
Discrete distributions

Let X be a stochastic variable with possible values {x1, . . . , xk} and
P(X = xi ) = pi . Of course

∑k
i=1 pi = 1.

An algorithm for simulating a value for x is then:

u ∼ U[0, 1]

for i = 1, 2, . . . , k do

if u ∈ (Fi−1,Fi ] then

x ← xi

end if

end for

Each interval Ii = (Fi−1,Fi ]

corresponds to single value of x . F0 = 0
p1 = F1

p1 + p2 = F2

p1 + p2 + p3 = F3
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Fk = 1
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Proof & Note

Proof.

P(X = xi ) = P(u ∈ (Fi−1,Fi ])

= P(u ≤ Fi )− P(u ≤ Fi−1)

= Fi − Fi−1 = (p1 + . . .+ pi )− (p1 + . . .+ pi−1) = pi

Note: We may have k =∞
• The algorithm is not necessarily very efficient. If k is large,

many comparisons are needed.

• This generic algorithm works for any discrete distribution. For

specific distributions there exist alternative algorithms.

Bernoulli distribution

Let S = {0, 1}, P(X = 0) = 1− p, P(X = 1) = p.

Thus X ∼ Bin(1, p).

The algorithm becomes now:

u ∼ U[0, 1]

x = I (u ≤ p)
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Binomial distribution

Let X ∼ Bin(n, p).

The generic algorithm from before can be used, but involves tedious

calculations which may involve overflow difficulties if n is large.

An alternative is:

x = 0

for i = 1, 2, . . . , n do

generate u ∼ U[0, 1]

if u ≤ p then

x ← x + 1

end if

end for

return x



Geometric and negative binomial distribution

The negative binomial distribution gives the probability of needing

x trials to get r successes, where the probability for a success is

given by p. We write X ∼ NB(r , p).

The generic algorithm can still be used, but an alternative is:

s = 0 . (# of successes)

x = 0 . (# of tries)

while s < r do
u ∼ U[0, 1]

x ← x + 1

if u ≤ p then
s ← s + 1

end if
end while
return x

Poisson distribution

Let X ∼ Po(λ), i.e. f (x) = λx

x! e
−λ, x = 0, 1, 2, . . ..

An alternative to the generic algorithm is:

x = 0 . (# of events)

t = 0 . (time)

while t < 1 do
∆t ∼ Exp(λ)

t ← t + ∆t

x ← x + 1

end while
x ← x − 1

return x

0 t = 1

It remains to decide how to generate ∆t ∼ Exp(λ).

Change of variables formula

Let X be a continuous random variable with density fX (x).

Consider now the random variable Y = g(X ), where for example

Y = exp(X ), Y = 1/X , . . . .

Question: What is the density fY (y) of Y ?

For a strictly monotone and differentiable function g we can apply

the change of variables formula:

fY (y) = fX (g−1(y)) ·
∣∣∣∣
dg−1(y)

dy

∣∣∣∣
︸ ︷︷ ︸

g−1′ (y)

Proof over cumulative distribution function (CDF) FY (y) of Y

(blackboard).

Example

Consider X ∼ U [0, 1] and Y = − log(X ), i.e. y = g(x) = − log(x).

The inverse function and its first derivative are:

g−1(y) = exp(−y)
dg−1(y)

dy
= − exp(−y)

Application of the change of variables formula leads to:

fY (y) = 1 · |− exp(−y)|

It follows: Y ∼ Exp(1)! Thus, this is a simple way to generate

exponentially distributed random variables!

More generally, leads Y = − 1
λ log(x) to random variables from an

exponential distribution with parameter λ: Y ∼ Exp(λ).



Inverse cumulative distribution function

More generally, inversion method or the probability integral

transform approach can be used to generate samples from an

arbitrary continuous distribution with density f (x) and CDF F (x):

1. Generate random variable U from the standard uniform

distribution in the interval [0, 1].

2. Then is

X = F−1(U)

a random variable from the target distribution.

Proof.
fX (x) = fU(F (X ))︸ ︷︷ ︸

1

·F ′(x)︸ ︷︷ ︸
f (x)

= f (x)

Inverse cumulative distribution function (II)

Let X have density f (x), x ∈ R and CDF F (x) =
∫ x
−∞ f (z)dz :
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Simulation algorithm:

u ∼ U[0, 1]

x = F−1(u)

return x

Standard Cauchy distribution

Density and CDF of the standard Cauchy distribution are:

f (x) =
1
π
· 1
1 + x2 and F (X ) =

1
2

+
arctan(x)

π

The inverse CDF is thus:

F−1(y) = tan
[
π

(
y − 1

2

)]

Random numbers from the standard Cauchy distribution can easily

be generated, by sampling U1, . . . ,Un from U [0, 1], and then

computing tan[π(Ui − 1
2)].

Note

The inversion method cannot always be used! We must have a

formula for F (x) and be able to find F−1(u). This is for example

not possible for the normal, χ2, gamma and t-distributions.


