Lecture 3: inverse transform technique

Let F be a distribution, and let $U \sim \mathcal{U}[0, 1]$.

a) Let F be the distribution function of a random variable taking non-negative integer values. The random variable X given by

$$X = x_i$$
 if and only if $F_{i-1} < u \le F_i$

has distribution function F.

b) If F is a continuous function, the random variable $X = F^{-1}(u)$ has distribution function F.

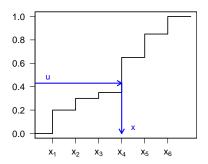
Note

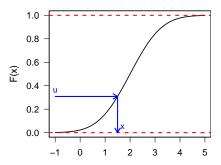
The inversion method cannot always be used! We must have a formula for F(x) and be able to find $F^{-1}(u)$. This is for example not possible for the normal, χ^2 , gamma and t-distributions.

Review: inverse transform technique (II)

a) Discrete case:

b) Continuous case:





The inverse transform technique is conceptually easy, but

- in the discrete case, a large number of comparisons may be necessary.
- in the continuous case, F^{-1} must be available.

Gamma distribution

Let $X \sim \text{Ga(shape} = \alpha, \text{rate} = \beta)$, i.e.

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta \cdot x}, x > 0.$$

From stochastic processes we know that if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Exp}(\lambda)$, then $X_1 + \ldots + X_n \sim \mathsf{Ga}(n, \lambda)$.

This gives how to simulate when α is an integer.

Gamma distribution

Further remember: $\chi^2_{\nu} = \mathsf{Ga}(\frac{\nu}{2}, \frac{1}{2}),$ $X_1, \dots, X_n \overset{\mathsf{iid}}{\sim} \mathcal{N}(0, 1) \Rightarrow \sum_{i=1}^n X_i^2 \sim \chi_n^2.$ Thus, we can simulate $X \sim \mathsf{Ga}(\frac{n}{2}, \frac{1}{2})$ by x = 0 $\mathsf{for} \ i = 1, 2, \dots, n \ \mathsf{do}$ $\mathsf{generate} \ y \sim \mathcal{N}(0, 1) \qquad \qquad \triangleright \mathsf{Still} \ \mathsf{have} \ \mathsf{to} \ \mathsf{learn} \ \mathsf{how}$ $x \leftarrow x + y^2$ $\mathsf{end} \ \mathsf{for}$ $\mathsf{return} \ \mathsf{x}$

Linear transformations

Many distributions have scale parameters, for example

$$X \sim \mathcal{N}(0,1)$$
 \Leftrightarrow $\sigma X \sim \mathcal{N}(0,\sigma^2)$ $X \sim \mathsf{Exp}(1)$ \Leftrightarrow $\frac{1}{\lambda} X \sim \mathsf{Exp}(\lambda)$ $X \sim \mathcal{U}[0,1]$ \Leftrightarrow $\beta X \sim \mathcal{U}[0,\beta]$

Adding a constant can also helping us in some situations

$$X \sim \mathcal{N}(0,1)$$
 \Leftrightarrow $X + \mu \sim \mathcal{N}(\mu,1)$

and thereby

$$X \sim \mathcal{N}(0,1)$$
 \Leftrightarrow $\sigma X + \mu \sim \mathcal{N}(\mu, \sigma^2)$

Gamma distribution (II)

 β is a rate (inverse scale) parameter, i.e.

$$X \sim \mathsf{Ga}(\alpha, 1) \qquad \Leftrightarrow \qquad X/\beta \sim \mathsf{Ga}(\alpha, \beta)$$

Thus, we can simulate $X \sim \operatorname{Ga}(\frac{n}{2},\beta)$ by the algorithm x=0

for
$$i = 1, 2, ..., n$$
 do

generate $y \sim \mathcal{N}(0,1)$ $ightharpoonup \mathsf{Still}$ have to learn how $x \leftarrow x + y^2$

end for

$$x \leftarrow \frac{1}{2}x \qquad \qquad \triangleright \operatorname{Ga}(\frac{n}{2}, 1)$$
$$x \leftarrow \frac{1}{\beta}x \qquad \qquad \triangleright \operatorname{Ga}(\frac{n}{2}, \beta)$$

return x

Thus, we know how to simulate from a $Ga(\alpha, \beta)$ whenever $\alpha = \frac{n}{2}$ where n is an integer.

Review scaling: Change of variables

 $X \sim \text{Exp}(1)$. We are interested in $Y = \frac{1}{\lambda}X$, i.e. $y = g(x) = \frac{1}{\lambda}x$.

$$g^{-1}(y) = \lambda y$$

$$\frac{dg^{-1}(y)}{dy} = \lambda$$

Application of the change of variables formula leads to:

$$f_Y(y) = \exp(-\lambda y)\lambda$$

It follows: $Y \sim \text{Exp}(\lambda)$.

Exercise: Check other transformations, we mentioned.

Bivariate techniques

Remember: If $(x_1, x_2) \sim f_X(x_1, x_2)$ and $(y_1, y_2) = g(x_1, x_2)$ \updownarrow $(x_1, x_2) = g^{-1}(y_1, y_2)$

where g is a one-to-one differentiable transformation. Then $f_Y(y_1, y_2) = f_X(g^{-1}(y_1, y_2))|\mathbf{J}|$

with the determinant of the Jacobian matrix ${\bf J}$

$$|\mathbf{J}| = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

⇒ Multivariate version of the change-of-variables transformation

Example: Normal distribution (Box-Muller)

see blackboard

Bivariate techniques (II)

If we know how to simulate from $f_X(x_1, x_2)$ we can also simulate from $f_Y(y_1, y_2)$ by

$$(x_1, x_2) \sim f_X(x_1, x_2)$$

$$(y_1, y_2) = g(x_1, x_2)$$

Return (y_1, y_2) .

Ratio-of-uniforms method

General method for arbitrary densities f known up to a proportionality constant.

Theorem

Let $f^*(x)$ be a non-negative function with $\int_{-\infty}^{\infty} f^*(x) dx < \infty$. Let $C_f = \{(x_1, x_2) \mid 0 \le x_1 \le \sqrt{f^*\left(\frac{x_2}{x_1}\right)}\}.$

a) Then C_f has a finite area

Let (x_1, x_2) be uniformly distributed on C_f .

b) Then $y = \frac{x_2}{x_1}$ has a distribution with density

$$f(y) = \frac{f^{\star}(y)}{\int_{-\infty}^{\infty} f^{\star}(u) du}$$

Example: Standard Cauchy distribution

see blackboard

Proof of theorem

see blackboard

Algorithm to sample form a standard Cauchy

Generate (x_1, x_2) from $\mathcal{U}(C_f)$ (\leftarrow How can we do this?)

$$y = \frac{x_2}{x_1}$$

return y.

How to sample from C_f ?

We have $C_f = \{(x_1, x_2) \mid 0 \le x_1 \le \sqrt{f^*\left(\frac{x_2}{x_1}\right)}\}$. If $f^*(x)$ and $x^2 f^*(x)$ are bounded we have

$$C_f \subset [0, a] \times [b_-, b_+],$$
 with

•
$$a = \sqrt{\sup_{x} f^{\star}(x)} > 0$$

•
$$b_+ = \sqrt{\sup_{x \geq 0} (x^2 f^*(x))}$$

•
$$b_- = -\sqrt{\sup_{x \leq 0} (x^2 f^*(x))}$$

Proof: see blackboard

Use Rejection sampling to sample from C_f .