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Bayesian hierarchical models

INLA can be used with Bayesian hierarchical models where we
model in different stages or levels:

Stage 1: What is the distribution of the responses?

Stage 2: What is the distribution of the underlying unobserved
(latent) components?

Stage 3: What are our prior beliefs about the parameters
controlling the components in the model?
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Stage 1
How is our data (y) generated from the underlying components (x)
and hyperparameters (θ) in the model:

— Gaussian response? (people infected with a disease in each
area, temperature, rainfall, fish weight ...)

— Count data? (people infected with a disease in each area)
— Point pattern? (E.g. air pollution measured at fixed stations)
— Binary data? (yes/no response, binary image)
— Survival data? (recovery time, time to death)

(It is also important how data are collected!)

This information is placed into our likelihood π(y |x ,θ)
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Stage 2

The underlying unobserved components x are called latent
components and can be:

— Covariates
— Unstructured random effects (individual effects, group effects)
— Structured random effects (AR(1), regional effects,

continuously indexed spatial effects)

These are linked to the responses in the likelihood through linear
predictors.
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Stage 3
The likelihood and the latent model typically have hyperparameters
that control their behavior. The hyperparameters θ can include:

Examples likelihood:
— Variance of observation noise
— Dispersion parameter in the negative binomial model
— Probability of a zero (zero-inflated models)

Examples latent model:
— Variance of unstructured effects
— Correlation of multivariate effects
— Range and variance of spatial effects
— Autocorrelation parameter
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Example: Disease mapping in Germany
We observed larynx cancer mortality counts for males in 544
district of Germany from 1986 to 1990 and want to make a model.

Information available:

yi : The count at location i .
Ei : An offset; expected number of

cases in district i .
ci : A covariate (level of smoking

consumption) at location i
si : spatial location i (here, district).
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Stage 1: The data

First we decide on the likelihood for our data y

— Our responses are counts
— We decide to model our responses as

yi | ηi ∼ Poisson(Ei exp(ηi))

— ηi is a linear function of the latent components
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Stage 2: The latent model

The latent field x consists of two parts:
1. One fixed effect: the intercept µ
2. • The spatially structured effect u.

• The unstructured effect v which accounts for non-observed
variability

• The unknown effect f (ci ) of the exposure covariate which
assumes value ci for district i .

These are combined for each location to give a linear predictor

ηi = µ+ ui + vi + f (ci)

The latent field is x = (µ,u1,u2, . . . ,un, v1, v2, . . . , vn, {f (·)}).
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A spatially structured effect
To incorporate a spatial structure into a model, the so called Besag
model is often used.

p(u | κu) ∝ κ(n−1)/2
u exp

−κu

2

∑
i∼j

(ui − uj)
2


= κ

(n−1)/2
u exp

(
−κu

2
uT Ru

)
.

where R is called structure matrix and defined as

Rij =


ni i = j
−1 i ∼ j
0 otherwise.

Here, i ∼ j denotes that i and j are neighbouring regions.

www.ntnu.no A. Riebler, Introduction to INLA

10

What does this mean?

Example: Five counties of the US state Rhode Island

The structure matrix R defines the neighborhood structure.
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Adjacency matrix

3 -1 -1 - 1 0
-1 4 -1 -1 -1
-1 -1 3 0 -1
-1 -1 0 2 0
0 -1 -1 0 2

Structure matrix

With increasing number of regions R will be sparse, which allows to
do many computations very efficient.

www.ntnu.no A. Riebler, Introduction to INLA

11

Gaussian Markov random field (GMRF)

— This model is an example for a Gaussian Markov random field
(GMRF) model.

— If R has not full rank it is called an intrinsic GMRF.
— Other examples are a random walk of first order, a random

walk of secoend order, an autoregressive model, . . . .
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Stage 3: Hyperparameters

The structured and unstructured spatial effect as well as the
smooth covariate effect will be each controlled by one parameter

— κf , κu, κv : The precisions (inverse variances) of the covariate
effect, spatial effect and unstructured effect, respectively.

The hyperparameters are θ = (κf , κu, κv ), and must be given a
prior π(κf , κu, κv ).
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Quantities of interest
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Latent Gaussian models

This is just one example of a very useful class of models called
Latent Gaussian models.

— The characteristic property is that the latent part of the
hierarchical model is Gaussian, x |θ ∼ N(0,Q−1)

— The expected value is 0

— The precision matrix (inverse covariance matrix) is Q
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The general set-up
The set up contains GLMs, GLMMs, GAMs, GAMMs, and more.
The mean of the observation i , µi , is connected to the linear
predictor, ηi , through a link function g,

ηi = g(µi) = µ+ z>i β +
∑
γ

wγ,i fγ(cγ,i) + ui , i = 1,2, . . . ,n

where

µ : Intercept
β : Fixed effects of covariates z

{fγ(·)} : Non-linear/smooth effects of covariates c
{wγ,i} : Known weights defined for each observed data point

u : Unstructured error terms
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Loads of examples

— Generalized linear and additive (mixed) models
— Disease mapping
— Survival analysis
— Log-Gaussian Cox-processes
— Spatio and spatio-temporal models
— Stochastic volatility models
— Measurement error models
— And more!
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Specification of the latent field

— Collect all parameters (random variables) in the linear
predictor in a latent field x = {µ,β, {fγ(·)},η}.

— A latent Gaussian model is obtained by assigning Gaussian
priors to all elements of x .

— Very flexible due to many different forms of the unknown
functions {fγ(·)}:

— Hyperparameters account for variability and length/strength of
dependence
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Flexibility through f -functions

The functions {fγ} in the linear predictor make it possible to capture
very different types of random effects in the same framework:

— f (time): For example, an AR(1) process, RW1 or RW2

— f (spatial location): For example, a Matérn field

— f (covariate): For example, a RW1 or RW2 on the covariate
values

— f (time, spatial location) can be a spatio-temporal effect

— And much more
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Additivity

— One of the most useful features of the framework is the
additivity.

— Effects can easily be removed and added without difficulty.

— Each component might add a new latent part and might add
new hyperparameters, but the modelling framework and
computations stay the same.
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Example: Smoothing binary time-series

— Have observed a sequence y1, y2, . . . , yn of 0s and 1s
— Each time t has an associated covariate xt

— We want to smooth the time series by inferring the sequence
pt , for t = 1,2, . . . ,n, of probabilities for 1s at each time step
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Example: Smoothing time series

Stage 1: We choose a Bernoulli distribution for the responses,
so that

yt |ηt ∼ Bernoulli
(

1
1 + exp (−ηt )

)
Stage 2: Covariates, AR(1) component, i.e. at = ρat−1 + εt , and

random noise are connected to likelihood by

ηt = β0 + β1xt + at + vt

Stage 3: ρ: Dependence parameter in AR(1) process

σ2
a: Marginal variance in AR(1) process
σ2

v : Variance of unstructured term
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Computations

So...

Now we have a modelling framework

But how do we get our answers?
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What do we care about?

It depends on the problem!
— A single element of the latent field (e.g. the sign or quantiles of

a fixed effect)
— A linear combination of elements from the latent field (the

average over an area of a spatial effect, the difference of two
effects)

— A single hyperparameter (the correlation)
— A non-linear combination of hyper parameters (animal models)
— Predictions at unobserved locations
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What do we care about?
The most important quantity in Bayesian statistics is the posterior
distribution:

π(x ,θ | y) ∝ π(θ)π(x | θ)
∏
i∈I

π(yi | xi ,θ)

from which we can derive the quantities of interest, such as

π(xi | y) ∝
∫ ∫

π(x ,θ | y)dx−idθ

=

∫
π(xi | θ,y)π(θ | y)dθ

or π(θj | y).

These are very high dimensional integrals and are typically not
analytically tractable.
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What do we need to compute?
To be more precise, often we are interested in the posterior
probability density of an element of the latent field

π(xi |y)

or the posterior probability density of an element of the
hyperparameters

π(θj |y)

or some other statistics

π(f (x ,θ)|y)
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Traditional approach: MCMC?

Based on sampling. Construct Markov chains with the target
posterior as stationary distribution.

— Extensively used within Bayesian inference since the 1980’s.
— Flexible and general, sometimes the only thing we can do!
— A generic tool is available with JAGS/OpenBUGS.
— Tools for specific models are of course available, e.g. BayesX

and stan.
— Standard MCMC sampler are generally easy-ish to program

and are in fact implemented in readily available software
— However, depending on the complexity of the problem, their

efficiency might be limited.

? Markov chain Monte Carlo
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Approximate inference

Bayesian inference can (almost) never be done exactly. Some form
of approximation must always be done.

— MCMC “works” for everything, but it can be incredibly slow
— Is it possible to make a quicker, more specialized inference

scheme which only needs to work for this limited class of
models?
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Recall: What is our model framework?
Latent Gaussian models

y |x ,θ ∼
∏

i

π(yi |ηi ,θ)

x |θ ∼ π(x |θ) ∼ N (0,Q(θ)−1) Gaussian!
θ ∼ π(θ) Not Gaussian

where the precision matrix Q(θ) is sparse. Generally these
“sparse” Gaussian distributions are called Gaussian Markov
random fields (GMRFs).

The sparseness can be exploited for very quick computations for
the Gaussian part of the model through numerical algorithms for
sparse matrices.

www.ntnu.no A. Riebler, Introduction to INLA



29

The INLA idea

Use the posterior distribution

π(x ,θ | y) ∝ π(θ)π(x | θ)π(y | x ,θ)

to approximate the posterior marginals

π(xi | y) and π(θj | y)

directly.

Let us consider a toy example to illustrate the ideas.
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How does INLA work?
Observations

yi = m(i) + εi , i = 1, . . . ,n

Here, we assume that m(i) is a smooth function wrt i and
εi

iid∼ N (0, τ0) with known precision τ0.

1 n = 50
2 idx = 1:n
3 # generate something

smooth representing m
4 fun = 100*((idx -n/2)/n)^3
5 # add some noise
6 y = fun + rnorm(n, mean

=0, sd=1)
7 plot(idx , y)
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Assumed hierarchical model
1. Data: Gaussian observations with known precision

yi | xi , θ ∼ N (xi , τ0)

2. Latent model: A Gaussian model for the smooth function1

π(x | θ) ∝ θ(n−2)/2 exp

(
−θ

2

n∑
i=3

(xi − 2xi−1 + xi−2)2

)

3. Hyperparameter: The smoothing parameter θ which we assign
a Γ(a,b) prior

π(θ) ∝ θa−1 exp (−bθ) , θ > 0

1model="rw2"
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Derivation of posterior marginals (I)

Since
x ,y | θ ∼ N (·, ·)

(derived using π(x ,y | θ) ∝ π(y | x , θ) π(x | θ)),
we can compute (numerically) all marginals, using that

π(θ | y) ∝

Gaussian︷ ︸︸ ︷
π(x ,y | θ) π(θ)

π(x | y , θ)︸ ︷︷ ︸
Gaussian

www.ntnu.no A. Riebler, Introduction to INLA



33

Posterior marginal for hyperparameter
Select a grid of points to represent the density θ | y . (Here, the
points are chosen to be equi-distant).
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Derivation of posterior marginals (II)

From
x | y , θ ∼ N (·, ·)

we can compute

π(xi | y) =

∫
π(xi | θ,y)︸ ︷︷ ︸

Gaussian

π(θ | y) dθ

≈
∑

k

π(xi | θk ,y)π(θk | y)∆k

where θk , k = 1, . . . ,K , correspond to representative points of θ | y
and ∆k are the corresponding weights.
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Posterior marginal for latent parameters
Compute the conditional marginal posterior for each xi given θk .
Here, shown for x1.
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Posterior marginal for latent parameters
Weigh the resulting (conditional) marginal posterior by the density
associated with each θk .
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Posterior marginal for latent parameters
Numerically sum over all conditional densities to obtain the
posterior marginal for each xi .
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Fitted spline
The posterior marginals are used to calculate summary statistics,
like means, variances and credible intervals:
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Extensions
This is the basic idea behind INLA. It is quite simple.

However, we need to extend this basic idea so we can deal with
— More than one hyperparameter
— Non-Gaussian observations

How, do things change?

π(θ | y) ∝

Non-Gaussian, BUT KNOWN︷ ︸︸ ︷
π(x ,y | θ) π(θ)

π(x | y ,θ)︸ ︷︷ ︸
Non-Gaussian and UNKNOWN

Complications... Mostly practical
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The non-Gaussian part of the model

— In many cases π(x | y ,θ) is very close to a Gaussian
distribution, and can be replaced with a Laplace approximation

— This means that all the really hard, high-dimensional integrals
with respect to the latent field are easy, and only the integrals
with respect to the hyperparameters remain

— If the number of hyperparameters is low, these integrals can
be done efficiently numerically
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The GMRF (Laplace) approximation
Let x denote a GMRF with precision matrix Q and mean µ.
Approximate

π(x |θ,y) ∝ exp

(
−1

2
x>Qx +

n∑
i=1

logπ(yi |xi)

)
by using a second-order Taylor expansion of logπ(yi |xi) around µ0,
say.

Recall

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2

f ′′(x0)(x − x0)2 = a + bx − 1
2

cx2

with b = f ′(x0)− f ′′(x0)x0 and c = −f ′′(x0).
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The GMRF approximation (II)
Thus,

π̃(x |θ,y) ∝ exp

(
−1

2
x>Qx +

n∑
i=1

(ai + bixi − 0.5cix2
i )

)

∝ exp
(
−1

2
xT (Q + diag(c))x + bT x

)
to get a Gaussian approximation with precision matrix Q + diag(c)
and mean given by the solution of (Q + diag(c))µ = b. The
canonical parameterisation is

NC(b,Q + diag(c))

which corresponds to

N ((Q + diag(c))−1b, (Q + diag(c))−1).
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Illustration
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If y | x ,θ is Gaussian "the approximation" is exact!
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Limitations

— The dimension of the latent field x can be large (102–106)
— But the dimension of the hyperparameters θ must be small

(≤ 9)

In other words, each random effect can be big, but there cannot be
too many random effects unless they share parameters.
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How to use INLA?

INLA is implemented through the package R-INLA in the R software
which
— is the most popular computing language in applied statistics
— is open source and free
— has a lot of packages that extend the functionality
— has a very user friendly formula interface

linear_model <- lm(weight ~ group)

Fits the linear model

weighti = µ+ groupi + εi
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