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Bayesian point estimates

Statistical inference about 6 is based solely on the posterior distribution

f(0|x). Suitable point estimates are location parameters, such as:

e Posterior mean E(6|x):
E(0|x) = /9f(0|x)d0.
e Posterior mode Mod(6|x):
Mod(f|x) = arg max f(0]x)
e Posterior median Med(6|x) is defined as the value a which satisfies

/ f(0]x)d6 = 0.5 and / £(0]x)d0 = 0.5
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Lecture 7: Brief reminder — Bayesian model

e data: x

likelihood model: x|0 ~ f(x|0)

prior distribution: 8 ~ £(8)

posterior distribution:

F(Olx) < f(x|0) x £(6)
—_—. = =~

Posterior Likelihood Prior

Binomial experiment

Let X ~ Bin(n, p) with n known and p € N = (0, 1) unknown.

Since p is constrained to be within 0 and 1, a usual prior distribution is a
beta distribution, so that p ~ Be(«, 3) with a, 8 >0 and T = (0,1).
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Binomial experiment (2)

X ~Bin(n,p), x=0,1,....n,  p~Be(a,f),0<p<1
\ !
ey = 7(xle) = (7)1 o) (o) = g1 9
x p(L— p)" x

Thus, the posterior distribution results as:

f(plx) o< f(x|p) x f(p)

— p(1—p)"
_ pa+x—1(1 _ p),8+n—><—1

This corresponds to the core of a beta distribution, so that
~B , B —
plx ela+ x ,f+n—x)

successes failures

Credible interval

For fixed a € (0,1), a (1 — «) credible interval is defined through two
real numbers t; and t,, so that

ty
/ f(0|x)dd =1 — a.
t

The number 1 — «v is called the credible level of the credible interval
[t, tu]-

There are infinitely many (1 — «)-credible intervals for fixed .
(At least if 0 is continuous.)

Binomial experiment: Simple example
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Posterior density of p|x for a Be(3,2) prior and observation x =8 in a
binomial experiment with n = 10 trials. An equi-tailed 95% credible

interval is also shown.

Using a Be(1,1) the posterior mode equals the Maximum Likelihood
(ML) estimate.

Credible interval (II)

Equi-tailed credible interval

The same amount (a/2) of probability mass is cut from the left and right
tail of the posterior distribution, i.e. choose t; as the «/2-quantile and ¢,
as the 1 — a/2-quantile.

Highest posterior density (HPD) intervals

Feature: The posterior density at any value of @ inside the credible
interval must be larger than anywhere outside the credible interval.
HPD-interval have the smallest width among all (1 — &) credible intervals.

For symmetric posterior distributions HPD intervals are also equi-tailed.



Properties of the beta-distribution Bayesian learning

An important feature of Bayesian inference is the consistent processing of

. . L sequentially arising data.
Be(a, ) can be interpreted as that which would have arisen if we had

started with an “improper”’ Be(0, 0) prior and then observed o successes * Suppose new independent data x, from a Bin(n, p) arrive.

in a + f trials. = ng = av+ B can be viewed as a prior sample size and e The posterior distribution from the original observation (with x now

o/(a + B) as prior mean. called x;) becomes the prior for xa:
The posterior mean is given by:

P given >y F(plx1, %) o f(xalp,x1) x f(plxa)
a+ x a+p « n X

= = . 2 f f
E(plx) ot hin _aiBin ard avBra o f(x2|p) x f(p|x1)

Weighted prior mean Weighted ML-estimate Using f(p|X1) X f(Xl‘p) X f(p) an alternative formula is

The weights are proportional to the prior sample size and the data sample F(plxa, x2) o F(xalp) % F(xalp) x F(p)

= f(x1,%|p) x f(p)

size.
= Observing more data leads to a decreasing influence of the prior.
Thus, f(p|x1,x2) is the same whether or not the data are processed

sequentially.

Choice of prior distributions Choice of the prior distribution

Prior distributions incorporate prior beliefs in the Bayesian analysis. A

e Under a uniform prior the posterior mode equals the MLE, as pragmatic approach is to choose a prior distribution.

£(0]x) o< Le(6) Conjugate prior distribution

S . ] Let L,(0) = p(x|0) denote a likelihood function based on the observation
e The prior distribution has to be chosen appropriately, which often o ) ) )
N X = x. A class G of distributions is called conjugate with respect to
causes concerns to practitioners.
P L. () if the posterior distribution p(8|x) is in G for all x whenever the

e |t should reflect the knowledge about the parameter of interest prior distribution p(8) is in G.

(e.g. a relative risk parameter in an epidemiological study).

o Ideally it should be elicited from experts. Example

. . . . . Bi ial i Let X|p ~ Bi . The family of
e In the absence of expert opinions, simple informative prior inomial experiment Let X|p in(n. p) e family of beta

L. . . . distributi ~ B i j t ith tto L i th
distributions may still be a reasonable choice. Istributions, p e(a, ), is conjugate with respect to Ly(p), since the

posterior distribution is again a beta distribution:
plx ~ Be(a+ x,8+ n—x)



List of conjugate prior distributions

Sequential processing:
o Sufficient to study conjugacy for one member of a random sample

X1, X

e The posterior after observing the first observation is of the same
type as the prior and serves as new prior distribution for the next

observation.

e Sequentially processing the data, only the parameters will change

and not the type of prior.

Improper prior distributions

Maybe you feel uncomfortable putting a prior on an unknown parameter.

If you use a normal prior you can use a very large variance. In the limit

this leads to an improper prior distribution.

Improper prior distribution

For example, let pu ~ N (p, 00), i.e. f(u) o const. > 0.

/f(u)du ~ 00

Priors such as f(u) = const., f(o) = 1/c are improper, because they do

not integrate to 1.

List of conjugate prior distributions

Likelihood

Conjugate prior

Posterior distribution

X|p ~ Bin(n, p)
X|p ~ Geom(p)
X[\ ~ Po(e-))
XA ~ Exp(A)
X~ N(p,0%)
X|o? ~ N(pis,0°)

p ~ Be(a, B)
p ~ Be(a, B)
A~ G(a, B)
A~ G(a, B)
o~ N(v, %)
02 ~1G(a, B)

p|x ~ Be(a+ x, 84+ n— x)

plx ~Be(a+1,8+x—1)

AMx ~ G(a+x,8+ ¢€)

Ax ~ G(a+1,8+ x)

ubx ~ N[ (2 + %) (A7
o?x ~ 1G(a+ 3, 84 2(x — 1))

«: known.
1 1
A= e

o T

Improper prior distributions (II)

In most cases, improper priors can be used in Bayesian analyses without

major problems. However, things to watch out for are:

e In a few models, the use of improper priors can result in improper

posteriors.

e Use of improper priors makes model selection difficult.



Uninformative priors

Though conjugate priors are computationally nice, priors might be
preferred which do not strongly influence the posterior distribution. Such

a prior is called an uninformative prior.

e The historical approach, followed by Laplace and Bayes, was to

assign flat priors.

e This prior seems reasonably uninformative. We do not know where
the actual value lies in the parameter space, so we might as well

consider all values equi-probable.

e However, this prior is not invariant to one-to-one transformations.

Jeffreys' prior for the geometric distribution

The geometric distribution models the number X of Bernoulli trials

needed to get the first success. Let X|m ~ Geom(r), i.e.

P(x|t) =7 - (1 —m)L.

Thus: Jeffreys' prior results as:
h() = log(m) + (x — 1) log(1 — 7) f(m) o< /J(m) =711 —m)~ /2
, 1 x-1 (can be seen as "Be(0,0.5)")
h(m) = - —
n l1-—7
" — ,i _ Xifl °
helm) = w2 (1—m)? Cl
1 x—1 2
)=~ (- - =) £ ]
1 1o .
h P * (1 - 7T)2 © T T T T T T
1 1 — T 0.0 0.2 0.4 0.6 0.8 1.0
=+

w2 (1l —m)?

=71 ?(1-m)""

T
= Small values are favoured.

Harold Jeffreys' prior

Definition
Let X denote a random variable with likelihood function p(x|0) where 6 is

an unknown scalar parameter. Jeffreys' prior or Jeffreys' rule is defined as
£(0) oc v/ J(0),

where J(0) is the expected Fisher information of 6.

Jeffreys’ prior has certain desired properties, e.g. invariance property.

New concept: Penalised complexity (PC) priors

There was recently a new concept developed here at NTNU to choose
interpretable and meaningful prior distributions.

For more information see here
http://arxiv.org/abs/1403.4630

We may come back to this later, when we talk about Bayesian

hierarchical models.



