## Random number generator

From now on, we assume to have a random generator on the unit interval available.

## Simulation from discrete distributions

- Let $x$ be a stochastic variable so that $x \in\left\{x_{1}, \ldots, x_{k}\right\}$, and

$$
P\left(x=x_{i}\right)=p_{i} \quad \text { where } \quad \sum_{i=1}^{k} p_{i}=1
$$

- Define $F_{i}=\sum_{j=1}^{i} p_{j}$ for $i=0,1, \ldots, k$
- General simulation algorithm:

$$
\begin{aligned}
& u \sim U[0,1] \\
& \text { for } i=1,2, \ldots, k \text { do } \\
& \quad \text { if } u \in\left(F_{i-1}, F_{i}\right] \text { then } \\
& \quad x=x_{i} \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

- Note:
- can be used for any discrete distribution, but can be inefficient
- more efficent searching algorithm can make the algorithm faster
- specialised algorithm for specific distrbutions: binomial, negative binomial, poisson


## Simulation from continuous distributions

- Probability integral transform (inversion method)
- Let $x$ have density $f(x), x \in \mathbf{R}, F(x)=\int_{-\infty}^{x} f(z) \mathrm{d} z$
- General simulation algorithm:

$$
\begin{aligned}
& u \sim U[0,1] \\
& x=F^{-1}(u)
\end{aligned}
$$

$$
\text { return } x
$$

- We need to:
- prove that the algorithm is correct
- intuitively understand why it is correct
- look at examples
- understand when the algorithm can be used

