Last part of this course

Classification: LDA, QDA, knn,

cross-validation

= Not closely related to the two first parts
TMAA4300: Computer Intensive Statistical Methods

(Spring 2016) = Three topics (not closely related to each other):

Andrea Riebler » Classification problem
» Bootstrapping

» Expectation-Maximization algorithm

*Slides are based on lecture notes kindly provided by Hdkon Tjelmeland.

Classification Classification of the new observation

Situation: Have observations xi, ..., x, and corresponding class

labels yi, ..., yn, where y; € {0,1,...,J — 1} (Training data)
e Goal: Classify the new observation xp to one of the J possible

classes.

e Alternatively, want to assign probabilities
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¥ A Example: x denotes the results of a medical test with y € {0,1,2}
‘ ‘ ‘ ‘ ‘ where (y = 0: healthy, y = 1: disease 1, y = 2: disease 2).
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New observation: xg



Model

e We assume a distribution for x that depends on the class y:

f(xly =J) = fi(x)

Contours for 2D-normal density

f1(x) fo(x)
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e and prior probabilities for class j: p; = P(y = j).

Use Bayes rule

mj(x0) = P(yo = j|X = x0)

_ P =J,%)
f(xo)
_ P =J,%)
Z,Jz_o1 P(yo = i,x0)
pifi(xo)

J-1 .
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For classification, need to consider the cost of misclassification.

Some misclassification may be more costly than others.

Example: More costly to classify a person as healthy when he/she

really has disease, than vice versa.

Model (II)

Thus, we assume a joint distribution for x and y:

Comment: Must estimate f;(x) from training data
(X17YI)7 M) (XI‘Hyn)v

perhaps also estimate pg, ..., p j_1. For now, assume

Pos -+ Py—1, fo(Xx), ..., fy_1(x) known.

What is then mj(xg) and o7

Cost function

Assume a cost function:

e c(i[j): cost of classifying a subject to class i when the true

class is j.
e In particular, c(i[i) =0, fori=0,...,J —1.
Then, it is natural to make the classification by minimising the

expected cost.
See blackboard

Bayes classifier:

Yo = argmax; {p;fi(x0)}



Practical challenge

Po,---,PJ—1,fo(x),...,fj_1(x) are unknown. Different possibilities

exist:

i) estimate the unknown properties from the training data:
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a) Estimate each f;(x) by density estimation, or

b) assume parametric form for f;(x) and estimate its parameters.
ii) Bayesian modelling: Put prior distributions on the unknown

quantities. For example

(po,--.,py—1) ~ Dirichlet
xly =j ~ N(uj, %))
hyper-priors on 1, 3;

Linear discriminant analysis (LDA)

Consider first g = 31 = ... =3X,_1 = X. Then for given

parameters, the Bayes decision rule becomes (i.e. using “0/1-loss"):
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with 3,-(x0) = X X — 2 Lii + log(p;).

Discriminant analysis

We will now only consider alternative i) b).
Assume
xly =j ~N(wj, X))
Two (extreme) alternatives:
e assume g =X =...= 32 1 =X

e different covariance matrices (more parameters to estimate)

LDA (cont.)

Note: d;(xo) is linear in xo. Thus the Bayes decision borders

between the classification regions become lines/hyper-planes.




LDA: Example

Note: Si(xo) is linear in xg. Thus the borders between the

classification regions become lines/hyper-planes.

Example

e The center of mass of the individual classes are at:

() ()

.. : : 05 0
e The joint covariance matrix has the form X = )
0 0.25

e The a-priori probabilities are equal: p1 = po = p3 = %

LDA: Example (II1)

Contours for 2D-normal density
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LDA: Example (II)

For the line of separation due to Bayes' rule we get:
1

S 7 i+ log(py)

x5 —
_ 1 _
=x' 21y - 5 J-TE L + log(p;) -

o —2x1 +4x0 —3=2x1 +4x — 3,

i.e. x1 = 0 is line of separation between classes 1 and 2.

o —2x; +4xp —3 = —8xp — 8,

e xp = %xl — % is line of separation between classes 1 and 3.

e 2x1 +4x0 —3 = —8xp — 8,
-1

e X = %X — % is line of separation between classes 2

and 3.

e All lines meet at point <0, —%)

Practical comments

In practice we estimate pg, ..., PJ_1, l0,-- -, fJ_1, 2 by
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Result of Ida-function in R
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Projections are done using the predict () function (see R-code).

k-nearest neighbour (KNN) classification

Assume we do not want to do any assumptions about f;(xp) except
that it is smooth. Reasonable to estimate p;fi(xo) by pifi(x0) =~
number of data points (in the training set) “close to” xp that have
yj =I.

How to define “close to"?

Not a good idea: “close to" means ||x; — xo|| < R, because the set

may be empty for some xg, and very large for others.

Quadratic discriminant analysis (QDA)

Consider next the case where the covariance matrices are different

(still assuming 0/1-loss). Thus,
xly =j ~N(wj, X))

Then ) ) )
Y — . . 1 .
Yo = argmax; {p, . 212 = exp < 2(xo pi) B (xo u,))}
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=5i(x0)

Thus, 3,-(x0) is quadratic in xp and the Bayes decision borders

between the classification regions become quadratic.

KNN classification

Let R depend on xg (and the training set), so that the number of
training values with ||x; — xo|| < R is equal to k for all x9. Then we

get the k-nearest-neighbour classifier.
Algorithm:
1. find the k x;'s closest to xp (in some norm)

2. choose yy by majority vote among these k neighbours.

Here, k is a tuning parameter.



KNN classification - Example K=3 k-nearest-neighbour classifiers

KN\NN: K= KN\NN: k=100

(James, Witten, Tibshirani, Hastie (2014), An Introduction to Statistical Learning, Springer, p.40)

(James, Witten, Tibshirani, Hastie (2014), An Introduction to Statistical Learning, Springer, p.41)
Show animation in R: knn.ani in animation package.

Cross-validation Misclassification rate

_ L It is reasonable to focus on
Consider a classification problem:

e the misclassification rate

Have observed (xi1,y1), ..., (Xn, yn) < training data. Have one (or
more) classification rule(s): P(yo # y(x0; (x1,¥1); - - - (Xn, ¥n)))
.),}(XO;(Xlayl)v"'7(Xn7)/n)) » or

_ ) e expected cost (from misclassification)
How can we evaluate how good the rule is? Alternatively, how can

we decide which rule is the best? Elc(y(x; (x1,¥1)5- -+ (Xn, ¥n))|¥)]



Apparent error rate

The apparent misclassification rate classifies each member of the

training sample and becomes
1 n
; Z 1(}’/ 7& }A/(X,-; (X17y1)7 ey (Xm}/n))
i=1

This estimate becomes clearly too optimistic because we use the
same data to “train” the classifier and to estimate the
misclassification rate.
We have to take into account:

e the assumed (parametric) model may be wrong.

e uncertainty in the parameter estimates

e inherent randomness

Idea k-fold cross validation

e Cross-validation can be use to estimate the misclassification
rate of a statistical classification method.

e k-fold cross-validation involves randomly dividing the set of
observations into k groups, or folds, Ay, ..., Ak of
approximately equal size.

e For the j-th fold (test set), we fit the model to the other k — 1
folds (training set) of the data, and count the number of
misclassifications of the fitted model when predicting the j-th
part of the data.

e We do this for j =1,2,..., k and combine the k estimates

e Leave-one-out cross validation is a special case.

If we have a lot of training data ...

... the effect of parameter uncertainty is negligible and we can do

the following:

1. divide the (training) data in two parts: training and test set
2. establish classifier from training set data

3. do classification for data in test data set, and estimate
misclassification rate by the fraction of misclassification in test

set.

Note: If we do not have so many training data this procedure will

overestimate the misclassification rate, i.e. too pessimistic.

Leave-one-out cross validation (CV)

Let y(x) = y(x; (x1,¥1),- .-, (Xn, ¥n)) denote our classifier based on
all training data. Let

.),}—I'(X) = .)/}(Xv (Xlayl)a ceey (Xi—la.yi—l)a (Xi+17yi+1)a ey (Xm)/n))

be our classifier based on all training data except (x;, y;).

Estimate the misclassification rate by:
1 n
- > 1y # 9-i(x))
i=1

Leave-one-out CV is computationally expensive. A cheaper variant
is K-fold CV



K-fold CV Misclassification as function of k

Divide at random training data into K sets Aq,..., Ak of equal size
(or as close as possible). Let S |
V-n(x) = y(x; (xi,yi),i € U Aj) S N, TS o NS o B
J#k § e
and estimate the misclassification rate by g 31
K g g
1 = —— TestError
— Wy #£ v_a, (X . o 10-fold CV
n Z Z (yl 7& .y Ak( l)) g B Traizing Error
k=1 [i€cAx | P Bayes Error
Often, K =5 or K = 10 is used. s | | | : : ‘
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Note: The tuning parameter k in the knn-classifier can be chosen
Number of Neiahbors

using CV.

Show animation in R: cv.ani in animation package. Hastie, Tibshirani, Friedman, “The elements of statistical learning”, 2nd ed., p. 467



