Markov chain Monte Carlo idea

 \star Situation:

- Given a target distribution f(x)
- Want to estimate

$$\mu = \mathsf{E}_f[g(X)] = \int g(x)f(x)\mathsf{d} x$$

- Want to generate samples from f(x)

★ Idea:

- construct a Markov chain $\{X_i\}_{i=1}^{\infty}$ so that

$$\lim_{i\to\infty}P(X_i=x)=f(x)$$

- simulate the Markov chain for many iterations
- for *m* large enough x_m, x_{m+1}, \ldots are (essentially) from f(x)
- estimate μ by

$$\widetilde{\mu} = \frac{1}{n} \sum_{i=m}^{m+n-1} g(x_i)$$

Markov chain Monte Carlo: questions to answer

- $\star\,$ Questions to answer:
 - how to construct such a Markov chain?
 - how to simulate the Markov chain?
 - how to find the value of m?
 - how to estimate $Var[\hat{\mu}]$?

Markov chain Monte Carlo: questions to answer

- \star Questions to answer:
 - how to construct such a Markov chain?
 - how to simulate the Markov chain?
 - how to find the value of m?
 - how to estimate $Var[\hat{\mu}]$?
- ★ How to construct such a Markov chain? ($x \in \Omega$ discrete)
 - Markov chain transition probabilities: $P(y|x) = P(X_{i+1} = y|X_i = x)$
 - Need to have

$$f(y) = \sum_{x \in \Omega} f(x) P(y|x)$$
 for all $y \in \Omega$

- Sufficient condition: Detailed balance condition

f(x)P(y|x) = f(y)P(x|y) for all $x, y \in \Omega$

Metropolis-Hastings

* Detailed balance condition:

$$f(x)P(y|x) = f(y)P(x|y)$$
 for all $x, y \in \Omega$

* Metropolis–Hastings setup for P(y|x):

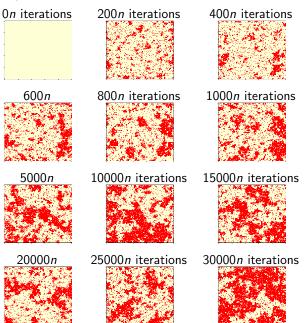
$$P(y|x) = Q(y|x)\alpha(y|x)$$
 when $y \neq x$

$$P(x|x) = 1 - \sum_{y \neq x} Q(y|x)\alpha(y|x)$$

where

- Q(y|x) is a transition matrix (proposal kernel) - $\alpha(y|x) \in [0,1]$ is an acceptance probability
- \star Questions:
 - how to simulate the Markov chain with this setup?
 - for given Q(y|x), what can $\alpha(y|x)$ be?

Ising model ($\beta = 0.87, x^0 = 0$



Ising model

- $\star~$ Trace plot of number of 1's
 - four runs
 - different initial state:
 - + all O's
 - + all 1's (two runs)
 - + independent random in each node

