Lecture 3: inverse transform technique Review: inverse transform technique (Il)

a) Discrete case: b) Continuous case:
Let F be a distribution, and let U ~ 1[0, 1]. 10 10
0.8 0.8
a) Let F be the distribution function of a random variable taking 0.6 ~ 06
u e
non-negative integer values. The random variable X given by 0.4 04 -
0.2 Jf 0.2
X = x; if and only if Fiii<u<F 0.0 X 0.0 -

has distribution function F.

b) If F is a continuous function, the random variable X = F~1(u) The inverse transform technique is conceptually easy, but

has distribution function F. e in the discrete case, a large number of comparisons may be

necessary.

e in the continuous case, F~! must be available.

Note Gamma distribution

Let X ~ Ga(shape=a, rate=p3), i.e.

«
The inversion method cannot always be used! We must have a f(x)= rfa)xaleﬁ'x,x > 0.
formula for F(x) and be able to find F~1(u). This is for example
not possible for the normal, x2, gamma and t-distributions. From stochastic processes we know that if Xi,..., X, i Exp(A),

then X1 + ...+ X, ~ Ga(n, A).

This gives how to simulate when « is an integer.



Gamma distribution

Further remember: x2 = Ga(}, %),

Xty Xn CN(0,1) = SO, X2 ~ A2,
Thus, we can simulate X ~ Ga(2, 3) by
x=0
fori=1,2,...,ndo
generate y ~ N(0,1) > Still have to learn how
X< X+ y2
end for

return x

Linear transformations

Many distributions have scale parameters, for example

X ~ N(0,1) & oX ~ N(0,0?%)
X ~ Exp(1) o %x ~ Exp())
X ~U[0,1] & X ~U0,p6]

Adding a constant can also helping us in some situations

X ~N(0,1) & X+ p~N(p,1)

and thereby

X ~N(0,1) & oX 4+~ N(u,o?)

Gamma distribution (I1)

B is a rate (inverse scale) parameter, i.e.

X ~ Ga(a, 1) & X/B~Ga(a,B)

Thus, we can simulate X ~ Ga(3, 3) by the algorithm
x=0
fori=1,2,...,ndo

generate y ~ N(0,1)

X< x+ y2
end for
1
X 4= 5X > Ga(3,1
X %X > Ga(3,p
return x

n

Thus, we know how to simulate from a Ga(c, 3) whenever o = J

where n is an integer.

Review scaling: Change of variables

X ~ Exp(1). We are interested in Y = £ X, i.e. y = g(x) = :x.

_ dg(y)
1

= _— >\
g (y)=X\y d

Application of the change of variables formula leads to:
fy(y) = exp(—=Ay)A
It follows: Y ~ Exp()).

Exercise: Check other transformations, we mentioned.

> Still have to learn how

)
)



Bivariate techniques

Remember: If (x1,x2) ~ fx(x1,x2)

and (y1,y2) = g(x1,x2)

~

(31, %) =g (v y2)

where g is a one-to-one differentiable transformation. Then
fr(y1 y2) = fx(g ™ (v1, y2)) ]

with the determinant of the Jacobian matrix J

Ox1  Ox
| = dy1  In
ox1  Ox
dy2  Oy»

= Multivariate version of the change-of-variables transformation

Example: Normal distribution (Box-Muller)

see blackboard

Bivariate techniques (II)

If we know how to simulate from fx(x1,x2) we can also simulate

from fy (y1 5 y2) by

(x1,x2) ~ fx(x1, x2)

()/17}/2) = g(Xl,Xz)

Return (y1, y2).

Ratio-of-uniforms method

General method for arbitrary densities f known up to a

proportionality constant.

Theorem

Let f*(x) be a non-negative function with [*_ f*(x)dx < co. Let

Cr={(x1,x2) |0 < xg <4/ f* <%>}

a) Then Cr has a finite area

Let (x1,x2) be uniformly distributed on Cy.

b) Theny = i—f has a distribution with density



Example: Standard Cauchy distribution Algorithm to sample form a standard Cauchy

Generate (x1,x2) from U(Cr) (+— How can we do this?)

see blackboard y =2
X1

return y.

Proof of theorem How to sample from C¢?

We have Cr = {(x1,x2) | 0 < x3 < (/f* (%)} If f*(x) and

x?f*(x) are bounded we have
CrC[0,a] x [b_,by],  with

see blackboard
e a=/sup, f*(x) >0

e by = \/SUszo(Xzf*(X))

o b = =\ [sup,<o(x*F*(x))

Proof: see blackboard

Use Rejection sampling to sample from Cr.



