Simulation from discrete distributions

- Let x be a stochastic variable so that $x \in\left\{x_{1}, \ldots, x_{k}\right\}$, and

$$
P\left(x=x_{i}\right)=p_{i} \quad \text { where } \quad \sum_{i=1}^{k} p_{i}=1
$$

- Define $F_{i}=\sum_{j=1}^{i} p_{j}$ for $i=0,1, \ldots, k$
- General simulation algorithm:

$$
\begin{aligned}
& u \sim U[0,1] \\
& \text { for } i=1,2, \ldots, k \text { do } \\
& \quad \text { if } u \in\left(F_{i-1}, F_{i}\right] \text { then } \\
& \quad x=x_{i} \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

- Note:
- can be used for any discrete distribution, but can be inefficient
- more efficent search algorithm can make the algorithm faster
- specialised algorithm for specific distrbutions: binomial, negative binomial, poisson

Simulation from continuous distributions

- Probability integral transform (inversion method)
- Let x have density $f(x), x \in \mathbf{R}, F(x)=\int_{-\infty}^{x} f(z) \mathrm{d} z$
- General simulation algorithm:

$$
\begin{aligned}
& u \sim U[0,1] \\
& x=F^{-1}(u) \\
& \text { return } x
\end{aligned}
$$

- Note:
- can only be used when we can find a formula for $F^{-1}(u)$
- specialised algorithms for specific distributions: gamma
- easy to handle scale and location parameters

Bivariate transformation formula

- Result: Assume

$$
\left(x_{1}, x_{2}\right) \sim f_{x}\left(x_{1}, x_{2}\right) \quad \text { (density) }
$$

and

$$
\begin{aligned}
\left(y_{1}, y_{2}\right) & =g\left(x_{1}, x_{2}\right) \\
& \Uparrow \\
\left(x_{1}, x_{2}\right) & =g^{-1}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

Then

$$
f_{y}\left(y_{1}, y_{2}\right)=f_{x}\left(g^{-1}\left(y_{1}, y_{2}\right)\right) \cdot|J|
$$

where

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|
$$

- Thus, if we are interested in a density $f_{y}\left(y_{1}, y_{2}\right)$ we need to find a density $f_{x}\left(x_{1}, x_{2}\right)$ and a one-to-one transformation $\left(y_{1}, y_{2}\right)=g\left(x_{1}, x_{2}\right)$ so that the above result holds true

Example: Standard normal (Box-Muller, 1958)

- Assume x_{1} and x_{2} independent and

$$
x_{1} \sim U[0,2 \pi], \quad x_{2} \sim \operatorname{Exp}\left(\frac{1}{2}\right) .
$$

- Thus,

$$
f_{x}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \cdot \frac{1}{2} e^{-\frac{1}{2} x_{2}} \text { for } x_{1} \in[0,2 \pi], x_{2}>0 .
$$

- Define

$$
\begin{array}{ccc}
y_{1}=\sqrt{x_{2}} \cos x_{1} & \text { and } & y_{2}=\sqrt{x_{2}} \sin x_{1} \\
& \Uparrow
\end{array}
$$

