
Bayesian concept

. . . The essence of the Bayesian approach is to provide a

mathematical rule explaining how you change your

existing beliefs in the light of new evidence. In other

words, it allows scientists to combine new data with their

existing knowledge or expertise. . . .

The Economist, September 30th 2000

Bayes Theorem I

named after the English theologian and

mathematician Thomas Bayes

[1701–1761]

The theorem relies on the asymmetry of the definition of

conditional probabilities:

P(A|B) =
P(A ∩ B)

P(B)
⇒ P(A ∩ B) = P(B)P(A|B) (3)

P(B|A) =
P(A ∩ B)

P(A)
⇒ P(A ∩ B) = P(A)P(B|A) (4)

for any two events A and B under regularity conditions,

i.e. P(B) 6= 0 in (3) and P(A) 6= 0 in (4).

Bayes Theorem II
Thus, from P(A|B)P(B) = P(B|A)P(A) follows

Bayes Theorem

P(A|B) =
P(B|A)P(A)

P(B)

Law of tot. prob.
=

P(B|A)P(A)

P(B|A)P(A) + P(B|Ā)P(Ā)

More general, let A1, . . . ,An be exclusive and exhaustive events,

then

P(Ai |B) =
P(B|Ai )P(Ai )∑n
i=1 P(B|Ai )P(Ai )

Interpretation

P(Ai ) prior probabilities

P(Ai |B) posterior probabilities

After observing B the prob. of Ai changes from P(Ai ) to P(Ai |B).

Towards inference

A more general formulation of Bayes theorem is given by

f (X = x |Y = y) =
f (Y = y |X = x)f (X = x)

f (Y = y)

where X and Y are random variables.

(Note: Switch of notation from P(.) to f (.) to emphasise that we

do not only relate to probabilities of events but to general

probability functions of the random variables X and Y .)

Even more compact version

f (x |y) =
f (y |x)f (x)

f (y)
.



Posterior distribution

Let X = x denote the observed realisation of a random variable or

random vector X with density function f (x |θ). Specification of a

prior distribution with density function f (θ) allows to compute the

density function of the posterior distribution using Bayes theorem:

f (θ|x) =
f (x |θ)f (θ)

f (x)

=
f (x |θ)f (θ)∫
f (x |θ)f (θ)dθ

.

For discrete parameter space the integral has to be replaced with a

sum.

The posterior distribution is the most important quantity in

Bayesian inference. It contains all information about the unknown

parameter θ after having observed the data X = x .

Posterior distribution (II)
Since the denominator in

f (θ|x) =
f (x |θ)f (θ)

f (x)

does not depend on θ, the density of the posterior distribution is

proportional to

f (θ|x)︸ ︷︷ ︸
Posterior

∝ f (x |θ)︸ ︷︷ ︸
Likelihood

× f (θ)︸︷︷︸
Prior

where 1/
∫
f (x |θ)f (θ)dθ is the corresponding normalising constant

to ensure
∫
f (θ|x)dθ = 1.

Reminder:
A likelihood approach uses only the likelihood and calculated

Maximum Likelihood estimate (MLE), defined as the particular

value of θ that maximises the likelihood.

Bayesian point estimates
Statistical inference about θ is based solely on the posterior

distribution f (θ|x). Suitable point estimates are location

parameters, such as:

• Posterior mean E(θ|x):

E(θ|x) =

∫
θf (θ|x)dθ.

• Posterior mode Mod(θ|x):

Mod(θ|x) = argmax
θ

f (θ|x)

• Posterior median Med(θ|x) is defined as the value a which

satisfies∫ a

−∞
f (θ|x)dθ = 0.5 and

∫ ∞

a
f (θ|x)dθ = 0.5

Binomial experiment

Let X ∼ Bin(n, p) with n known and p ∈ Π = (0, 1) unknown.

Since p is constrained to be within 0 and 1, a usual prior

distribution is a beta distribution, so that

p ∼ Be(α, β) with α, β > 0 and T = (0, 1).
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Binomial experiment (2)

X ∼ Bin(n, p), x = 0, 1, . . . , n, p ∼ Be(α, β), 0 < p < 1

⇓ ⇓
L(p) = f (x |p) =

(
n

x

)
px(1− p)n−x f (p) =

1
B(α, β)

pα−1(1− p)β−1

∝ px(1− p)n−x ∝ pα−1(1− p)β−1

Thus, the posterior distribution results as:

f (p|x) ∝ f (x |p)× f (p)

= px(1− p)n−x × pα−1(1− p)β−1

= pα+x−1(1− p)β+n−x−1

This corresponds to the core of a beta distribution, so that

p|x ∼ Be(α + x︸︷︷︸
successes

, β + n − x︸ ︷︷ ︸
failures

)

Binomial experiment: Simple example
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Posterior density of p|x for a Be(3, 2) prior and observation x = 8

in a binomial experiment with n = 10 trials. An equi-tailed 95%

credible interval is also shown.

Using a Be(1,1) the posterior mode equals the Maximum

Likelihood (ML) estimate.


