What did we do?

Block 1

What did we do?

We had three blocks:

- Simulation
- Markov chain Monte Carlo and INLA
- Classification, Bootstrap and EM-algorithm
- Bivariate techniques, e.g. the Box-Muller algorithm
- Ratio-of-uniforms method
- Methods based on mixtures

Do you remember this figure?

Why do we want samples?

Often we would like to approximate a statistic that is difficult to compute directly.
Keywords:

- Monte Carlo integration
- Importance sampling

Do you remember this figure?

Refinements: Make the envelope adaptive (different approaches)

Bayesian inference

Basics:

- Posterior \propto Likelihood \times Prior
- Bayesian hierarchical models
- Full-conditional distributions

Block 2: Two big topics

Markov chain Monte Carlo:

- What is the idea? Can we generate any Markov chain?

Block 2: Two big topics

Markov chain Monte Carlo:

- What is the idea? Can we generate any Markov chain?
- Why do we not use an approach from block 1?
- What kind of different MCMC techniques have we seen?

Block 2: Two big topics

Markov chain Monte Carlo:

- What is the idea? Can we generate any Markov chain?
- Why do we not use an approach from block 1 ?

Block 2: Two big topics

Markov chain Monte Carlo:

- What is the idea? Can we generate any Markov chain?
- Why do we not use an approach from block 1 ?
- What kind of different MCMC techniques have we seen?
- Is the algorithm working at all?
detailed balance condition, Metropolis-within-Gibbs, random-walk proposal, burn-in, convergence diagnostics, mixing, effective sample size, ...

Block 3

- What is the idea?
- For which models does it work?
- What are the main "ingredients"
- Potential advantages over MCMC

Which algorithm fits to this figure

In which context might we use this algorithm?

EM-algorithm

- Goal? Basic idea? What are the steps?
- Apply it to a simple example as inferring a missing datapoint

$$
\begin{array}{c|c|c}
10 & 15 & 17 \\
\hline 22 & 23 & \text { NA }
\end{array}
$$

- Non-parametric bootstrap
- Parametric bootstrap
- Bootstrapping regression

The exam - 01.06.2016

Permitted aids:

- Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College, Casio fx-82ES PLUS with empty memory.

The exam - 01.06.2016

Permitted aids:

- Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College, Casio fx-82ES PLUS with empty memory.
- Tabeller og formler i statistikk, Tapir forlag.

The exam - 01.06.2016

Permitted aids:

- Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College, Casio fx-82ES PLUS with empty memory.
- Tabeller og formler i statistikk, Tapir forlag.
- K. Rottman: Matematisk formelsamling.
- A dictionary in any language.

The exam - 01.06.2016

Permitted aids:

- Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College, Casio fx-82ES PLUS with empty memory.
- Tabeller og formler i statistikk, Tapir forlag.
- K. Rottman: Matematisk formelsamling.

The exam - 01.06.2016

Permitted aids:

- Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College, Casio fx-82ES PLUS with empty memory.
- Tabeller og formler i statistikk, Tapir forlag.
- K. Rottman: Matematisk formelsamling.
- A dictionary in any language.
- One yellow, stamped A5 sheet with your own handwritten formulas and notes (on both sides).

G000
¿Luck!

