Discrete distributions

Let X be a stochastic variable with possible values $\left\{x_{1}, \ldots, x_{k}\right\}$ and $\mathrm{P}\left(X=x_{i}\right)=\mathrm{p}_{i}$. Of course $\sum_{i=1}^{k} p_{i}=1$.

An algorithm for simulating a value for x is then:

$$
\begin{aligned}
& u \sim U[0,1] \\
& \text { for } i=1,2, \ldots, k \text { do } \\
& \quad \text { if } u \in\left(F_{i-1}, F_{i}\right] \text { then } \\
& \quad x \leftarrow x_{i} \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

Each interval $I_{i}=\left(F_{i-1}, F_{i}\right]$ corresponds to single value of x.

Proof \& Note

Proof.

$$
\begin{aligned}
\mathrm{P}\left(X=x_{i}\right) & =\mathrm{P}\left(u \in\left(F_{i-1}, F_{i}\right]\right) \\
& =\mathrm{P}\left(u \leq F_{i}\right)-\mathrm{P}\left(u \leq F_{i-1}\right) \\
& =F_{i}-F_{i-1}=\left(p_{1}+\ldots+p_{i}\right)-\left(p_{1}+\ldots+p_{i-1}\right)=p_{i}
\end{aligned}
$$

Note: We may have $k=\infty$

- The algorithm is not necessarily very efficient. If k is large, many comparisons are needed.
- This generic algorithm works for any discrete distribution. For specific distributions there exist alternative algorithms.

Binomial distribution

```
Let }X~\operatorname{Bin}(n,p)
```

The generic algorithm from before can be used, but involves tedious calculations which may involve overflow difficulties if n is large.
An alternative is:

$$
x=0
$$

$$
\text { for } i=1,2, \ldots, n \text { do }
$$

$$
\text { generate } u \sim U[0,1]
$$

$$
\text { if } u \leq p \text { then }
$$

$$
x \leftarrow x+1
$$

end if
end for
return x

Geometric and negative binomial distribution

The negative binomial distribution gives the probability of needing x trials to get r successes, where the probability for a success is given by p. We write $X \sim \operatorname{NB}(r, p)$.

The generic algorithm can still be used, but an alternative is:

```
\[
s=0
\]
\[
x=0
\]
\[
\text { while } s<r \text { do }
\]
\[
u \sim U[0,1]
\]
\[
x \leftarrow x+1
\]
\[
\text { if } u \leq p \text { then }
\]
\[
s \leftarrow s+1
\]
end if
```


end while

```
return \(\times\)
```


Poisson distribution

Let $X \sim \operatorname{Po}(\lambda)$, i.e. $f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, x=0,1,2, \ldots$
An alternative to the generic algorithm is:

$$
\begin{array}{rr}
x=0 & \triangleright(\# \text { of events }) \\
t=0 & \triangleright \text { (time) }
\end{array}
$$

while $t<1$ do

$$
\Delta t \sim \operatorname{Exp}(\lambda)
$$

$$
t \leftarrow t+\Delta t
$$

$$
x \leftarrow x+1
$$

end while
$x \leftarrow x-1$

return \times

```
0
\[
t=1
\]
```

It remains to decide how to generate $\Delta t \sim \operatorname{Exp}(\lambda)$.

Example

Consider $X \sim \mathcal{U}[0,1]$ and $Y=-\log (X)$, i.e. $y=g(x)=-\log (x)$.
The inverse function and its first derivative are:

$$
g^{-1}(y)=\exp (-y) \quad \frac{d g^{-1}(y)}{d y}=-\exp (-y)
$$

Application of the change of variables formula leads to:

$$
f_{Y}(y)=1 \cdot|-\exp (-y)|
$$

It follows: $Y \sim \operatorname{Exp}(1)$! Thus, this is a simple way to generate exponentially distributed random variables!
More generally, leads $Y=-\frac{1}{\lambda} \log (x)$ to random variables from an exponential distribution with parameter $\lambda: Y \sim \operatorname{Exp}(\lambda)$.

Inverse cumulative distribution function
More generally, inversion method or the probability integral transform approach can be used to generate samples from an arbitrary continuous distribution with density $f(x)$ and CDF $F(x)$:

1. Generate random variable U from the standard uniform distribution in the interval $[0,1]$.
2. Then is

$$
X=F^{-1}(U)
$$

a random variable from the target distribution.
Proof.

$$
f_{X}(x)=\underbrace{f_{U}(F(X))}_{1} \cdot \underbrace{F^{\prime}(x)}_{f(x)}=f(x)
$$

Standard Cauchy distribution

Density and CDF of the standard Cauchy distribution are:

$$
f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}} \quad \text { and } \quad F(X)=\frac{1}{2}+\frac{\arctan (x)}{\pi}
$$

The inverse CDF is thus:

$$
F^{-1}(y)=\tan \left[\pi\left(y-\frac{1}{2}\right)\right]
$$

Random numbers from the standard Cauchy distribution can easily be generated, by sampling U_{1}, \ldots, U_{n} from $\mathcal{U}[0,1]$, and then computing $\tan \left[\pi\left(U_{i}-\frac{1}{2}\right)\right]$.

Inverse cumulative distribution function (II)
Let X have density $f(x), x \in \mathbb{R}$ and CDF $F(x)=\int_{-\infty}^{x} f(z) d z$:

Simulation algorithm:

$$
u \sim U[0,1]
$$

$x=F^{-1}(u)$
return x

The inversion method cannot always be used! We must have a formula for $F(x)$ and be able to find $F^{-1}(u)$. This is for example not possible for the normal, χ^{2}, gamma and t-distributions.

