
Lecture 10: Review Gibbs sampling
Idea: Sequentially sampling from univariate conditional distributions

(which are often available in closed form).

1. Select starting values x0 and set i = 0.

2. Repeatedly:

Sample x1i+1|· ∼ π(x1|x2i , . . . , xpi )

Sample x2i+1|· ∼ π(x2|x1i+1, x
3
i , . . . , x

p
i )

...

Sample xp−1i+1 |· ∼ π(xp−1|x1i+1, x
2
i+1, . . . , x

p−2
i+1 , x

p
i )

Sample xpi+1|· ∼ π(xp|x1i+1, . . . , x
p−1
i+1 )

where |· denotes conditioning on the most recent updates of all

other elements of x .

3. Increment i and go to step 2.

Review: Gibbs sampling

• The acceptance rate is equal to 1, i.e. we always accept.

• π(x i | x−i ) is easy to find if we use conditional conjugate prior

distributions.

• There is no tuning parameter.

Example 2: Conjugate gamma-Poisson hierarchical model

Example from George et al. (1993) regarding the analysis of 10 power

plants.

• yi number of failures of pump i

• ti length of operation time of pump i (in kilo hours)

Model:

yi | λi ∼ Po(λi ti )

Conjugate prior for λi :

λi | α, β ∼ G(α, β)

Hyper-prior on α and β:

α ∼ Exp(1.0) β ∼ G(0.1, 10.0)

Conjugate gamma-Poisson hierarchical model (II)

The posterior of the 12 parameters (α, β, λ1, . . . , λ10) given y1, . . . , y10 is

proportional to

π(α, β, λ1, . . . , λ10 | y1, . . . , y10) ∝ π(α)π(β)
10∏

i=1

[π(λi | α, β)π(yi | λi )]

∝ e−αβ0.1−1e−10β
{

10∏

i=1

exp(−λi ti )λyii

}{
10∏

i=1

exp(−βλi )λα−1i

}[
βα

Γ(α)

]10
.

This posterior is not of closed form.

What are the full conditional distributions?



Implementation and convergence diagnostics

Source: http://i.telegraph.co.uk/multimedia/archive/02365/coding_alamy_2365972b.jpg

Numerical note

How should you compute

α = min
(
1,

π(x?)

π(xi−1)
× Q(xi−1|x?)

Q(x?|xi−1)

)

See blackboard

Convergence

• If well constructed, the Markov chain is guaranteed to have the

posterior as limiting distribution.

• However, this does not tell you how long you have to run the
MCMC algorithm til convergence.

I The initial position may have a big influence.
I The proposal distribution may lead to low acceptance rates.
I The chain may get caught in a local maximum of the likelihood

surface.

• We say the Markov chain mixes well if it can
I reach the posterior quickly, and
I moves quickly around the posterior modes.

Convergence diagnostics

Valid inferences from sequences of MCMC outputs are based on the

assumption that the outputs are from the desired target distribution.

• There is no overall minimum number of samples to ensure

approximation.

• Consequently methods for testing convergence, known as

convergence diagnostics, have to be applied.

• However it has to emphasised that these diagnostics do not

guarantee convergence.



Trace plots

An initial possibility for deciding if a MCMC output does not converge to

the desired posterior distributions is to look at the sample trace for each

variable.

• If our chain is taking a long time to move around the parameter

space, then it will take longer to converge.

• If the samples form a homogene band (no wave movements or other

rare fluctuations), convergence might be indicated.

• Vastly different values at the beginning of the trace indicate burn-in

iterations, which should be discarded.

Autocorrelation

To examine dependencies of successive MCMC samples, the

autocorrelation function can be used. Let x1, . . . , xN , where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation ρ(k) is the correlation between every draw and

its k-th lag. For N reasonably large

ρ(k) ≈
∑N−k

i=1 (xi − x̄)(xi+k − x̄)
∑N

i=1(xi − x̄)2
,

where x̄ = 1
N

∑N
i=1 xi is the overall mean.

• With increasing lag k we expect lower autocorrelations.

• If autocorrelation is still relatively high for higher values of k , this

indicates high degree of correlation between our draws and slow

mixing.

Geweke diagnostics

The MCMC chain is divided into two windows

• the first x%, and

• the last y% of the iterates

(coda default: x = 10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke’s test

statistic (z-score) follows an asymptotical standard normal distribution.

Further reading

There are several convergence diagnostics:

• some are based on a single Markov chain run

• some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

• Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov

Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

• R-package coda. (Plummer et al., 2006)



Effective sample size

A useful measure to compare the performance of different MCMC

samplers is the effective sample size (ESS) Kass et al. (1998) American

Statistician 52, 93–100..

• The ESS is the estimated number of independent samples needed to

obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

ESS =
N

τ
, τ = 1 + 2 ·

∞∑

k=1

ρ(k),

where τ is the autocorrelation time and ρ(k) the autocorrelation at

lag k .

Autocorrelation time

• There are different stopping criteria for the sum. Geyer (1992,

Statistical Science, page 477)) proposed the initial monotone sequence

estimator, where

τ = 1 + 2 ·
2m+1∑

k=1

ρ(k)

where m is chosen to be the largest integer such that

Γi = ρ(2i) + ρ(2i + 1), i = 1, . . . ,m

is positive and the sequence Γ1, . . . , Γm is monotone decreasing.

Beetle mortality data (Bliss (1935), Annals of Applied Biology, 22: 134–167)

Beetles are exposed to gaseous carbon disulphide at various

concentrations for five hours.

• yi number killed out of ni at i-th dose level, i = 1, . . . , 8.

• xi log dose.

Dose, xi Number of Number

(log10 CS2mgl−1) beetles, ni killed, yi

1.6907 59 6

1.7242 60 13

1.7552 62 18

1.7842 56 28

1.8113 63 52

1.8369 59 53

1.8610 62 61

1.8839 60 60

Logistic regression model
• Assuming independence of the beetles, yi ∼ Bin(ni , πi ):

p(y |πi ) =
8∏

i=1

(
ni
yi

)
πyi
i (1− πi )ni−yi

where πi denotes the probability of being killed at the i-th dose level.

(Comment: Independence assumption would not be appropriate if the

deaths were caused by a contagious disease)

• Logistic model:

logit(πi ) = log
(

πi
1− πi

)
= α + β(xi − x̄)

πi = expit(α + β(xi − x̄)) =
exp(α + β(xi − x̄))

1 + exp(α + β(xi − x̄))

• Independent normal prior distribution

α ∼ N (0, σ2α) β ∼ N (0, σ2β)

• Choose precisions, τα = 1/σ2α, and τβ = 1/σ2β , to be small;

e.g. 10−4.



Posterior distribution
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The posterior distribution is

p(α, β|y ,n, x) ∝ p(α) p(β)
8∏

i=1

p(yi |α, β, ni , xi ),

which is no standard distribution. For estimating α and β we implement

an Metropolis-Hastings algorithm with

• two univariate random walk proposals (Metropolis-within-Gibbs).

• one bivariate random walk proposal.

Target densities

Univariate update
• The full-conditional distributions are:

p(α|y ,n, x , β) ∝ p(α)
8∏

i=1

p(yi |α, β, ni , xi )

p(β|y ,n, x , α) ∝ p(β)
8∏

i=1

p(yi |α, β, ni , xi )

• For each parameter we choose a normal proposal with mean equal to

the current value and variances tuned to get acceptance rates

between 20− 50%.

Target densities

Bivariate update
• Here, the target density is the posterior distribution.

• Choose a normal proposal with mean equal to the current value and

covariance matrix

Σ = c · I−1p ,

where I−1p denotes the negative inverse curvature of the log posterior

at the posterior mode and c is a factor to tune the acceptance rate.

Univariate update: Diagnostic checks
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Bivariate update: Diagnostic checks
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Exploration of posterior

Univariate update
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Bivariate update
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Results
> ## Fit a generalized linear model to compare
> m1 <- glm(formula = cbind(y, n - y) ~ x, family = binomial)
> # Estimate Std. Error z value Pr(>|z|)
> #(Intercept) 0.7438 0.1379 5.396 6.83e-08 ***
> #x 34.2703 2.9121 11.768 < 2e-16 ***
>
> ## Univariate Update
> #> summary(alpha_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 0.2256 0.6582 0.7505 0.7501 0.8378 1.3340
> #> summary(beta_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 24.26 32.58 34.47 34.56 36.46 46.76
>
> ## Bivariate Update
> #> summary(alpha_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 0.2569 0.6566 0.7470 0.7505 0.8400 1.3540
> #> summary(beta_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 23.77 32.54 34.50 34.57 36.51 47.59

Dose-response curve
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Updating schemes

1. Update α and β separately ⇒ Two acceptance steps.

2. Update α and β jointly ⇒ One acceptance step.
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2. Joint update
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Joint updates might be more efficient, however for some parameter

combinations the acceptance rates can be very low.


