Lecture 4: How to sample from C_{f} ?
We have $C_{f}=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, 0 \leq x_{1} \leq \sqrt{f^{\star}\left(\frac{x_{2}}{x_{1}}\right)}\right.\right\}$. If $f^{\star}(x)$ and $x^{2} f^{\star}(x)$ are bounded we have

$$
C_{f} \subset[0, a] \times\left[b_{-}, b_{+}\right], \quad \text { with }
$$

- $a=\sqrt{\sup _{x} f^{\star}(x)}>0$
- $b_{+}=\sqrt{\sup _{x \geq 0}\left(x^{2} f \star(x)\right)}$
- $b_{-}=-\sqrt{\sup _{x \leq 0}\left(x^{2} f^{\star}(x)\right)}$

Proof: see blackboard
Use Rejection sampling to sample from C_{f}.

Example: Simulation from Student-t (I)

The density of a Student t distribution with $n>0$ degrees of freedom, mean μ and scale σ^{2} is
$f_{t}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{1}{\sqrt{n \pi \sigma^{2}}}\left[1+\frac{1}{n}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\frac{n+1}{2}}, \quad-\infty<x<\infty$.
Let

$$
\begin{aligned}
x_{2} & \sim \mathrm{Ga}\left(\frac{n}{2}, \frac{n S}{2}\right) \\
x_{1} \mid x_{2} & \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{x_{2}}\right)
\end{aligned}
$$

It can be shown that then

$$
x_{1} \sim t_{n}\left(\mu, S \sigma^{2}\right) \quad \text { (show yourself) }
$$

Methods based on mixtures

Remember: $f\left(x_{1}, x_{2}\right)=f\left(x_{1} \mid x_{2}\right) f\left(x_{2}\right)$
Thus: To generate $\left(x_{1}, x_{2}\right) \sim f\left(x_{1}, x_{2}\right)$ we can

- generate $x_{2} \sim f\left(x_{2}\right)$
- generate $x_{1} \sim f\left(x_{1} \mid x_{2}\right)$, where x_{2} is the value just generated.

Note: This mechanism automatically provides a value x_{1} from its marginal distribution, i.e. $x_{1} \sim f\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}$.
\Rightarrow We are able to generate a value for x_{1} even when its marginal density is awkward to sample from directly.

Example: Simulation from Student-t (II)

Thus, we can simulate $x_{1} \sim t_{n}\left(\mu, \sigma^{2}\right)$ by

$$
\begin{aligned}
& x_{2} \sim \mathrm{Ga}\left(\frac{n}{2}, \frac{n}{2}\right) \\
& x_{1} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{x_{2}}\right)
\end{aligned}
$$

return x_{1}

Another application is sampling from a mixture distribution, i.e. mixture of two normals.

Multivariate normal distribution
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$ if the density is

$$
f(x)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \cdot \frac{1}{\sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

with

- $x \in \mathbb{R}^{d}$
- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)^{\top}$
- $\Sigma \in \mathbb{R}^{d \times d}, \Sigma$ must be positive definite.

Important properties (II)
iii) Conditional distributions:

With the same notation as in ii) we also have

$$
\boldsymbol{x}_{1} \mid \boldsymbol{x}_{2} \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{x}_{2}-\boldsymbol{\mu}_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

iv) Quadratic forms:

$$
\boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \Rightarrow(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \sim \chi_{d}^{2}
$$

Important properties (I)
Important properties of $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$ (known from "Linear statistical models")
i) Linear transformations:

$$
\begin{aligned}
& \boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \Rightarrow \boldsymbol{y}=\mathbf{A} \boldsymbol{x}+\boldsymbol{b} \sim \mathcal{N}_{r}\left(\mathbf{A} \boldsymbol{\mu}+\boldsymbol{b}, \mathbf{A} \Sigma \mathbf{A}^{\top}\right), \text { with } \\
& \mathbf{A} \in \mathbb{R}^{r \times d}, \boldsymbol{b} \in \mathbb{R}^{r} .
\end{aligned}
$$

ii) Marginal distributions:

Let $\boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$ with

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

Then

$$
\begin{aligned}
& x_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{11}\right) \\
& x_{2} \sim \mathcal{N}\left(\mu_{2}, \Sigma_{22}\right)
\end{aligned}
$$

Simulation from the multivariate normal

How can we simulate from $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$?
Let $x \sim \mathcal{N}_{d}(0, I)$

$$
\boldsymbol{y}=\boldsymbol{\mu}+\mathbf{A} \boldsymbol{x} \quad \stackrel{\text { i) }}{\Rightarrow} \quad \boldsymbol{y} \sim \mathcal{N}\left(\boldsymbol{\mu}, \mathbf{A A}^{\top}\right)
$$

Thus, if we choose \mathbf{A} so that $\mathbf{A A}^{\top}=\Sigma$ we are done.
Note: There are several choices of \mathbf{A}. A popular choice is to let \mathbf{A} be the Cholesky decomposition of Σ.

Rejection sampling

We discuss a general approach to generate samples from some target distribution with density $f(x)$, called rejection sampling, without actually sampling from $f(x)$.

Rejection sampling
The goal is to effectively simulate a random number $X \sim f(x)$ using two independent random numbers

- $U \sim U(0,1)$ and
- $X \sim g(x)$,
where $g(x)$ is called proposal density and can be chosen arbitrarily under the assumption that there exists an $c \geq 1$ with

$$
f(x) \leq c \cdot g(x) \quad \text { for all } x \in \mathbb{R}
$$

Rejection sampling - Algorithm

Let $f(x)$ denote the target density.

1. Generate $x \sim g(x)$
2. Compute $\alpha=\frac{1}{c} \cdot \frac{f(x)}{g(x)}$.
3. Generate $u \sim \mathcal{U}(0,1)$.
4. If $u \leq \alpha$ return x (acceptance step)
5. Otherwise go back to (1) (rejection step)

Note $\alpha \in[0,1]$ and α is called acceptance probability.
Claim: The returned x is distributed according to $f(x)$.

Rejection sampling

- We want $x \sim f(x)$ (density).
- We know how to generate realisations from a density $g(x)$
- We know a a value $c>1$, so that $\frac{f(x)}{g(x)} \leq c$ for all x where $f(x)>0$

Algorithm:

```
finished =0
while (finished =0)
    generate }x~g(x
    compute \alpha=\frac{1}{c}\cdot\frac{f(x)}{g(x)}
    generate }u~U[0,1
    if }u\leq\alpha\mathrm{ set finished = 1
return x
```

Rejection sampling

Example: Setting

Suppose we want to sample standard normal random numbers.
Then

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

As proposal distribution we use a double exponential distribution:

$$
g(x)=\frac{\lambda}{2} \exp (-\lambda|x|), \lambda>0
$$

$>\mathrm{g}<-$ function(x, lambda=1)\{

+ return(lambda/2 *
$+\quad \exp (-1$ ambda $* \operatorname{abs}(\mathrm{x})))$
+ \}
> rg <- function(n, lambda)\{
$+\quad z=r \exp (n, l a m b d a)$
$+\quad y=\operatorname{sample}(c(0,1), n$,
$+\quad \operatorname{prob}=c(0.5,0.5)$, replace=TRUE) $\bar{\circ}$
$+x=c(z[y==0],-z[y==1])$
+ return (x)
$+\}$

Rejection sampling

The overall acceptance probability is

$$
P(c \cdot U \cdot g(x) \leq f(x))=\int_{-\infty}^{\infty} \frac{f(x)}{c \cdot g(x)} g(x) d x=\int_{-\infty}^{\infty} \frac{f(x)}{c} d x=c^{-1}
$$

The single trials are independent, so the number of trials up to the first success is geometrically distributed with parameter $1 / c$. The expected number of trials up to the first success is therefore c.

Problem:
In high-dimensional spaces c is generally large so that many samples will get rejected.

Example: Find an efficient bound c

$$
\begin{aligned}
\frac{f(x)}{g(x)} & =\frac{\frac{1}{\sqrt{2 \pi}} \exp \left(-1 / 2 x^{2}\right)}{\frac{\lambda}{2} \exp (-\lambda|x|)} \\
& =\sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(-\frac{1}{2} x^{2}+\lambda|x|\right) \\
& \leq \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(\max _{x \in \mathbb{R}}\left\{-\frac{1}{2} x^{2}+\lambda|x|\right\}\right) \\
& \stackrel{|x|=\lambda}{=} \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(\frac{1}{2} \lambda^{2}\right) \\
& \equiv c
\end{aligned}
$$

Example: Acceptance probability

Thus the acceptance probability becomes

$$
\begin{aligned}
\alpha=\frac{1}{c} \frac{f(x)}{g(x)} & =\frac{\sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(-\frac{1}{2} x^{2}+\lambda|x|\right)}{\sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(\frac{1}{2} \lambda^{2}\right)} \\
& =\exp \left\{-\frac{1}{2} x^{2}-\frac{1}{2} \lambda^{2}+\lambda|x|\right\}
\end{aligned}
$$

Note, the algorithm is correct for all values of $\lambda>0$. However, we should choose $\lambda>0$ so that c becomes as small as possible and consequently α.
\Rightarrow Choose the λ that minimises c which is $\lambda=1$

$$
\frac{f(x)}{g(x)} \leq \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(\frac{1}{2} \lambda^{2}\right) \stackrel{\lambda \equiv 1}{=} \sqrt{\frac{2}{\pi}} \exp \left(\frac{1}{2}\right) \approx 1.32
$$

$$
(1 / 1.32 \approx 0.7602)
$$

Continuation: Standard Cauchy

How can we sample from the semi-unit circle?
Rejection sampling also works when x is a vector:

$$
C_{f}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2} \leq 1, x_{1}>0\right\}
$$

with

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{\operatorname{area}\left(C_{f}\right)}, \quad\left(x_{1}, x_{2}\right) \in C_{f}
$$

Let the proposal density be

$$
g\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{2} & x_{1} \in[0,1], x_{2} \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

Thus the density g is that $x_{1} \in \mathcal{U}(0,1), x_{2} \in \mathcal{U}(-1,1)$ independently.

Example: Illustration

- Left: Comparison of $f(x)$ versus $c \cdot g(x)$ when $\lambda=1$.
- Right: Distribution of accepted samples compared to $f(x)$. 10000 samples were generated and 7582 accepted.

Standard Cauchy: Rejection sampling algorithm
finished $=0$
while finished $=0$ do
generate $\left(x_{1}, x_{2}\right) \sim g\left(x_{1}, x_{2}\right)$
compute

$$
\begin{aligned}
& \alpha=\frac{1}{c} \frac{f\left(x_{1}, x_{2}\right)}{g\left(x_{1}, x_{2}\right)}= \begin{cases}\frac{1}{c} \cdot \frac{2}{\operatorname{area}\left(C_{f}\right)} \stackrel{c=\frac{2}{\operatorname{araea}\left(C_{f}\right)}}{=} 1, & \left(x_{1}, x_{2}\right) \in C_{f} \\
0, & \text { otherwise }\end{cases} \\
& \text { generate } u \sim \mathcal{U}(0,1) \\
& \quad \text { if } u \leq \alpha \text { then finished }=1 \\
& \text { end if } \\
& \text { end while } \\
& \text { return } x_{1}, x_{2} \begin{array}{l}
\text { i.e. If }\left(x_{1}, x_{2}\right) \in C_{f} \text { finished }=1
\end{array} \\
& \text { (} \quad \text {. }
\end{aligned}
$$

Note: To do this algorithm we do not need to know the value of the normalising constant area $\left(C_{f}\right)$.

This is always true in rejection sampling.

Rejection sampling - Acceptance probability

Note: For c to be small, $g(x)$ must be similar to $f(x)$.
The art of rejection sampling is to find a $g(x)$ that is similar to $f(x)$ and which we know how to sample from.

Issues: c is generally large in high-dimensional spaces, and since the overall acceptance rate is $1 / c$, many samples will get rejected.

