
Review: Classification problem
Situation: Have observations (x1, y1), . . . , (xn, yn), where

yi ∈ {0, 1, . . . , J − 1} gives a class. Have new observation x0, want

to predict the corresponding class y0.
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x0: Which color?

Review: Model
We have: pj = P(Y = j), f (x |y = j) = fj(x)

•
πj(x0) = P(Y0 = j |x0) =

pj fj(x0)
∑J−1

i=0 pi fi (x0)

•

ECM(i) = E(c(i |Y )|x0) =

∑J−1
j=0 c(i |j)pj fj(x0)
∑J−1

i=0 pi fi (x0)
•

ŷ0 = argminiECM(i)

0/1-loss
= argmaxi{pi fi (x0)}

⇒

x |y = j ∼ N (µj ,Σj)




LDA Σ0 = . . . = ΣJ−1

QDA different Σj

Review
We have also discussed:

• k-nearest neighbour algorithm with tuning parameter k .

2.2 Assessing Model Accuracy 41
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KNN: K=10

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.
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KNN: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.13. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.

• Evaluation of classification rules: Today

Cross-validation

Consider a classification problem:

Have observed (x1, y1), . . . , (xn, yn)← training data. Have one (or

more) classification rule(s):

ŷ(x0; (x1, y1), . . . , (xn, yn))

How can we evaluate how good the rule is? Alternatively, how can

we decide which rule is the best?



Misclassification rate

It is reasonable to focus on

• the misclassification rate

P(y0 6= ŷ(x0; (x1, y1), . . . , (xn, yn)))

, or

• expected cost (from misclassification)

E[c(ŷ(x ; (x1, y1), . . . , (xn, yn))|y)]

Apparent error rate

The apparent misclassification rate becomes

1
n

n∑

i=1

1(yi 6= ŷ(xi ; (x1, y1), . . . , (xn, yn))

This estimate becomes clearly too optimistic because we use the

same data to “train” the classifier and to estimate the

misclassification rate.

We have to take into account:

• the assumed (parametric) model may be wrong.

• uncertainty in the parameter estimates

• inherent randomness

If we have a lot of training data . . .

. . . the effect of parameter uncertainty is negligible and we can do

the following:

1. divide the (training) data in two parts: training and test set

2. establish classifier from training set data

3. do classification for data in test data set, and estimate

misclassification rate by the fraction of misclassification in test

set.

Note: If we do not have so many training data this procedure will

overestimate the misclassification rate, i.e. too pessimistic.

Idea k-fold cross validation

• Cross-validation can be use to estimate the misclassification

rate of a statistical classification method.

• k-fold cross-validation involves randomly dividing the set of

observations into k groups, or folds, A1, . . . ,Ak of

approximately equal size.

• For the j-th fold (test set), we fit the model to the other k − 1

folds (training set) of the data, and count the number of

misclassifications of the fitted model when predicting the j-th

part of the data.

• We do this for j = 1, 2, . . . , k and combine the k estimates

• Leave-one-out cross validation is a special case.



Leave-one-out cross validation (CV)

Let ŷ(x) = ŷ(x ; (x1, y1), . . . , (xn, yn)) denote our classifier based on

all training data. Let

ŷ−i (x) = ŷ(x ; (x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn))

be our classifier based on all training data except (xi , yi ).

Estimate the misclassification rate by:

1
n

n∑

i=1

1(yi 6= ŷ−i (xi ))

Leave-one-out CV is computationally expensive. A cheaper variant

is K-fold CV

K-fold CV

Divide at random training data into K sets A1, . . . ,AK of equal size

(or as close as possible). Let

ŷ−Ak
(x) = ŷ(x ; (xi , yi ), i ∈

⋃

j 6=k

Aj)

and estimate the misclassification rate by

1
n

K∑

k=1


∑

i∈Ak

1(yi 6= ŷ−Ak
(xi ))


 .

Often, K = 5 or K = 10 is used.

Note: The tuning parameter k in the knn-classifier can be chosen

using CV.

Show animation in R: cv.ani in animation package.

Bootstrap

http://tradingconsequences.blogs.edina.ac.uk/files/2013/10/Dr_Martens_black_old.jpg

Bootstrap Bill Turner

“Bootstrap” Bill Turner from Pirates of the Caribbean.

. . . Barbossa tied Bill to a cannon by his bootstraps and

sent him to the bottom of the sea.

http://kidstvmovies.about.com/od/piratesofthecaribbean3/ig/Pirates–At-World-s-End/-Bootstrap–Bill.htm



. . . pull oneself up by one’s bootstraps

To begin an enterprise or recover

from a setback without any outside

help; to succeed only on one’s own

effort or abilities.
Wiktionary

The term is sometimes attributed to Rudolf

Erich Raspe’s story “The Surprising Adventures

of Baron Munchausen”, where the main

character pulls himself (and his horse) out of a

swamp by his hair

http://redstateeclectic.typepad.com/redstate_commentary/2010/11/sustainability-isnt-sustainable.html

Bootstrapping in statistics

Bootstrap is a computer-based technique for doing statistical

inference (usually with a minimum of assumptions). It is not

Bayesian.

See blackboard for rough idea

Show animation in R: boot.iid in animation package.

Bootstrap principle

Assume we have iid observations from an (unknown) distribution F :

F → (x1, . . . , xn)

The empirical distribution function F̂ is the CDF that puts mass

1/n at each data point xi :

F̂ (x) =
1
n

n∑

i=1

1(xi ≤ x)

where 1(·) denotes the indicator function.

Bootstrap principle

Let θ be an interesting feature of F , θ = T (F ).

For example:

θ = E(X ) =

∫
xf (x)dx

θ = Var(X ) =

∫
(x − E(X ))2f (x)dx

The plug-in estimator for θ is defined by:

θ̂ = T (F̂ )

The plug-in principle is quite good, if the only information about F ,

comes from the sample x .



Examples

Thus

θ = E(X )⇒ θ̂ = EF̂ (X ) =
n∑

i=1

xi
1
n

= x̄

θ = Var(X )⇒ θ̂ = VarF̂ (X ) = EF̂ [(X − µF̂ )2]

=
n∑

i=1

(xi − µF̂ )2
1
n

=
1
n

n∑

i=1

(xi − x̄)2

θ = SD(X )⇒ θ̂ = SDF̂ (X ) =
√

VarF̂ (X )

=

√√√√1
n

n∑

i=1

(xi − x̄)2

Setting

Assume we have :

F → (x1, . . . , xn)

Thus F̂ gives mass 1
n to each observed value.

A bootstrap sample is defined to be a random sample of size n

from F̂ , say x? = (x?1 , . . . , x
?
n )

F̂ → (x?1 , . . . , x
?
n )

Simple illustration

Suppose n = 3 univariate data points, namely

{x1, x2, x3} = {1, 2, 6}

are observed as an iid sample from F that has mean θ . At each

observed data value, F̂ places mass 1/3. Suppose the estimator to

be bootstrapped is the sample mean θ̂.

There are 33 = 27 possible outcomes for X ? = {X ?
1 ,X

?
2 ,X

?
3 }.

Simple illustration (II)

X ? θ̂? P?(θ̂?) Observed frequency

1 1 1 3/3 1/27 36/1000

1 1 2 4/3 3/27 101/1000

1 2 2 5/3 3/27 123/1000

2 2 2 6/3 1/27 25/1000

1 1 6 8/3 3/27 104/1000

1 2 6 9/3 6/27 227/1000

2 2 6 10/3 3/27 131/1000

1 6 6 13/3 3/27 111/1000

2 6 6 14/3 3/27 102/1000

6 6 6 18/3 1/27 40/1000



Bootstrap estimate for standard error

• Parameter of interest: θ = T (F )

• Our estimator for θ: θ̂ = s(x)

• Want (to estimate) SDF (θ̂).

A bootstrap replication of θ̂ is

θ̂? = s(x?)

Use plug-in principle to estimate SDF (θ̂). The bootstrap estimate

of the standard error of θ̂ = s(x) is SDF̂ (θ̂?). This is called the

ideal bootstrap estimate of standard error of θ̂.

Note: Except for very small n, SDF̂ (θ̂?) cannot be computed.
(Number of possible bootstrap sample: nn.)

Computational way of obtaining a good estimate
We can estimate SDF̂ (θ̂?) by simulation:

1. Generate B bootstrap samples x1?, . . . , xB?.

2. Evaluate the corresponding parameter estimates

θ̂?(b) = s(xb?), b = 1, 2, . . . ,B

3. Estimate SDF̂ (θ̂?) by

ŜEB =

√∑B
b=1(θ̂?(b)− θ̂?(·))2

B − 1

where

θ̂?(·) =
1
B

B∑

b=1

θ̂?(b)

Note

lim
B→∞

ŜEB = ŜE∞ = ŜDF̂ (θ̂?)

Example

Setting

θ = E(X )

θ̂ = s(x) =
1
n

n∑

i=1

xi = x̄

θ̂? = s(x?) =
1
n

n∑

i=1

x?i = x̄?

Here, the ideal bootstrap estimate exists

see blackboard

How large do we need B?

Intuitively we understand that the ŜEB has larger standard

deviation than ŜE∞.

Theory, not to be discussed here, gives the following rules of

thumb:

1. Even a small B is informative, say B = 25 or B = 50 is often

enough to get a good estimate of SEF (θ̂).

2. Very seldomly more than B = 200 is necessary to estimate

SEF (θ̂).



The parametric bootstrap

When data are modeled to originate from a parametric distribution,

so

X1, . . . ,Xn
iid∼ F (x , ξ),

another estimate of F may be employed.

Suppose that the observed data are used to estimate ξ by ξ̂. Then

each parametric bootstrap pseudo-dataset X ? can be generated by

drawing X ?
1 , . . . ,X

?
n

iid∼ F (x , ξ̂) = F̂par.

Again . . .
. . . we can/must estimate SDF̂par

(θ̂?) by simulation:

1. Generate B bootstrap samples x1?, . . . , xB?, where

xb? = (xb?1 , . . . , xb?n )

with xb?1 , . . . , xb?n
iid∼ F̂par.

2. Evaluate the corresponding parameter estimates

θ̂?(b) = s(xb?), b = 1, 2, . . . ,B

3. Estimate SDF̂par
(θ̂?) by

ŜEB =

√∑B
b=1(θ̂?(b)− θ̂?(·))2

B − 1

where

θ̂?(·) =
1
B

B∑

b=1

θ̂?(b)

Bootstrapping regression

Consider the ordinary multiple regression model

Yi = x>i β + εi , for i = 1, . . . , n,

where εi are iid mean zero random variables with constant variance.

• Naive: Bootstrapping by resampling from response variables to

get distribution of β̂?. However Yi |xi are not iid!

• Correct: Bootstrap the residuals.

Review: Residuals

http://fsweb.bainbridge.edu/dbyrd/statistics/regression.htm



Bootstrap the residuals

1. Fit the regression model to the observed data and obtain the

fitted responses ŷi and residuals ε̂i .

2. Sample a bootstrap set of residuals ε̂?1, . . . , ε̂
?
n from the set of

fitted residuals completely at random and with replacement.

3. Generate a bootstrap set of pseudo responses

Y ?
i = ŷi + ε̂?i , for i = 1, . . . , n.

4. Regress Y ? on x to obtain a bootstrap estimate β̂?.

Repeat this process to get an empirical distribution of β̂?.

Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.

Note: Bootstrapping the residuals is reliant on

• The model provides an appropriate fit

• The residuals have a constant variance

Otherwise, a different scheme is recommended.

Comment: No need to bootstrap for linear regression model and

least squares estimation, as analytical results are then available.

Paired bootstrap

Suppose response and predictors are measured from a collection of

individuals selected at random

⇒ Data pairs zi = (xi , yi ) can be regarded as iid realisation from

Zi = (Xi ,Yi ) drawn from a joint response-predictor distribution.

Bootstrap:

• Sample Z ?
1 , . . . ,Z

?
n completely at random with replacement

from z1, . . . , zn.

• Apply regression model on pseudo dataset to get β̂?.

Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions,

e.g. adequacy of regression model, than bootstrapping the residuals.

Copper-nickel alloy

Data: 13 measurements of corrosion loss (yi ) in copper-nickel

alloys, each with a specific iron content (xi ).

Question: Change in corrosion loss in the alloys as the iron content

increases, relative to corrosion loss where there is no iron, i.e.

θ = β1/β0.

xi 0.01 0.48 0.71 0.95 1.19 0.01 0.48

yi 127.6 124.0 110.8 103.9 101.5 130.1 122.0

xi 1.44 0.71 1.96 0.01 1.44 1.96

yi 92.3 113.1 83.7 128.0 91.4 86.2

The observed data yield θ̂ = β̂1/β̂0 = −0.185.



Histogram of 10 000 bootstrap estimates
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Show R-code demo-pairedBootstrap.R

Bootstrap bias correction

The mean value of

θ̂? − θ̂

among the pseudo datasets is about −0.00125.

The bias-corrected bootstrap estimate of β1/β0 is

−0.18507− (−0.00125) = −0.184.

Confidence intervals

A “simple-minded” two-sided confidence interval with coverage

(1− α) for a parameter α is given by

[q?α/2, q
?
1−α/2]

where q?α is the α-bootstrap quantile in the distribution of θ̂?.

Experience: Often good, but often too low coverage, i.e the true α

for the interval is lower than the specified value.

Note: Better bootstrap confidence intervals exist and often have

better coverage accuracy — at the price of being somewhat more

difficult to implement

Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.

Consider a first-order stationary autoregressive process, the AR(1)

model:

Xt = αXt−1 + εt

where |α| < 1 and εt are iid with mean zero and constant variance.

Here, a method akin to bootstrapping the residuals for linear

regression can be applied.



AR(1) model: A model based approach

1. Use a standard method to estimate α

2. Define the estimated innovations êt = Xt − α̂Xt−1 for

t = 2, . . . , n and let ε̄ be the mean of these.

3. Recenter êt to have mean zero by defining ε̂t = êt − ē.

4. Resample n + 1 values from the set {ε̂2, . . . , ε̂n} with
replacement to yield pseudo innovations {ε?0, . . . , ε?n}.

5. Generate pseudo data as X ?
0 = ε?0 and X ?

t = α̂X ?
t−1 + ε?t for

t = 1, . . . , n.

6. From each bootstrap sample compute α̂?

AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.

Remedy: Sample larger number of pseudo innovations and generate

data series earlier, i.e. X ?
k for k much less than zero. The first

portion of the data can be discarded as burn-in.

Block bootstrap

An alternative bootstrap procedure for time series data is to draw

blocks from the observed series.

• Issue: We cannot simply sample from the individual

observations, as this would destroy the correlation that we try

to capture.

• Idea: Block data to preserve covariance structure within each

block, even though structure is lost between blocks.

Here, we consider

• Non-moving blocks bootstrap

• Moving blocks bootstrap

Non-moving blocks bootstrap

Illustration and example:

See blackboard



Non-moving blocks bootstrap (II)

• Split x1, . . . , xn into b non-overlapping blocks of length l ,

where ideally n = l · b.
• Sample B?1, . . . ,B?b independently from {B1, . . . ,Bb} with
replacement. Concatenate these blocks to form a pseudo

dataset X ? = (B?1, . . . ,B?b).

• Replicate this process B times and estimate for each bootstrap

sample θ̂?i .

• Approximate the distribution of θ̂ by the distribution of these

B pseudo values.

Moving blocks bootstrap

Illustration:

See blackboard

• Idea: With moving blocks bootstrap, choose block size l large

enough so that observations more than l units apart will be

nearly independent.

• Advantage: Less model dependent than residuals approach.

However, choice of block size l can be quite important, and

effective methods to choose l are still laking.

Permutation test

(related to idea of bootstrapping.)

Consider a medical experiment where rats are randomly assigned to

treatment and control groups. Under the null hypothesis the

outcome measured does not depend on the group assignment.

Idea: Shuffling the labels randomly among rates will not change the

joint null distribution of the data.

Recall: P-value

• Let t1 denote the original test statistic, e.g. difference of group

mean outcomes, and t2, . . . , tB the test statistics computed

from the datasets resulting from B permutations of labels.

• Under the null hypothesis t2, . . . , tB are from the same

distribution that yielded t1 ⇒ We can compare them.

We can use the P-value:

P-value is the probability of obtaining a test statistic at

least as extreme as the one that was actually observed,

assuming that the null hypothesis is true.



Permutation test: Example

The simple model for independent data from two sources:

yi ∼ F1, i = 1, . . . ,m

zj ∼ F2, j = 1, . . . , n

x = (y , z) = (y1, . . . , ym, z1, . . . , zn)

The permutation method for hypothesis testing is based on

resampling under the null hypothesis H0 : F1 = F2, by permuting

the order of the original data to generate B bootstrap samples x∗,

valid given that the null hypothesis is true.

The p-value for a test based on a test quantity T (x) can be

estimated as #{T (x∗) ≥ T (x)}/B . H0 is rejected if the p-value is

smaller than a given threshold (typically 0.05 or 0.01)

Permutation test: Example

1. We test the hypothesis

H0 :F1 = F2 against H1 : F1 6= F2

using the test quantity T = |y − z |, by means of the

permutation method to compute an estimate of the p-value for

the test.

2. The test only tests for differences that can be detected by the

test quantity. Consider an alternative test quantity

T =
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Permutation test: R-code

see demo-permTest.R


