### Lecture 8: Markov chain Monte Carlo

- Goal: Generation of samples or approximation of an expected value for a (possibly high-dimensional) density  $\pi(x)$ .
- Application of ordinary Monte Carlo methods is difficult.
- However, Markov chain Monte Carlo (MCMC) methods will then be a useful alternative.



Andrey Markov (1856 – 1922), Russian mathematician.

Markov chain:



en.wikipedia.org/wiki/Markov\_chain

Given the previous observation  $X_{i-1}$ ,  $X_i$  is independent of the sequence of events that preceded it.

Review: Discrete-time Markov chains

A Markov chain is a discrete-time stochastic process  $\{X_i\}_{i=0}^{\infty}$ ,  $X_i \in S$ , where given the present state, past and future states are independent (Markov assumption):

$$P(X_{i+1} = x_{i+1} \mid X_0 = x_0, X_1 = x_1, \dots, X_i = x_i) = P(X_{i+1} = x_{i+1} \mid X_i = x_i)$$

### Idea of Markov chain Monte Carlo

#### Idea

Simulate a Markov chain  $X_1, \ldots, X_i, \ldots$ , which is designed in a way such that  $P(X_i = x)$  converges to the target distribution  $\pi(x)$ , e.g. the posterior distribution.

#### Properties:

- After convergence, one obtains random samples from the target distribution, which can be used to estimate posterior characteristics.
- Samples will typically be dependent.

#### Central algorithms:

- Metropolis-Hasting algorithm
- Gibbs sampling

Review: Markov chains

A Markov chain with stationary transition probabilities can be specified by:

- the initial distribution  $P(X_0 = x_0) = g(x_0)$
- the transition matrix

$$P(x^* \mid x) = P(X_{i+1} = x^* \mid X_i = x) \quad [= P_{xx^*}]$$

### Review: Markov chains

A Markov chain has a unique limiting distribution  $\pi(x)$  if the chain is irreducible, aperiodic, and positive recurrent. If so, the limiting distribution  $\pi(x) = \lim_{i \to \infty} P(X_i = x)$  is given by

$$\pi(x^*) = \sum_{x \in S} \pi(x) P(x^* \mid x) \quad \text{for all } x^* \in S$$

$$\sum_{x \in S} \pi(x) = 1$$
(1)

A sufficient condition for (1) is the detailed balance condition:

$$\pi(x)P(x^*\mid x) = \pi(x^*)P(x\mid x^*) \quad \text{for all } x, x^* \in S$$
 (2)

which gives a time-reversible Markov chain.

### Problem statement

In stochastic processes course: The Markov chain is given, i.e.  $P(x^* \mid x)$  is given, find  $\pi(x)$ .

Now:  $\pi(x)$ ,  $x \in S$  is given, want to find  $P(x^* \mid x)$ ,  $x, x^* \in S$  so that

$$\pi(x^*) = \sum_{x \in S} \pi(x) P(x^* \mid x)$$
 for all  $x^* \in S$ 

$$\sum_{x \in S} \pi(x) = 1$$

However, # unknowns:  $|S| \cdot (|S| - 1)$ ; # equations: |S|.

⇒ many solutions exist – we want one!

(Note: |S| can be huge, so solving this as a matrix equation is not possible.)

### Reversible Markov chains

- In a reversible MC we cannot distinguish the direction of simulation from inspecting a realisation of the chain (even if we know the transition matrix).
- Most MCMC algorithms are based on reversible Markov chains.

#### Idea

Focus on (2) the detailed balance condition instead. We want to find  $P(x^* \mid x)$  that solves

$$\pi(x)P(x^* \mid x) = \pi(x^*)P(x \mid x^*)$$
 for all  $x, x^* \in S$ 

Here, we still have many solutions. However, we do not need a general solution, one (good) solution is enough.

We show how to generate an irreducible, aperiodic and pos. recurrent Markov chain with arbitrary limiting distribution  $\pi(x)$ . (never as good as iid samples but much wider applicability)

# Metropolis algorithm

Setting: We want to sample from some distribution

$$\pi(x) = \frac{\tilde{\pi}(x)}{c}$$

where c is the normalising constant. How about this?

- 1: Draw initial state  $X_0 \sim g(x_0)$
- 2: **for** i = 0, 1, ... **do**
- 3: Propose a potential new state  $x^*$  from a symmetric<sup>1</sup>
- 4: proposal distribution so that  $P(X^* = x^*) = Q(x^*|x_{i-1})$
- 5: Accept  $x^*$  as new state  $X_i = x^*$  with probability

$$\alpha(\mathbf{x}^{\star} \mid \mathbf{x}_{i-1}) = \min\left(1, \frac{\tilde{\pi}(\mathbf{x}^{\star})}{\tilde{\pi}(\mathbf{x}_{i-1})}\right)$$

- 6: Otherwise stay at current state and set  $X_i = x_{i-1}$ .
- 7: end for
- $^{1}Q(y|x) = Q(x|y)$  for each pair of states x and y

## Metropolis-Hastings algorithm

Use an "asymmetric" proposal distribution (also called proposal kernel)

- 1: Init  $x_0 \sim g(x_0)$
- 2: **for** i = 1, 2, ... **do**
- 3: Generate a proposal  $x^* \sim Q(x^*|x_{i-1})$
- 4:  $u \sim U(0, 1)$
- 5: **if**  $u < \min \left(1, \frac{\pi(x^*)}{\pi(x_{i-1})} \times \underbrace{\frac{Q(x_{i-1}|x^*)}{Q(x^*|x_{i-1})}}_{\text{Proposal ratio}}\right)$  then

Acceptance probability lpha

- 6:  $x_i \leftarrow x$
- 7: **else**
- 8:  $x_i \leftarrow x_{i-1}$
- 9: end if
- 10: end for

### Does the detailed balance condition hold?

### Acceptance step

- In the acceptance step the proposal  $x^*$  is accepted with probability  $\alpha$  as new value of the Markov chain.
- This is similar to rejection sampling. However, here no constant c needs to be determined.
- Further, if we reject, then we retain the sample.

[Exercise: check that detailed balance condition holds].

# History of Metropolis-Hastings

- The algorithm was presented 1953 by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller from the Los Alamos group. It is named after the first author Nicholas Metropolis.
- W. Keith Hastings extended it to the more general case in 1970.
- It was then ignored for a long time.
- Since 1990 it has been used more intensively.

## Toy example

• If x = 0

$$\alpha(0|0) = \min\{1, 1\} = 1$$
  
 $\alpha(1|0) = \min\{1, 10\} = 1$ 

• If x > 0

$$\alpha(x-1|x) = \min\left\{1, \frac{\frac{10^{x-1}}{(x-1)!}e^{-10}}{\frac{10^{x}}{(x)!}e^{-10}} \cdot \frac{1}{\frac{1}{2}}\right\} = \min\left\{1, \frac{x}{10}\right\}$$
(3)

$$\alpha(x+1|x) = \min\left\{1, \frac{\frac{10^{x+1}}{(x+1)!}e^{-10}}{\frac{10^{x}}{(x)!}e^{-10}} \cdot \frac{\frac{1}{2}}{\frac{1}{2}}\right\} = \min\left\{1, \frac{10}{x+1}\right\}$$
(4)

From (3) we see that  $\alpha = 1$  if x > 9 and x/10 else.

From (4) we see that  $\alpha = 1$  if  $x \le 9$  and 10/(x+1) else.

### Toy example

We consider the Poisson distribution

$$\pi(x) = \frac{10^x}{x!}e^{-10}, \qquad x = 0, 1, 2, \dots$$

Choose proposal kernel

• If x = 0

$$Q(x^*|0) = egin{cases} rac{1}{2} & ext{for} & x^* \in \{0,1\} \ 0 & ext{otherwise} \end{cases}$$

• For x > 0

$$Q(x^\star|x) = egin{cases} rac{1}{2} & ext{for} \quad x^\star \in \{x-1,x+1\} \ 0 & ext{otherwise} \end{cases}$$

## Toy example

Note this gives for x > 0:

$$P(x-1|x) = \frac{1}{2} \min\left\{1, \frac{x}{10}\right\} = \begin{cases} \frac{x}{20} & \text{for } x \le 9\\ \frac{1}{2} & \text{for } x > 9 \end{cases}$$
$$P(x+1|x) = \frac{1}{2} \min\left\{1, \frac{10}{x+1}\right\} = \begin{cases} \frac{1}{2} & \text{for } x \le 9\\ \frac{5}{x+1} & \text{for } x > 9 \end{cases}$$

P(x|x) follows directly.

(For 
$$x = 0$$
 we have  $P(0|0) = 1/2$  and  $P(1|0) = 1/2$ )

However, we do not have to compute these values! (Show R-code demo\_toyMCMC2.R)

### What about

- Irreducible: Must be checked in each case. Must choose  $Q(x^* \mid x)$  so that this is ok.
- Aperiodic: Sufficient that  $P(x \mid x) > 0$  for one  $x \in S$ , so sufficient that  $\alpha(x^* \mid x) < 1$  for one pair  $x^*, x \in S$ .
- Positive recurrent: for finite *S*, irreducibility is sufficient. More difficult in general, but if Markov chain is not recurrent we will see this as drift in the simulations. (In practice usually no problem).

# Special cases of the Metropolis-Hastings algorithm

Depending on the choice of  $Q(x^*|x)$  different special cases result. In particular, two classes are important

- The independence proposal
- The Metropolis algorithm

## Remarks on the Metropolis-Hastings algorithm

- Under some regularity conditions it can be shown that the Metropolis-Hasting algorithm converges to the target distribution regardless of the specific choice of  $Q(x|x_{i-1})$ .
- However, the speed of convergence and the dependence between the successive samples depends strongly on the proposal distribution.
- Since we only need to compute the ratio  $\pi(x^*)/\pi(x_{i-1})$ , the proportionality constant is irrelevant.
- Similarly, we only care about Q(.) up to a constant.
- Often it is advantageous to calculate the acceptance probability on log-scale, which makes the computations more stable.

### Independence proposal

ullet The proposal distribution does not depend on the current value  $x_{i-1}$ 

$$Q(x|x_{i-1}) = Q(x).$$

- Q(x) is an approximation to  $\pi(x)$ .
- The sampler is closer to rejection sampler. However, here if we reject, then we retain the sample.

#### Experience:

- Performance is either very good or very bad, usually very bad.
- The tails of the proposal distribution should be at least as heavy as the tails of the target distribution.

## The Metropolis algorithm

The proposal density is symmetric around the current value, that means

$$Q(x_{i-1}|x^*) = Q(x^*|x_{i-1}).$$

Hence,

$$\alpha = \min\left(1, \frac{\pi(\mathbf{x}^\star)}{\pi(\mathbf{x}_{i-1})} \times \frac{Q(\mathbf{x}_{i-1}|\mathbf{x}^\star)}{Q(\mathbf{x}^\star|\mathbf{x}_{i-1})}\right) = \min\left(1, \frac{\pi(\mathbf{x}^\star)}{\pi(\mathbf{x}_{i-1})}\right)$$

A particular case is the random walk proposal, defined as the current value  $x_{i-1}$  plus a random variate of a 0-centred symmetric distribution.



## Examples for random walks proposal

Assume x is scalar.

Then all proposal kernels, which add a random variable generated from a zero-symmetrical distribution to the current value  $x_{i-1}$ , are random walk proposals. For example:

$$x^* \sim \mathcal{N}(x_{i-1}, \sigma^2)$$

$$x^{\star} \sim t_{\nu}(x_{i-1}, \sigma^2)$$

$$x^* \sim \mathcal{U}(x_{i-1}-d,x_{i-1}+d)$$