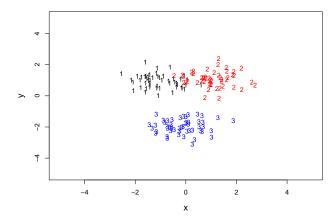
Classification: LDA, QDA, knn, cross-validation

TMA4300: Computer Intensive Statistical Methods
(Spring 2016)
Andrea Riebler

*Slides are based on lecture notes kindly provided by Håkon Tjelmeland.

Classification

Situation: Have observations x_1, \ldots, x_n and corresponding class labels y_1, \ldots, y_n , where $y_i \in \{0, 1, \ldots, J-1\}$ (Training data)



New observation: x_0

Last part of this course

- ⇒ Not closely related to the two first parts
- ⇒ Three topics (not closely related to each other):
 - ► Classification problem
 - ► Bootstrapping
 - ► Expectation-Maximization algorithm

Classification of the new observation

- Goal: Classify the new observation x_0 to one of the J possible classes.
- Alternatively, want to assign probabilities

$$\pi_j(x_0) = P(y_0 = j | X = x_0)$$

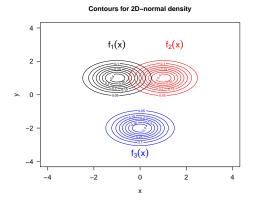
for
$$j = 0, ..., J - 1$$
.

Example: x denotes the results of a medical test with $y \in \{0, 1, 2\}$ where (y = 0): healthy, y = 1: disease 1, y = 2: disease 2).

Model

• We assume a distribution for x that depends on the class y:

$$f(x|y=j)=f_i(x)$$



• and prior probabilities for class j: $p_j = P(y = j)$.

Use Bayes rule

$$\pi_{j}(x_{0}) = P(y_{0} = j | X = x_{0})$$

$$= \frac{P(y_{0} = j, x_{0})}{f(x_{0})}$$

$$= \frac{P(y_{0} = j, x_{0})}{\sum_{i=0}^{J-1} P(y_{0} = i, x_{0})}$$

$$= \frac{p_{j}f_{j}(x_{0})}{\sum_{i=0}^{J-1} p_{j}f_{j}(x_{0})}.$$

For classification, need to consider the *cost* of misclassification. Some misclassification may be more *costly* than others.

Example: More *costly* to classify a person as healthy when he/she really has disease, than vice versa.

Model (II)

Thus, we assume a joint distribution for x and y:

$$f(x, y = j) = p_i f_i(x)$$

Comment: Must estimate $f_j(x)$ from training data

$$(x_1, y_1), \ldots, (x_n, y_n),$$

perhaps also estimate p_0, \ldots, p_{J-1} . For now, assume

$$p_0, \ldots, p_{J-1}, f_0(x), \ldots, f_{J-1}(x)$$
 known.

What is then $\pi_i(x_0)$ and \hat{y}_0 ?

Cost function

Assume a cost function:

- c(i|j): cost of classifying a subject to class i when the true class is j.
- In particular, c(i|i) = 0, for $i = 0, \ldots, J-1$.

Then, it is natural to make the classification by minimising the expected cost.

See blackboard

Bayes classifier:

$$\hat{y}_0 = \operatorname{argmax}_i \{ p_i f_i(x_0) \}$$

Practical challenge

 $p_0, \ldots, p_{J-1}, f_0(x), \ldots, f_{J-1}(x)$ are unknown. Different possibilities exist:

i) estimate the unknown properties from the training data:

$$\hat{p}_j = \frac{\#\{y_i = j\}}{n}$$

- a) Estimate each $f_i(x)$ by density estimation, or
- b) assume parametric form for $f_i(x)$ and estimate its parameters.
- ii) Bayesian modelling: Put prior distributions on the unknown quantities. For example

$$(p_0,\ldots,p_{J-1})\sim ext{Dirichlet}$$
 $x|y=j\sim \mathcal{N}(\mu_j,oldsymbol{\Sigma}_j)$ hyper-priors on $\mu_i,oldsymbol{\Sigma}_i$

Linear discriminant analysis (LDA)

Consider first $\Sigma_0 = \Sigma_1 = \ldots = \Sigma_{J-1} = \Sigma$. Then for given parameters, the Bayes decision rule becomes (i.e. using "0/1-loss"):

$$\begin{split} \hat{y}_0 &= \operatorname{argmax}_i \left\{ p_i \cdot \frac{1}{(2\pi)^{1/2}} \frac{1}{\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(x_0 - \mu_i)^\top \Sigma^{-1}(x_0 - \mu_i)\right) \right\} \\ &= \operatorname{argmax}_i \left\{ -\frac{1}{2}(x_0 - \mu_i)^\top \Sigma^{-1}(x_0 - \mu_i) + \log(p_i) \right\} \\ &= \operatorname{argmax}_i \left\{ x_0^\top \Sigma^{-1} \mu_i - \frac{1}{2} \mu_i^\top \Sigma^{-1} \mu_i + \log(p_i) \right\} \\ &= \operatorname{argmax}_i \left\{ \hat{\delta}_i(x_0) \right\} \\ &= \operatorname{argmax}_i \left\{ \hat{\delta}_i(x_0) \right\} \end{split}$$
 with $\hat{\delta}_i(x_0) = x_0^\top \Sigma^{-1} \mu_i - \frac{1}{2} \mu_i^\top \Sigma^{-1} \mu_i + \log(p_i).$

Discriminant analysis

We will now only consider alternative i) b).

Assume

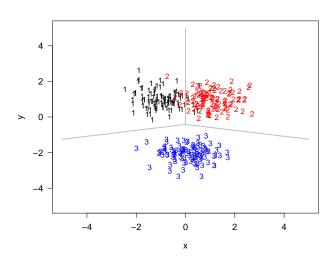
$$x|y = j \sim \mathcal{N}(\mu_i, \Sigma_i)$$

Two (extreme) alternatives:

- ullet assume $oldsymbol{\Sigma}_0 = oldsymbol{\Sigma}_1 = \ldots = oldsymbol{\Sigma}_{J-1} = oldsymbol{\Sigma}$
- different covariance matrices (more parameters to estimate)

LDA (cont.)

Note: $\hat{\delta}_i(x_0)$ is linear in x_0 . Thus the Bayes decision borders between the classification regions become lines/hyper-planes.



LDA: Example

Note: $\hat{\delta}_i(x_0)$ is linear in x_0 . Thus the borders between the classification regions become lines/hyper-planes.

Example

• The center of mass of the individual classes are at:

$$oldsymbol{\mu}_1 = egin{pmatrix} -1 \ 1 \end{pmatrix}, oldsymbol{\mu}_2 = egin{pmatrix} 1 \ 1 \end{pmatrix}, oldsymbol{\mu}_3 = egin{pmatrix} 0 \ -2 \end{pmatrix} \ .$$

- The joint covariance matrix has the form $\Sigma = \begin{pmatrix} 0.5 & 0 \\ 0 & 0.25 \end{pmatrix}$.
- The a-priori probabilities are equal: $p_1 = p_2 = p_3 = \frac{1}{3}$.

LDA: Example (III)

LDA: Example (II)

For the line of separation due to Bayes' rule we get:

$$x^{\top} \Sigma^{-1} \mu_{i} - \frac{1}{2} \mu_{i}^{\top} \Sigma^{-1} \mu_{i} + \log(p_{i})$$

$$= x^{\top} \Sigma^{-1} \mu_{j} - \frac{1}{2} \mu_{j}^{\top} \Sigma^{-1} \mu_{j} + \log(p_{j}).$$

- $-2x_1 + 4x_2 3 = 2x_1 + 4x_2 3$, i.e. $x_1 = 0$ is line of separation between classes 1 and 2.
- $-2x_1 + 4x_2 3 = -8x_2 8$, i.e. $x_2 = \frac{1}{6}x_1 - \frac{5}{12}$ is line of separation between classes 1 and 3.
- $2x_1 + 4x_2 3 = -8x_2 8$, i.e. $x_2 = \frac{-1}{6}x_1 - \frac{5}{12}$ is line of separation between classes 2 and 3.
- All lines meet at point $(0, -\frac{5}{12})$.

Practical comments

In practice we estimate $p_0, \ldots, p_{J-1}, \mu_0, \ldots, \mu_{J-1}, \Sigma$ by

$$\hat{\rho}_{j} = \frac{\sum_{i=1}^{n} 1(y_{i} = j)}{n}$$

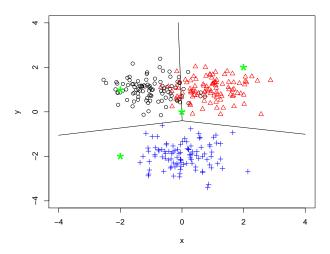
$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} 1(y_{i} = j)x_{i}}{\sum_{i=1}^{n} 1(y_{i} = j)}$$

$$\hat{\Sigma} = \frac{1}{n-J} \sum_{i=1}^{n} (x_{i} - \hat{\mu}_{y_{i}})(x_{i} - \hat{\mu}_{y_{i}})^{\top}$$

where $1(\cdot)$ is the indicator function. Then we use

$$\hat{\delta}_i(x_0) = x_0^{\top} \hat{\Sigma}^{-1} \hat{\mu}_i - \frac{1}{2} \hat{\mu}_i^{\top} \hat{\Sigma}^{-1} \hat{\mu}_i + \log(p_i)$$

Result of Ida-function in R



Projections are done using the predict() function (see R-code).

k-nearest neighbour (KNN) classification

Assume we do not want to do any assumptions about $f_i(x_0)$ except that it is *smooth*. Reasonable to estimate $p_i f_i(x_0)$ by $\widehat{p_i f_i(x_0)} \approx$ number of data points (in the training set) "close to" x_0 that have $y_i = i$.

How to define "close to"?

Not a good idea: "close to" means $||x_i - x_0|| \le R$, because the set may be empty for some x_0 , and very large for others.

Quadratic discriminant analysis (QDA)

Consider next the case where the covariance matrices are different (still assuming 0/1-loss). Thus,

$$x|y=j\sim \mathcal{N}(\mu_i, \Sigma_i)$$

Then
$$\hat{y}_0 = \operatorname{argmax}_i \left\{ p_i \cdot \frac{1}{(2\pi)^{1/2}} \frac{1}{\sqrt{|\Sigma_i|}} \exp\left(-\frac{1}{2}(x_0 - \mu_i)^\top \Sigma_i^{-1}(x_0 - \mu_i)\right) \right\}$$

$$= \operatorname{argmax}_i \left\{ \underbrace{-\frac{1}{2}(x_0 - \mu_i)^\top \Sigma_i^{-1}(x_0 - \mu_i) + \log(p_i) - \frac{1}{2}\log|\Sigma_i|}_{=\hat{\delta}_i(x_0)} \right\}$$

Thus, $\hat{\delta}_i(x_0)$ is quadratic in x_0 and the Bayes decision borders between the classification regions become quadratic.

KNN classification

Let R depend on x_0 (and the training set), so that the number of training values with $||x_i - x_0|| \le R$ is equal to k for all x_0 . Then we get the k-nearest-neighbour classifier.

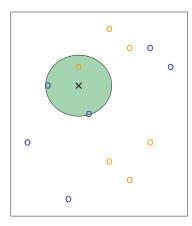
Algorithm:

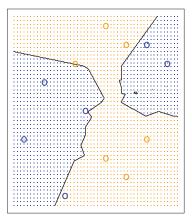
- 1. find the $k \times_i$'s closest to x_0 (in some norm)
- 2. choose \hat{y}_0 by majority vote among these k neighbours.

Here, k is a tuning parameter.

KNN classification - Example K=3

~





(James, Witten, Tibshirani, Hastie (2014), An Introduction to Statistical Learning, Springer, p.40)

Show animation in R: knn.ani in animation package.

Cross-validation

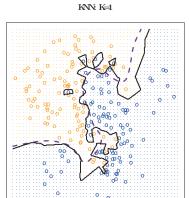
Consider a classification problem:

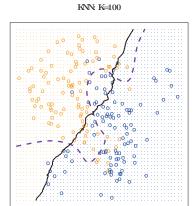
Have observed $(x_1, y_1), \ldots, (x_n, y_n) \leftarrow$ training data. Have one (or more) classification rule(s):

$$\hat{y}(x_0;(x_1,y_1),\ldots,(x_n,y_n))$$

How can we evaluate how good the rule is? Alternatively, how can we decide which rule is the best?

k-nearest-neighbour classifiers





(James, Witten, Tibshirani, Hastie (2014), An Introduction to Statistical Learning, Springer, p.41)

Misclassification rate

It is reasonable to focus on

• the misclassification rate

$$P(y_0 \neq \hat{y}(x_0; (x_1, y_1), \dots, (x_n, y_n)))$$

, or

• expected cost (from misclassification)

$$E[c(\hat{y}(x;(x_1,y_1),\ldots,(x_n,y_n))|y)]$$

Apparent error rate

The apparent misclassification rate classifies each member of the training sample and becomes

$$\frac{1}{n}\sum_{i=1}^{n}1(y_{i}\neq\hat{y}(x_{i};(x_{1},y_{1}),\ldots,(x_{n},y_{n}))$$

This estimate becomes clearly too optimistic because we use the same data to "train" the classifier and to estimate the misclassification rate.

We have to take into account:

- the assumed (parametric) model may be wrong.
- uncertainty in the parameter estimates
- inherent randomness

Idea k-fold cross validation

- Cross-validation can be use to estimate the misclassification rate of a statistical classification method.
- k-fold cross-validation involves randomly dividing the set of observations into k groups, or folds, A₁,..., A_k of approximately equal size.
- For the *j*-th fold (test set), we fit the model to the other *k* − 1 folds (training set) of the data, and count the number of misclassifications of the fitted model when predicting the *j*-th part of the data.
- We do this for j = 1, 2, ..., k and combine the k estimates
- Leave-one-out cross validation is a special case.

If we have a lot of training data . . .

...the effect of parameter uncertainty is negligible and we can do the following:

- 1. divide the (training) data in two parts: training and test set
- 2. establish classifier from training set data
- 3. do classification for data in test data set, and estimate misclassification rate by the fraction of misclassification in test set.

Note: If we do not have so many training data this procedure will overestimate the misclassification rate, i.e. too pessimistic.

Leave-one-out cross validation (CV)

Let $\hat{y}(x) = \hat{y}(x; (x_1, y_1), \dots, (x_n, y_n))$ denote our classifier based on all training data. Let

$$\hat{y}_{-i}(x) = \hat{y}(x; (x_1, y_1), \dots, (x_{i-1}, y_{i-1}), (x_{i+1}, y_{i+1}), \dots, (x_n, y_n))$$

be our classifier based on all training data except (x_i, y_i) .

Estimate the misclassification rate by:

$$\frac{1}{n}\sum_{i=1}^{n}1(y_{i}\neq\hat{y}_{-i}(x_{i}))$$

Leave-one-out CV is computationally expensive. A cheaper variant is $K\text{-fold }\mathsf{CV}$

K-fold CV

Divide at random training data into K sets A_1, \ldots, A_K of equal size (or as close as possible). Let

$$\hat{y}_{-A_k}(x) = \hat{y}(x; (x_i, y_i), i \in \bigcup_{j \neq k} A_j)$$

and estimate the misclassification rate by

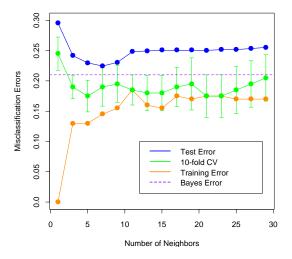
$$\frac{1}{n}\sum_{k=1}^K \left[\sum_{i\in A_k} 1(y_i \neq \hat{y}_{-A_k}(x_i))\right].$$

Often, K = 5 or K = 10 is used.

Note: The tuning parameter k in the knn-classifier can be chosen using CV.

Show animation in R: cv.ani in animation package.

Misclassification as function of k



Hastie, Tibshirani, Friedman, "The elements of statistical learning", 2nd ed., p. 467