## TMA4300 Computer Intensive Statistical Methods

- Home page: https://wiki.math.ntnu.no/tma4300/2017v/
- Lecturer: Håkon Tjelmeland
- Teaching assistant: Xin Luo


## Access to the computer lab

- For those who do not have access to Nullrommet 380A: please send me (haakont@math.ntnu.no) a mail as soon as possible with your name, NTNU username/e-mail address and study programme.
- You will get:
- Physical access to the computer lab
- User at the (linux) computers
- Don't wait, do it today!


## Partner for the exercises

- The exercises should be done in groups of two persons. You can
- find an exercise partner yourself. If so, send an email with (the two) names and email addresses to the teaching assistant (xin.luo@math.ntnu.no).
- let the teaching assistant find exercise partner for you. If so, send an email with your name and email address to the teaching assistant (xin.luo@math.ntnu.no) and ask for this.
- Don't wait, do it today. Deadline: January 19th.


## Reference group

- Three students should be in the reference group.
- Preferably from different study programmes.
- Duties:
- Stay in dialogue with the other students.
- Participate in three meetings with the lecturer and the teaching assistant, and provide suggestions for improvement in exercises, lectures, home page, and so on.
- Write a joint brief final report providing constructive feedback and evaluation of the course. This report will be published unedited in the course evaluation.
- Volunteers?


## Course outline

- The course is divided in three topic blocks:

Part 1: Algorithms for stochastic simulation.
Part 2: Markov chains Monte Carlo methods
Part 3: Expectation-maximisation algorithms, bootstrap and classification methods

- Each part consists of:
- A number of lectures
- Exercises (obligatory)
- Oral presentations (obligatory)


## TMA4300: Learning outcome, Knowledge

- The student knows computational intensive methods for doing statistical inference.
- This includes direct and iterative Monte Carlo simulations, as well as the expectation-maximisation algorithm and the bootstrap.
- The student has basic knowledge in how hierarchical Bayesian models can be used to formulate and solve complex statistical problems.
- Finally, the student understands a number of classification techniques.


## TMA4300: Learning outcome, Skills

- The student can apply computational methods, such as Monte Carlo simulations, the expectation-maximisation algorithm and the bootstrap, on simple applied problems.
- General competence. The student is able to give an oral presentation where he or she communicate his or her findings in a project.


## Do you have experience with ...

- Markov chains?
- The computer language $R$ ?
- Basic Bayesian inference?


## The word simulation ...

... refers to the treatment of a real problem through reproduction in an environment controlled by the experimenter.

Gamerman \& Lopes, Markov Chain Monte Carlo, 2nd Edition, Page 9

## Motivation: Queueing problem

M/G/1-queue:

- Customers arrive to a queueing system according to a Poisson process, i.e. interarrival times are exponentially distributed.
- One server
- Independent service times distributed according to $f(t)$.
- Queue system empty at time $t=0$
$X(t)$ customers in queueing system at time $t$.


## Motivation: Queueing problem

If service times are exponentially distributed, $X(t)$ is a Markov process and an explicit analytical formula for the limiting distribution is available. For general $f$, analytical solutions might not be available.
$\Rightarrow$ Idea: Simulate the queueing process on a computer and return the quality of interest, e.g. $\min \{t>0: X(t) \geq 7\}$.

## Simulation, why do we need it?

Necessity to produce chance on the computer:

- Evaluation of the behaviour of a complex system (Epidemics, weather forecast, networks, economic actions, etc)


## Simulation, why do we need it?

Necessity to produce chance on the computer:

- Evaluation of the behaviour of a complex system (Epidemics, weather forecast, networks, economic actions, etc)
- Determine probabilistic properties of a novel statistical procedure or under an unknown distribution.


(Left: Estimation of CDF from a normal sample of 100 points, Right: Variation of the estimation over 200 samples.)


## Simulation, why do we need it?

- Approximation of an integral/area

$$
\begin{aligned}
& n=1000 \quad \triangleright \text { (\# of simulations) } \\
& m=0 \quad \triangleright(\# \text { points in circle) } \\
& i=1 \\
& \text { while } i<n \text { do } \\
& \quad x=\operatorname{Rand}(1), y=\operatorname{Rand}(1) \\
& \quad \text { if } x^{2}+y^{2}<1 \text { then } \\
& \quad m \leftarrow m+1 \\
& \quad \text { end if } \\
& \quad i=i+1 \\
& \text { end while } \\
& \text { return } 4 \cdot \mathrm{~m} / n
\end{aligned}
$$


$\hat{\pi}=3.1353$.

## Simulation, how do we do it?

Central building block of simulation: Always requires availability of uniform $\mathcal{U}(0,1)$ random variables.

```
> runif(10)
    [1] 0.96112670 0.83981815 0.77269526 0.03363567 0.89374420 0.25631906
    [7] 0.82222815 0.77355197 0.17093594 0.12035040
```


## Pseudo-random generator

A pseudo-random generator is a deterministic function $f$ which takes a uniform random bit string as input and outputs a bit string which cannot be distinguished from a uniform random string.
In more detail, this means that for starting value (seed) $u_{0}$ and any $n$, the sequence

$$
\left\{u_{0}, f\left(u_{0}\right), f\left(f\left(u_{0}\right)\right), f\left(f\left(f\left(u_{0}\right)\right)\right), \ldots, f^{n}\left(u_{0}\right)\right\}
$$

behaves statistically like an $\mathcal{U}(0,1)$ sequence (when appropriately scaled).

## Pseudo-random generator

Illustration of first $10\left(u_{t}, u_{t+1}\right)$ steps
$>\operatorname{par}(\operatorname{mfrow}=c(1,1), \operatorname{mar}=c(4,4,1,0), \operatorname{las=1,} \operatorname{cex} . l a b=1.2, \quad c e x . a x i s=1.1, l w d=1.6)$
$>$ set.seed (2118735)
$>\mathrm{a}=$ runif (10)
> plot(a[1:9], a[2:10], type="o", xlab="", ylab="", xlim=c (0,1), ylim=c (0,1))


## A standard uniform generator

The congruential random generator on $\{0,1, \ldots, M-1\}$

$$
f(x)=(a \cdot x+b) \quad \bmod M
$$

has a period equal to $M$ for proper choices $(a, b)$ and becomes a generator on $[0,1)$ when dividing by $M$.

## Example

Take

$$
f(x)=(69069069 \cdot x+12345) \quad \bmod \left(2^{32}\right)
$$

and produce
$\ldots, 69081414,2406887111,1109307232,2802677792,3651430880,806776992, \ldots$ i.e.
$\ldots, 0.01608427,0.56039708,0.25828072,0.65254927,0.85016500,0.18784241, \ldots$



## Random number generator

From now on, we assume to have a random generator on the unit interval available.

