , κ(m−1)

v ,η(m−1),u (m−1)).

2. Draw κ
(m)
v using full conditional p(κv | y , κ(m)

u ,η(m−1),u (m−1)).

3. Draw u (m) using full conditional p(u | y , κ(m)
u , κ

(m)
v ,η(m−1)).

4. Draw η? with proposal density q(η? | z,y ,u (m), κ
(m)
u , κ

(m)
v ), with approximation around z =

η(m−1).

5. Set η(m) = η? with probability

α = min

(
1,

p(η? | y , κ(m)
v , κ

(m)
u ,u (m))

p(η(m−1) | y , κ(m)
v , κ

(m)
u ,u (m))

q(η(m−1) | z = η?,y ,u (m), κ
(m)
u , κ

(m)
v )

q(η? | z = η(m−1),y ,u (m), κ
(m)
u , κ

(m)
v )

)
,

otherwise η(m) = η(m−1).

Computational details:

• The matrix R, also called R, in (3) is available from the course webpage and can be loaded using

load("tma4300_ex2_Rmatrix.Rdata")

• Note that log densities should always be used.

• For efficient computation, the sparsity of the precision matrices should be exploited. This will be

done using the library spam. Some functions that may be of use are

– diag.spam() - create a diagonal matrix that is a sparse matrix object

– rmvnorm.canonical() - sample from a normal distribution using canonical parameterisation

Please see their help pages in R for more information.

• To evaluate a multivariate normal density parameterised in canonical form you can use the provided

function dmvnorm.canonical(.) implemented in the file dmvnorm.R.

While running the samplers keep track of the acceptance rates for the Metropolis-Hastings steps, i.e.

print for example every 500 iterations the current percentage of accepted proposals. Use the function

system.time() or Sys.time() to record how long the sampler needs to generate the M samples.

Exercise 3 (Convergence diagnostics)

Obtain the following diagnostic summaries for the precision parameters κu, κv, and exemplary for three

randomly chosen components of u and v .

(a) Trace plots.

(b) Autocorrelation plots.

(c) Use the function geweke.diag() of the R-package coda to check the Markov chains for convergence.

What is your conclusion?
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Exercise 4 (Effective sample size)

• Calculate the effective sample size (ESS) for the precision parameters κu and κv as discussed in the

lecture using the provided R-script ess.R. Interpret the obtained values.

• Compute also the relative ESS, where you divide the ESS by the running time of the MCMC

algorithm. For which purpose could this quantity be interesting?

Exercise 5 (Interpretation of results)

Plot the posterior median of exp(u) for all regions using the function germany.plot() provided in the

R-package spam (see page 1 of this exercise) and interpret the obtained spatial pattern.

Exercise 6 (Comparison to INLA and inclusion of covariate information)

a) Implement the same model using R-INLA. Be thereby careful to use the same priors for κu and

κv. The latent Gaussian model given in (2), which defines the spatial structure, is termed besag in

R-INLA and requires the path to the geographical map (graph) of Germany assigned to the argument

graph. You get the path to the Germany map as

g <- system.file("demodata/germany.graph", package="INLA")

Unstructured random effects are defined in the latent model iid. Please see the documentation

provided on www.r-inla.org and the lecture notes for details. Within the f(.) functions used in

the INLA formula object you will besides others need the arguments hyper and constr to define

the equivalent model as you implemented using MCMC.

Compare the histograms of your MCMC-samples and the posterior marginals obtained by INLA

for both precision parameters κu and κv, and three randomly chosen components of u and v . Note,

improved estimates of the posterior marginals for the precision parameters can be obtained by

applying inla.hyperpar(result) on the original INLA results object result.

b) Smoking is besides alcohol consumption regarded as one of the main risk factors of oral cavity cancer.

There is covariate information regarding smoking consumption available in the file smoking.dat.

You can read it in INLA using

smoking = read.table("covariate.dat")

and add to the data.frame Oral by

Oral["smoking"] = smoking

Extend the INLA model formulation of part a) to incorporate this covariate:

1) as a linear effect.

2) as a non-linear function using a random walk of second order (rw2). (You can use the default

prior parameters of INLA for the gamma prior of the corresponding precision parameter.)

Compare extension 1) and 2) to the original model formulation without covariate information in

part a) by means of the deviance information criterion (DIC). Interpret the results. Plot also the

posterior median within 95% credible intervals of the non-linear covariate effect (2nd covariate

model) and relate this to the obtained DIC values.
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Oral presentations

Date Exercise Team

15.02.2016 1: Problem A1 and A2 Kristian Aga, Moritz Klaus Bogs

1: Problem A3 Tomasz Kusmierczyk, Eliezer de Souza da Silva

1: Problem B John Darkwah, Audun Sektnan

22.02.2016 1: Problem C1 and C2 Fredrik Lundquist, Ole Bernhard Forberg

1: Problem C3 and C4 Yingzi Jin, Himanshu Srivastav

1: Problem D1 and D2 Eivind Berg Fosse, Espen Høegh Sørum

04.04.2016 2: 1a, b Eyvind Thommesen

2: 1c Negar Olfati, Abdolreza Sabzi Shahrebabaki

2: 2 Arnaud Vacogne, Truls Brubak

11.04.2016 2: 3 Sandra Sæther, Dechasa Obsi Gudeta

2: 4, 5 Martina Hall, Jorid Ødegrd

2: 6a, b Øyvind Øksnes Dalheim, Anna Swider

26.04.2016 3 Gunhild Elisabet Berget, Ingeborg Gullikstad Hem

Andreas Malmg̊ard, Haris Fawad

Filip Emil Schjerven, Rafael Schwarzenegger

Inger Ellingsen
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