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Introduction

• The expectation maximization (EM) algorithm (Dempster et

al., 2007) is an alternative procedure for the computation of

maximum likelihood estimators.

• In certain models – particularly missing data and data

augmentation problems – the EM algorithm appears naturally

and simplifies the maximum likelihood problem.

Example: Linear model with missing observation

• Consider a 2× 3 table with one missing observation:

10 15 17

22 23 NA

We assume the following linear model

yij = µ+ αi + βj + eij

with
∑2

i=1 αi = 0,
∑3

j=1 βj = 0 and eij independent and

identically N (0, σ2) distributed

• No closed form solution, but MLEs can be found through

suitable choice of the design matrix and response vector to

which the standard least squares equations are applied

Idea of the EM algorithm

• Through knowledge of y23 the table becomes balanced and

hence the estimates are easy to calculate

µ̂ = ȳ

α̂i = ȳi . − ȳ

β̂j = ȳ.j − ȳ

• Idea: Use an iterative imputation of the missing value y23 by

choosing a “plausible” value (start with ŷ23 = µ̂):

ŷ23 = µ̂+ α̂2 + β̂3



Parameter estimates versus iteration number
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The algorithm arrives at the MLE solution without inverting the

X>X matrix. The entry y23 is estimated to be 27.

Missing Data Setup and the EM Algorithm

The previous example has all the ingredients of an EM algorithm.

In a data setup with missing data, the key notions are

• The incomplete (observed) data y

• The complete (but partially unobserved) data x

(= y , y23 above)

• One has the following property: y = h(x), but the inverse

does not exist. Example: x = (x1, x2, x3) and

y =





(x1, x2) or

(x1 + x2, x2 + x3) or

(x1, x2 + 2x3)

⇒ Some information is lost by going from x to y .

The EM algorithm to maximize l(θ; x)

We would like to maximize L(θ; y) regarding θ, but we use L(θ; x)

or rather l(θ; x).

Input: Function l(θ; x) and start value θ(0)

i ← 0;

while not converged do

E-Step: Compute the conditional expectation

Q(θ) = Q(θ|θ(i)) = E (l(θ; x)|y ,θ(i)),

where l(θ; x) is the complete data loglikelihood ;

M-Step: Determine θ(i+1) = argmaxθ∈ΘQ(θ)

Update iteration number: i ← i + 1;

end

Back to table with missing entry

How does our motivating example fit into this framework?

See blackboard



Genetic example of Rao (1973, page 369)

• Let the vector

y = (y1, y2, y3, y4)> = (125, 18, 20, 34)> ∼ Mult

(
4∑

i=1

yi ,p(θ)

)

be multinomial distributed with probabilities

p(θ) =

(
1
2

+
θ

4
,
1− θ
4

,
1− θ
4

,
θ

4
.

)>

• The loglikelihood function based on y

l(θ; y) = y1 log(2 + θ) + (y2 + y3) log(1− θ) + y4 log θ

We can solve it using the quadratic formula or maximise it

numerically.

Numerical optimisation
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One obtains θ̂ML = 0.627 and se(θ̂ML) = 0.051.

Application of the EM algorithm

• Idea: Assume complete data x = (x1, x2, x3, x4, x5)> while the

incomplete data are y = h(x) = (x1 + x2, x3, x4, x5)>. Then,

x ∼ Mult

(
5∑

i=1

xi ,

(
1
2
,
θ

4
,
1− θ
4

,
1− θ
4

,
θ

4

)>)
.

• Now, the loglikelihood l(θ; x) is easy to maximize analytically

θ̂ =
x2 + x5

x2 + x3 + x4 + x5
.

• What is the E-step?

The E-step

• The loglikelihood for the complete data is

l(θ; x) = (x2 + x5) log θ + (x3 + x4) log(1− θ).

• For the calculation of E (l(θ, x)|y , θ) one uses

x2|y1, θ ∼ Bin(y1,
θ

2 + θ
)

• This yields the E-Step of the EM algorithm

E (x2|y1, θ) = y1
θ

2 + θ
.



Altogether . . .

• . . . one iterates between

x̂2 = y1
θ̂

2 + θ̂

and

θ̂ =
x̂2 + x5

x̂2 + x3 + x4 + x5

until convergence.

• This is equivalent to the one-step update

θ(i+1) =
y1θ

(i) + x5(2 + θ(i))

y1θ(i) + (x3 + x4 + x5)(2 + θ(i))
.

Properties of the EM algorithm

+ In each iteration step of the EM algorithm the (incomplete)

likelihood is increased:

L(θ(i+1); y) ≥ L(θ(i); y)

+ Parameter restrictions are (mostly) automatically fulfilled

− Convergence can be very slow – this especially depends on the

“amount” of missing data

− Standard errors are not directly available. Some methods exist

to try to approximate it, but they are not so easy to use in

practice. Much easier just to bootstrap your data!

Frequent applications of the EM algorithm

• Mixture models, cluster analysis

• Hidden Markov models

• Likelihood-based parameter estimation with missing data


