Discrete distributions

Let X be a stochastic variable with possible values {xi, ..., x(} and
P(X = x;) = p;. Of course Zf-(zl pi=1.

An algorithm for simulating a value for x is then:

T Fe=1
u~ U[0,1] + Fi1
fori=1,2,...,k do

if ue (F;_l, F,] then T
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end for + p+p=F5
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Each interval I; = (F,'_l, F,] o + p=F
corresponds to single value of x. L =0

Bernoulli distribution

Let S={0,1}, P(X=0)=1—p, P(X =1) =p.

Thus X ~ Bin(1, p).

T1
1-p
The algorithm becomes now:
u~ U[0,1] + P
x=1(u<p)
P
Lo

Proof & Note

Proof.

P(X = x;)

(u € (Fi-1, Fi])
(u<F;)—P(u<Fi_1)

P
Fi—Fiia=(p+...+p)— (P +

Note: We may have k = o

e The algorithm is not necessarily very efficient.

many comparisons are needed.

ot pic1) = pi

If kis large,

e This generic algorithm works for any discrete distribution. For

specific distributions there exist alternative algorithms.

Binomial distribution

Let X ~ Bin(n, p).

The generic algorithm from before can be used, but involves tedious

calculations which may involve overflow difficulties if n is large.

An alternative is:

x=0
fori=1,2,...,ndo
generate u ~ U[0, 1]
if u < p then
X+—x+1
end if
end for

return x



Geometric and negative binomial distribution

The negative binomial distribution gives the probability of needing
x trials to get r successes, where the probability for a success is

given by p. We write X ~ NB(r, p).

The generic algorithm can still be used, but an alternative is:

s=0 > (# of successes)
x=0 > (# of tries)
while s < r do

u ~ U[0,1]

X4+—x+1

if u < p then

s<s+1

end if

end while

return x

Change of variables formula

Let X be a continuous random variable with density fx(x).
Consider now the random variable Y = g(X), where for example
Y =exp(X), Y=1/X, ....

Question: What is the density fy(y) of Y7

For a strictly monotone and differentiable function g we can apply
the change of variables formula:

1
() = flg () \dgdy(”]
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Proof over cumulative distribution function (CDF) Fy(y) of Y

(blackboard).

Poisson distribution

Let X ~ Po()), i.e. f(x) = 2te ™, x=0,1,2,....

x!

An alternative to the generic algorithm is:

x=0 > (# of events)
t=0 > (time)
while t < 1 do

At ~ Exp(X)

t—t+ At

X+—x+1
end while
X+—x—1

return x
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It remains to decide how to generate At ~ Exp(\).

Example

Consider X ~ U[0,1] and Y = —log(X), i.e. y = g(x) = — log(x).
The inverse function and its first derivative are:

dg~'(y) _

52 = —en(=)

g ' (y) = exp(—y)

Application of the change of variables formula leads to:

fy(y) =1-|—exp(-y)|

It follows: Y ~ Exp(1)! Thus, this is a simple way to generate
exponentially distributed random variables!
More generally, leads Y = —} log(x) to random variables from an

exponential distribution with parameter \: Y ~ Exp(\).



Inverse cumulative distribution function

More generally, inversion method or the probability integral
transform approach can be used to generate samples from an

arbitrary continuous distribution with density f(x) and CDF F(x):
1. Generate random variable U from the standard uniform
distribution in the interval [0, 1].

2. Then is
X =F (V)

a random variable from the target distribution.

Proof. fx(x) = fu(F(X)) - F'(x) = f(x)
I

Standard Cauchy distribution

Density and CDF of the standard Cauchy distribution are:

1 1 1  arctan(x)
S and F(X) =z 4 %)
T 1rx2 " (X) +

f(x) = 5 -

The inverse CDF is thus:

SR

Random numbers from the standard Cauchy distribution can easily
be generated, by sampling Uy, ..., U, from U[0, 1], and then

’ ’

computing tan[r(U; — 3)].

Inverse cumulative distribution function (Il)

Let X have density f(x), x € R and CDF F(x) = [*_ f(z)dz:
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Simulation algorithm:

-1 0 1 2 3 4 5 U~ U[O 1]
x = F~1(uv)

return x

0.0 -

F(x)

Note

The inversion method cannot always be used! We must have a
formula for F(x) and be able to find F~1(u). This is for example

not possible for the normal, x2, gamma and t-distributions.



