
Lecture 4: How to sample from Cf ?

We have Cf = {(x1, x2) | 0 ≤ x1 ≤
√
f ?
(
x2
x1

)
}. If f ?(x) and

x2f ?(x) are bounded we have

Cf ⊂ [0, a]× [b−, b+], with

• a =
√

supx f ?(x) > 0

• b+ =
√

supx≥0(x2f ?(x))

• b− = −
√

supx≤0(x2f ?(x))

Proof: see blackboard

Use Rejection sampling to sample from Cf .

Methods based on mixtures

Remember: f (x1, x2) = f (x1|x2)f (x2)

Thus: To generate (x1, x2) ∼ f (x1, x2) we can

• generate x2 ∼ f (x2)

• generate x1 ∼ f (x1|x2), where x2 is the value just generated.

Note: This mechanism automatically provides a value x1 from its

marginal distribution, i.e. x1 ∼ f (x1) =
∫∞
−∞ f (x1, x2)dx2.

⇒ We are able to generate a value for x1 even when its marginal

density is awkward to sample from directly.

Example: Simulation from Student-t (I)

The density of a Student t distribution with n > 0 degrees of

freedom, mean µ and scale σ2 is

ft(x) =
Γ
(
n+1
2

)

Γ
(
n
2

) 1√
nπσ2

[
1 +

1
n

(
x − µ
σ

)2
]− n+1

2

, −∞ < x <∞.

Let
x2 ∼ Ga

(
n

2
,
nS

2

)

x1|x2 ∼ N
(
µ,
σ2

x2

)

It can be shown that then

x1 ∼ tn(µ, Sσ2) (show yourself)

Example: Simulation from Student-t (II)

Thus, we can simulate x1 ∼ tn(µ, σ2) by

x2 ∼ Ga
(n
2
,
n

2

)

x1 ∼ N
(
µ,
σ2

x2

)

return x1.

Another application is sampling from a mixture distribution, i.e.

mixture of two normals.



Multivariate normal distribution

x = (x1, . . . , xd)> ∼ Nd(µ,Σ) if the density is

f (x) =
1

(2π)
d
2
· 1√
|Σ|

exp
(
−1
2

(x − µ)>Σ−1(x − µ)

)

with

• x ∈ Rd

• µ = (µ1, . . . , µd)>

• Σ ∈ Rd×d , Σ must be positive definite.

Important properties (I)
Important properties of Nd(µ,Σ) (known from “Linear statistical

models”)

i) Linear transformations:

x ∼ Nd(µ,Σ) ⇒ y = Ax + b ∼ Nr (Aµ + b,AΣA>), with

A ∈ Rr×d , b ∈ Rr .

ii) Marginal distributions:

Let x ∼ Nd(µ,Σ) with

x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Then

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)

Important properties (II)

iii) Conditional distributions:

With the same notation as in ii) we also have

x1|x2 ∼ N (µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21)

iv) Quadratic forms:

x ∼ Nd(µ,Σ) ⇒ (x − µ)>Σ−1(x − µ) ∼ χ2
d

Simulation from the multivariate normal

How can we simulate from Nd(µ,Σ)?

Let x ∼ Nd(0, I)

y = µ + Ax
i)⇒ y ∼ N (µ,AA>)

Thus, if we choose A so that AA> = Σ we are done.

Note: There are several choices of A. A popular choice is to let A

be the Cholesky decomposition of Σ.



Rejection sampling
We discuss a general approach to generate samples from some

target distribution with density f (x), called rejection sampling,

without actually sampling from f (x).

Rejection sampling

The goal is to effectively simulate a random number X ∼ f (x)

using two independent random numbers

• U ∼ U(0, 1) and

• X ∼ g(x),

where g(x) is called proposal density and can be chosen arbitrarily

under the assumption that there exists an c ≥ 1 with

f (x) ≤ c · g(x) for all x ∈ R .

Rejection sampling - Algorithm

Let f (x) denote the target density.

1. Generate x ∼ g(x)

2. Compute α = 1
c ·

f (x)
g(x) .

3. Generate u ∼ U(0, 1).

4. If u ≤ α return x (acceptance step).

5. Otherwise go back to (1) (rejection step).

Note α ∈ [0, 1] and α is called acceptance probability.

Claim: The returned x is distributed according to f (x).

Proof Rejection sampling

• We want x ∼ f (x) (density).

• We know how to generate realisations from a density g(x)

• We know a a value c > 1, so that f (x)
g(x) ≤ c for all x where

f (x) > 0.

Algorithm:

finished = 0

while (finished = 0)

generate x ∼ g(x)

compute α = 1
c ·

f (x)
g(x)

generate u ∼ U[0, 1]

if u ≤ α set finished = 1

return x



Rejection sampling

c * g(x)

f(x)f(x)

Alternative c *g(x)

Rejection sampling

The overall acceptance probability is

P(c · U · g(x) ≤ f (x)) =

∫ ∞

−∞

f (x)

c · g(x)
g(x) dx =

∫ ∞

−∞

f (x)

c
dx = c−1.

The single trials are independent, so the number of trials up to the

first success is geometrically distributed with parameter 1/c . The

expected number of trials up to the first success is therefore c .

Problem:
In high-dimensional spaces c is generally large so that many

samples will get rejected.

Example: Setting
Suppose we want to sample standard normal random numbers.

Then

f (x) =
1√
2π

exp
(
−x2

2

)
.

As proposal distribution we use a double exponential distribution:

g(x) =
λ

2
exp(−λ|x |), λ > 0

> g <- function(x, lambda=1){

+ return(lambda/2 *

+ exp(-lambda * abs(x)))

+ }

> rg <- function(n, lambda){

+ z = rexp(n, lambda)

+ y = sample(c(0,1), n,

+ prob=c(0.5,0.5), replace=TRUE)

+ x = c(z[y==0], -z[y==1])

+ return(x)

+ }
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Example: Find an efficient bound c

f (x)

g(x)
=

1√
2π

exp(−1/2x2)

λ
2 exp(−λ|x |)

=

√
2
π
λ−1 exp

(
−1
2
x2 + λ|x |

)

≤
√

2
π
λ−1 exp

(
max
x∈R
{−1

2
x2 + λ|x |}

)

|x |=λ
=

√
2
π
λ−1 exp

(
1
2
λ2
)

≡ c



Example: Acceptance probability
Thus the acceptance probability becomes

α =
1
c

f (x)

g(x)
=

√
2
πλ
−1 exp

(
−1

2x
2 + λ|x |

)
√

2
πλ
−1 exp

(1
2λ

2
)

= exp
{
−1
2
x2 − 1

2
λ2 + λ|x |

}

Note, the algorithm is correct for all values of λ > 0. However, we

should choose λ > 0 so that c becomes as small as possible and

consequently α.

⇒ Choose the λ that minimises c which is λ = 1

f (x)

g(x)
≤
√

2
π
λ−1 exp

(
1
2
λ2
)
λ=1
=

√
2
π
exp
(
1
2

)
≈ 1.32

(1/1.32 ≈ 0.7602).

Example: Illustration
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• Left: Comparison of f (x) versus c · g(x) when λ = 1.

• Right: Distribution of accepted samples compared to f (x).

10000 samples were generated and 7582 accepted.

Continuation: Standard Cauchy

How can we sample from the semi-unit circle?

Rejection sampling also works when x is a vector:

Cf = {(x1, x2) | x2
1 + x2

2 ≤ 1, x1 > 0}

with

f (x1, x2) =
1

area(Cf )
, (x1, x2) ∈ Cf

Let the proposal density be

g(x1, x2) =





1
2 x1 ∈ [0, 1], x2 ∈ [−1, 1]

0 otherwise

Thus the density g is that x1 ∈ U(0, 1), x2 ∈ U(−1, 1)

independently.

Standard Cauchy: Rejection sampling algorithm

finished = 0

while finished = 0 do

generate (x1, x2) ∼ g(x1, x2)

compute

α = 1
c
f (x1,x2)
g(x1,x2)

=





1
c · 2

area(Cf )

c= 2
area(Cf )= 1, (x1, x2) ∈ Cf

0, otherwise
generate u ∼ U(0, 1)

if u ≤ α then finished = 1

end if . i.e. If (x1, x2) ∈ Cf finished = 1

end while

return x1, x2



Standard Cauchy: Summary

Note: To do this algorithm we do not need to know the value of

the normalising constant area(Cf ).

This is always true in rejection sampling.

Rejection sampling - Acceptance probability

Note: For c to be small, g(x) must be similar to f (x).

The art of rejection sampling is to find a g(x) that is similar to f(x)

and which we know how to sample from.

Issues: c is generally large in high-dimensional spaces, and since the

overall acceptance rate is 1/c , many samples will get rejected.


