Random number generator

From now on, we assume to have a random generator on the unit interval available.

Simulation from discrete distributions

• Let x be a stochastic variable so that $x \in \{x_1, \ldots, x_k\}$, and

$$P(x = x_i) = p_i$$
 where $\sum_{i=1}^{k} p_i = 1$

• Define
$$F_i = \sum_{j=1}^i p_j$$
 for $i = 0, 1, \dots, k$

General simulation algorithm:

$$u \sim U[0, 1]$$

for $i = 1, 2, \dots, k$ do
if $u \in (F_{i-1}, F_i]$ then
 $x = x_i$
end if
end for

- Note:
 - can be used for any discrete distribution, but can be inefficient
 - more efficent searching algorithm can make the algorithm faster
 - specialised algorithm for specific distrbutions: binomial, negative binomial, poisson

Simulation from continuous distributions

- Probability integral transform (inversion method)
- Let x have density $f(x), x \in \mathbf{R}$, $F(x) = \int_{-\infty}^{x} f(z) dz$
- General simulation algorithm:

 $u \sim U[0, 1]$ $x = F^{-1}(u)$ return x

- We need to:
 - prove that the algorithm is correct
 - intuitively understand why it is correct
 - look at examples
 - understand when the algorithm can be used