Lecture 4: How to sample from C¢?

We have Cr = {(x1,%) | 0 < 31 < (/f* (;)} If £*(x) and

x?f*(x) are bounded we have

CrC[0,a] x [b_,by],  with

e a=/sup, f*(x) >0

o by = /sup,=o(x*F*(x))
o b= =\ /sup,o(x*F*(x))

Proof: see blackboard

Use Rejection sampling to sample from Cs.

Example: Simulation from Student-t (I)

The density of a Student t distribution with n > 0 degrees of

freedom, mean 4 and scale o2 is
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It can be shown that then

x1 ~ tp(p, So2)  (show yourself)

Methods based on mixtures

Remember: f(x1,x2) = f(x1|x2)f(x2)

Thus: To generate (x1,x2) ~ f(x1,X2) we can
e generate xo ~ f(x2)

e generate x; ~ f(x1|x2), where x» is the value just generated.

Note: This mechanism automatically provides a value x; from its

marginal distribution, i.e. x; ~ f(x1) = ffooo f(x1, x2)dxa.

= We are able to generate a value for x; even when its marginal

density is awkward to sample from directly.

Example: Simulation from Student-t (II)

Thus, we can simulate x; ~ t,(u, 0%) by

n n
x2 ~Ga(3.5)

2
xg ~ N <,U*7 (;2)

return xj.

Another application is sampling from a mixture distribution, i.e.

mixture of two normals.



Multivariate normal distribution

x=(x1,...,xq)" ~ Ng(m, X) if the density is
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with
e x ¢ RY
* 1= (/U“lw-'?,Ud)T
e ¥ c R ¥ must be positive definite.

Important properties (I1)

iii) Conditional distributions:

With the same notation as in ii) we also have

xi|xo ~ N(p1 + 12555 (%0 — p2), T11 — T12555 To1)

iv) Quadratic forms:
X~ Noy(p, D) = (x = p) T2 7Hx — ) ~ x5

Important properties (1)

Important properties of Ny(u, ) (known from “Linear statistical
models”)
i) Linear transformations:
x ~Ny(p, L) = y = Ax + b ~ N, (Ap + b, AZAT), with
AcR™ beR"
i) Marginal distributions:
Let x ~ Ny(p, X) with

Y11 X2
201 X

x1 ~ N(p1,X11)
xp ~ N (p2,X2)

Simulation from the multivariate normal

How can we simulate from Ny(u, X)?

Let x ~ Ny(0,1)
y=n+Ax Ly N(uAAT)
Thus, if we choose A so that AAT = ¥ we are done.

Note: There are several choices of A. A popular choice is to let A

be the Cholesky decomposition of ¥.



Rejection sampling Rejection sampling - Algorithm
We discuss a general approach to generate samples from some

target distribution with density f(x), called rejection sampling, Let £(x) denote the target density

without actually sampling from f(x). LG . x)
. Generate x ~ g(x

Rejection sampling 2. Compute v = L. %
c g(x
The goal is to effectively simulate a random number X ~ f(x) 3. Generate u ~ (0, 1)

using two independent random numbers
e U~ U(0,1) and
o X ~ g(x), 5. Otherwise go back to (1) (rejection step).

4. If u < « return x (acceptance step).

where g(x) is called proposal density and can be chosen arbitrarily Note a € [0, 1] and « is called acceptance probability.

under the assumption that there exists an ¢ > 1 with ) o ]
Claim: The returned x is distributed according to f(x).

f(x) <c-g(x) forallxeR.

Proof Rejection sampling

e We want x ~ f(x) (density).

e We know how to generate realisations from a density g(x)

e We know a a value ¢ > 1, so that % < ¢ for all x where
f(x)>0.
Algorithm:
finished = 0

while (finished = 0)

generate x ~ g(x)
compute o = % : %

generate u ~ U[0, 1]
if u < « set finished = 1

return x



Rejection sampling Rejection sampling

The overall acceptance probability is

P(c.U.g(x)Sf(x)):/oo Fix) g(x)dX:/C>O 9 dx=c '

—00 C~g(X) —o €

Alternative ¢ "(x) c*g(x) The single trials are independent, so the number of trials up to the

first success is geometrically distributed with parameter 1/c. The
expected number of trials up to the first success is therefore c.
Problem:

0 In high-dimensional spaces c is generally large so that many

f(x

samples will get rejected.

Example: Setting Example: Find an efficient bound c

Suppose we want to sample standard normal random numbers.
Then

f(x)= L exp <—X2) f(x) %exp(—1/2x2)

2 =
A _
As proposal distribution we use a double exponential distribution: g(x) 2 exp(=Alx|)

A
g(x) = 5 exp(—Alx]),A >0 = \/g)\_l exp (—1X2 + )\|x>
T 2
/2,

g <- function(x, lambda=1){
return(lambda/2 *
exp(-lambda * abs(x))) < -

rg <- function(n, lambda){ 4 [x]=A 2 _1 1 2
z = rexp(n, lambda) = ;)\ exp EA

= sample(c(0,1), n,
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return(x)
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Example: Acceptance probability

Thus the acceptance probability becomes
Lr) /2N e (<32 4 Al))
o= — _=
cg(x 2y 1
g(x) \/;)\ Lexp (5A2)
1 1
= exp {—2x2 - 5)\2 + )\\x]}

Note, the algorithm is correct for all values of A > 0. However, we

should choose A > 0 so that ¢ becomes as small as possible and
consequently a.

= Choose the )\ that minimises ¢ which is A =1

LX) < \F)\_l exp 1)\2 = \/Eexp 1 ~ 1.32
g(x) T 2 T 2

(1/1.32 ~ 0.7602).

Continuation: Standard Cauchy

How can we sample from the semi-unit circle?

Rejection sampling also works when x is a vector:
Cr={(x, %) | X +x3 < 1,3 >0}

with
1

_— C
area(Cy)’ (x1,52) € C

f(x1,x2) =

Let the proposal density be

% X1 € [07 1])X2 € [_17 1]

g(X1> X2) =

0 otherwise

Thus the density g is that x; € U4(0,1), x2 € U(-1,1)
independently.

Example: Illustration
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e Left: Comparison of f(x) versus c - g(x) when A = 1.

e Right: Distribution of accepted samples compared to f(x).
10000 samples were generated and 7582 accepted.

Standard Cauchy: Rejection sampling algorithm

finished = 0

while finished = 0 do
generate (x1,x2) ~ g(x1,x2)
compute

_ 2
2 Tarea(cy)

area(Cy)

1, (x1,%) € Cr

ol

1f(axe) _

= cglame)

0, otherwise
generate u ~ U(0,1)
if u < a then finished =1
end if >ie If (x1,x) € Cr finished =1
end while

return xi, xo



Standard Cauchy: Summary Rejection sampling - Acceptance probability

Note: For ¢ to be small, g(x) must be similar to 7(x).

Note: To do this algorithm we do not need to know the value of The art of rejection sampling is to find a g(x) that is similar to f(x)
the normalising constant area(Cy). and which we know how to sample from.
This is always true in rejection sampling. Issues: c is generally large in high-dimensional spaces, and since the

overall acceptance rate is 1/¢, many samples will get rejected.



