Lecture 10: Review Gibbs sampling

Idea: Sequentially sampling from univariate conditional distributions

(which are often available in closed form).

1. Select starting values xo and set i = 0.

2. Repeatedly:

Sample x| ~ 7(x'|xZ, ..., xP)

Sample  x% 4| ~ T(x*|xtiq, X7, . .o, xP)

Sample x,fjr_11|~ ~ 7r(x”_1|x,hl,x,-2+1, el x,fjr_f,xip)
-1

Sample  xP |- ~ m(xP|x}q, ..., xP0)

where |- denotes conditioning on the most recent updates of all

other elements of x.

3. Increment i and go to step 2.

Example 2: Conjugate gamma-Poisson hierarchical model

Example from George et al. (1993) regarding the analysis of 10 power

plants.

e y; number of failures of pump i
e t; length of operation time of pump i (in kilo hours)
Model:
yi | Ai ~ Po(Ait;)
Conjugate prior for A;:

Ai | O[,ﬁ ~ G(O[,B)

Hyper-prior on « and S:

a ~ Exp(1.0) B ~ G(0.1,10.0)

Review: Gibbs sampling

e The acceptance rate is equal to 1, i.e. we always accept.

e m(x" | x~7) is easy to find if we use conditional conjugate prior

distributions.

e There is no tuning parameter.

Conjugate gamma-Poisson hierarchical model (I1)

The posterior of the 12 parameters (o, 8, A1,. .., A10) given y1,..., Y10 is

proportional to

10
m(a, By A1,y A0 | Y1, -+ -5 ¥10) o< (@) () H[?r(/\,- | o, B)m(yi | Ai)]

i=1

10 10 ﬁa 10
o e~ *p0171e7108 {HGXP(—)\,'H)/\{;} {HGXP(—BN))‘?I} L—(a)} :

i=1 i=1

This posterior is not of closed form.

What are the full conditional distributions?



Implementation and convergence diagnostics

Source: http://i.telegraph.co.uk/multimedia/archive/02365/coding_alamy_2365972b.jpg

Convergence

e If well constructed, the Markov chain is guaranteed to have the
posterior as limiting distribution.

e However, this does not tell you how long you have to run the
MCMC algorithm til convergence.

» The initial position may have a big influence.
» The proposal distribution may lead to low acceptance rates.
» The chain may get caught in a local maximum of the likelihood

surface.
e We say the Markov chain mixes well if it can

> reach the posterior quickly, and

» moves quickly around the posterior modes.

Numerical note

How should you compute

& = min (1, ;E(XXI)) x gﬁi&f:;)

See blackboard

Convergence diagnostics

Valid inferences from sequences of MCMC outputs are based on the

assumption that the outputs are from the desired target distribution.

e There is no overall minimum number of samples to ensure
approximation.

e Consequently methods for testing convergence, known as
convergence diagnostics, have to be applied.

e However it has to emphasised that these diagnostics do not

guarantee convergence.



Trace plots

An initial possibility for deciding if a MCMC output does not converge to
the desired posterior distributions is to look at the sample trace for each

variable.

e If our chain is taking a long time to move around the parameter

space, then it will take longer to converge.

e |f the samples form a homogene band (no wave movements or other

rare fluctuations), convergence might be indicated.

e Vastly different values at the beginning of the trace indicate burn-in

iterations, which should be discarded.

Geweke diagnostics

The MCMC chain is divided into two windows
e the first x%, and
e the last y% of the iterates
(coda default: x =10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke's test

statistic (z-score) follows an asymptotical standard normal distribution.

Autocorrelation

To examine dependencies of successive MCMC samples, the
autocorrelation function can be used. Let xq,...,xy, where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation p(k) is the correlation between every draw and

its k-th lag. For N reasonably large

S (i — %) (Xiek — %)

S (% — %)

- _ 1 N s
where X = § > ;= X; is the overall mean.

p(k) ~

)

e With increasing lag k we expect lower autocorrelations.

o |If autocorrelation is still relatively high for higher values of k, this
indicates high degree of correlation between our draws and slow

mixing.

Further reading

There are several convergence diagnostics:
e some are based on a single Markov chain run

e some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

e Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov
Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

o R-package coda. (Plummer et al., 2006)



Effective sample size

A useful measure to compare the performance of different MCMC
samplers is the effective sample size (ESS) Kass et al. (1998) American

Statistician 52, 93-100..

e The ESS is the estimated number of independent samples needed to
obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

N oo
ESS=—, 7=1+2-> p(k),
T
k=1

where 7 is the autocorrelation time and p(k) the autocorrelation at

lag k.

Beetle mortality data (Bliss (1935), Annals of Applied Biology, 22: 134-167)
Beetles are exposed to gaseous carbon disulphide at various
concentrations for five hours.

e y; number killed out of n; at i-th dose level, i =1,...,8.

e Xx; log dose.

Dose, x; Number of Number

(log1g CSzmgI_l) beetles, n;  killed, y;

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

Autocorrelation time

e There are different stopping criteria for the sum. Geyer (1992,
Statistical Science, page 477)) proposed the initial monotone sequence

estimator, where
2m+1

T=142- Zp(k)

where m is chosen to be the largest integer such that
Fi=p2)+p2i+1), i=1,....m

is positive and the sequence 'y, ..., [, is monotone decreasing.

Logistic regression model
e Assuming independence of the beetles, y; ~ Bin(n;, 7;):

ply|mi) = ﬁ (;’) A (1 — )Y

i=1 !
where 7; denotes the probability of being killed at the i-th dose level.
(Comment: Independence assumption would not be appropriate if the

deaths were caused by a contagious disease)

e Logistic model:
logit(;) = log ( i ) =a+B(x —X)

1—m
- v expla+ B(x; — X))
mi = expit(a + B(x — X)) = 1+ exp(a + B(x; — X))

e Independent normal prior distribution
O‘NN(OVJi) ﬁNN(O’O—é)

e Choose precisions, 7, = 1/02, and Tg = 1/0[23, to be small;
e.g. 1074



Posterior distribution
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The posterior distribution is

8

p(a7ﬁ|y7 n, X) S8 p(Oé) p(ﬁ) H p(yi|a7ﬁ7 ni7Xi)a

i=1

which is no standard distribution. For estimating o and 3 we implement
an Metropolis-Hastings algorithm with
e two univariate random walk proposals (Metropolis-within-Gibbs).

e one bivariate random walk proposal.

Target densities

Bivariate update
e Here, the target density is the posterior distribution.

e Choose a normal proposal with mean equal to the current value and

covariance matrix

T=c- It

where I;l denotes the negative inverse curvature of the log posterior

at the posterior mode and c is a factor to tune the acceptance rate.

Target densities

Univariate update
e The full-conditional distributions are:

p(a|y,n,x,ﬁ)0<p(a) p()’i|04a5a”i7xi)

e 15

Il
—

p(ﬁ|y,n,x7a)ocp(ﬁ) p(y,-|a,ﬂ,n,-7x,-)

1

e For each parameter we choose a normal proposal with mean equal to
the current value and variances tuned to get acceptance rates
between 20 — 50%.

Univariate update: Diagnostic checks
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Bivariate update: Diagnostic checks
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## Fit a generalized linear model to compare

ml <- glm(formula = cbind(y, n - y) ~ x, family = binomial)

# Estimate Std. Error z value Pr(>|zl|)
#(Intercept) 0.7438 0.1379 5.396 6.83e-08 *x*x*
#x 34.2703 2.9121 11.768 < 2e-16 **x*

## Univariate Update

#> summary (alpha_samples)

# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.2266 0.6582 0.7505 0.7501 0.8378 1.3340
#> summary (beta_samples)

# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 24.26 32.58 34.47 34.56 36.46 46.76

## Bivariate Update

#> summary (alpha_samples)

# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.25669 0.6566 0.7470 0.7505 0.8400 1.3540
#> summary (beta_samples)

# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 23.77 32.54 34.50 34.57 36.51 47.59

Exploration of posterior
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Updating schemes

1. Update v and 3 separately = Two acceptance steps.

2. Update « and 3 jointly = One acceptance step.

1. Single site update 2. Joint update
(<=8 (=%
| . |
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a a

Joint updates might be more efficient, however for some parameter

combinations the acceptance rates can be very low.



