
Weighted resampling

A problem when using rejection sampling is to find a legal value

for c . An approximation to rejection sampling is the following:

Let, as before:

• f (x): target distribution

• g(x): proposal distribution

Algorithm

• Generate x1, . . . , xn ∼ g(x) iid

• Compute weights

wi =

f (xi )
g(xi )∑n
j=1

f (xj )
g(xj )

• Generate a second sample of size m from the discrete

distribution on {x1, . . . , xn} with probabilities w1, . . . ,wn.

Comments

• The resulting sample has approximate distribution f

• The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

• The normalising constant is not needed.

• This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.

Illustration

−15 −10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

* ** *** **** ** * **** * ***** * *** ** * **** *** *** ** ** ** * *** *** *** ** * * * *** ** ** ** * *** *** ** ** ** ***** ** * *** **** * *** *** ** ** * ** *** *** **** ** *** *** * ***** *** * ** *** *** * *** *** ***** **** ** *** *** * ***** ** * ***** * *** *** ** ** ***

*

Target density f
Proposal density g
Weights of the draws
Locations of the 200 draws



Adaptive rejection sampling

This method works only for log concave densities, i.e.

(ln f )′′(x) ≤ 0, for all x .
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Many densities are log-concave, e.g. the normal, the gamma

(a > 1), densities arising in GLMs with canonical link.

Basic idea: Form an upper envelope (the upper bound on f (x))

adaptively and use this in place of c · g(x) in rejection sampling.

Adaptive rejection sampling (2)

• Start with an initial grid of points x1, x2, . . . , xm ( with at least

one xi on each side of the maximum of ln(f (x))) and construct

the envelope using the tangents at ln(f (xi )), i = 1, . . . ,m.

• Draw a sample from the envelop function and if accepted the

process is terminated. Otherwise, use it to refine the grid.
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Monte Carlo integration

Assumption

It is easy to generate independent samples x (1), . . . , x (M) from a

distribution f (x) of interest.

A Monte Carlo estimate of the mean

E(x) =

∫
xf (x)dx

is then given by

Ê(x) =
1
M

M∑

m=1

x (m).

The strong law of large numbers ensures, that this estimate is

consistent. This approach is called Monte Carlo integration

Monte Carlo integration (II)

Monte Carlo integration

Suppose x (1), . . . , x (M) is an iid sample drawn from f (x). Then the

strong law of large numbers says:

Ê(g(x)) =
1
M

M∑

m=1

g(x (m))
a.s→
∫

g(x)f (x)dx = E(g(x))

Examples

• Using g(x) = x2 we obtain an estimate for E(x2).

• An estimate for the variance follows as

V̂ar(x) = Ê(x2)− Ê(x)2



Importance sampling

One of the principal reasons for wishing to sample from

complicated probability distributions f (z) is to be able to evaluate

expectations with respect to some function p(z):

E(p) =

∫
p(z)f (z)dz

The technique of importance sampling provides a framework for

approximating expectations directly but does not itself provide a

mechanism for drawing samples from a distribution.

Importance sampling (2)

Importance sampling is based on the use of a proposal distribution

g(x) from which it is easy to draw samples.

E(p) =

∫
p(z)f (z)dz

=

∫
p(z)

f (z)

g(z)
g(z)dz

whre w(z) = f (z)/g(z) are known as importance weights.

Importance sampling estimators

The former expression suggests two different importance sampling

estimators

Ê(p) =
1
L

L∑

l=1

p(z(l)) · w(z(l)). (1)

Ê(p) =
1

∑L
l=1 w(z(l))

L∑

l=1

p(z(l)) · w(z(l)). (2)

The difference between these two estimates is usually small. The

main advantage of the second estimator is that it does not require

the normalizing constants of f and g in order to be computed.

Importance sampling: Summary

As with rejection sampling, the success of importance sampling

depends crucially on how well the proposal distribution g(x)

matches the target distribution f (x).


