
Simulation from discrete distributions
I Let x be a stochastic variable so that x ∈ {x1, . . . , xk}, and

P(x = xi ) = pi where
k∑

i=1

pi = 1

I Define Fi =
∑i

j=1 pj for i = 0, 1, . . . , k

I General simulation algorithm:
u ∼ U[0, 1]
for i = 1, 2, . . . , k do

if u ∈ (Fi−1,Fi ] then
x = xi

end if
end for

I Note:
I can be used for any discrete distribution, but can be inefficient
I more efficent search algorithm can make the algorithm faster
I specialised algorithm for specific distrbutions: binomial,

negative binomial, poisson



Simulation from continuous distributions

I Probability integral transform (inversion method)

I Let x have density f (x), x ∈ R, F (x) =
∫ x

−∞ f (z)dz

I General simulation algorithm:
u ∼ U[0, 1]
x = F−1(u)
return x

I Note:

I can only be used when we can find a formula for F−1(u)
I specialised algorithms for specific distributions: gamma
I easy to handle scale and location parameters



Bivariate transformation formula
I Result: Assume

(x1, x2) ∼ fx(x1, x2) (density)

and

(y1, y2) = g(x1, x2)

m
(x1, x2) = g−1(y1, y2).

Then
fy (y1, y2) = fx(g

−1(y1, y2)) · |J|,

where

J =
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∂y1

∂x2
∂y1

∂x1
∂y2

∂x2
∂y2

∣∣∣∣∣
I Thus, if we are interested in a density fy (y1, y2) we need to find a

density fx(x1, x2) and a one-to-one transformation
(y1, y2) = g(x1, x2) so that the above result holds true



Example: Standard normal (Box-Muller, 1958)

I Assume x1 and x2 independent and

x1 ∼ U[0, 2π] , x2 ∼ Exp
(
1
2

)
.

I Thus,

fx(x1, x2) =
1
2π
· 1
2
e−

1
2 x2 for x1 ∈ [0, 2π], x2 > 0.

I Define

y1 =
√
x2 cos x1 and y2 =

√
x2 sin x1

m

x1 = tan−1
(
y2

y1

)
and x2 = y2

1 + y2
2


