Markov chain Monte Carlo idea

- * Situation:
 - Given a target distribution f(x)
 - Want to generate samples from f(x)
- * Idea:
 - construct a Markov chain $\{X_i\}_{i=1}^{\infty}$ so that

$$\lim_{i\to\infty} P(X_i=x)=f(x)$$

- simulate the Markov chain for many iterations
- for m large enough x_m, x_{m+1}, \ldots are (essentially) from f(x)

How to construct the Markov chain

- * How to construct such a Markov chain? ($x \in \Omega$ discrete)
 - Markov chain transition probabilities:

$$P(y|x) = P(X_{i+1} = y|X_i = x)$$

Need to have

$$f(y) = \sum_{x \in \Omega} f(x)P(y|x)$$
 for all $y \in \Omega$

- Sufficient condition: Detailed balance condition

$$f(x)P(y|x) = f(y)P(x|y)$$
 for all $x, y \in \Omega$

* Metropolis–Hastings setup for P(y|x):

$$P(y|x) = Q(y|x)\alpha(y|x)$$
 when $y \neq x$

$$P(x|x) = 1 - \sum_{y \neq x} Q(y|x)\alpha(y|x)$$

where

$$\alpha(y|x) = \min\left\{1, \frac{f(y)}{f(x)} \cdot \frac{Q(x|y)}{Q(y|x)}\right\}$$

Common proposal types

- \star Independent proposals: Q(y|x) = q(y)
 - usually not a good alternative (alone)
- * Random walk proposals: $Q(y|x) = N(y|x, \sigma^2 I)$
 - is used a lot
 - includes a tuning parameter: σ
- * Langevin proposals: $Q(y|x) = N(y|x + h\nabla \ln f(x), h^2 I)$
 - needs $\nabla \ln f(x)$
 - includes a tuning parameter: h
- * Gibbs updates: We haven't discussed this yet

Combination of strategies

- * Have two (or more) proposal kernels, $Q_1(y|x)$, $Q_2(y|x)$
 - Alternative 1:

$$\begin{array}{lcl} Q(y|x) & = & p \ Q_1(y|x) + (1-p)Q_2(y|x) \\ \alpha(y|x) & = & \min \left\{ 1, \frac{f(y)}{f(x)} \cdot \frac{p \ Q_1(x|y) + (1-p)Q_2(x|y)}{p \ Q_1(y|x) + (1-p)Q_2(y|x)} \right\} \end{array}$$

- Alternative 2:

$$P_{i}(y|x) = \begin{cases} Q_{i}(y|x)\alpha_{i}(y|x) & \text{for } y \neq x, \\ 1 - \sum_{z \neq x} Q_{i}(z|x)\alpha_{i}(z|x) & \text{for } y = z \end{cases}$$

$$\alpha_{i}(y|x) = \min \left\{ 1, \frac{f(y)}{f(x)} \cdot \frac{Q_{i}(x|y)}{Q_{i}(y|x)} \right\}$$

$$P(y|x) = p P_{1}(y|x) + (1 - p)P_{2}(y|x)$$

Alternative 3: We will discuss a third alternative today

Combination of strategies

- * Have two (or more) proposal kernels, $Q_1(y|x)$, $Q_2(y|x)$
 - Alternative 1:

$$\begin{array}{lcl} Q(y|x) & = & p \ Q_1(y|x) + (1-p)Q_2(y|x) \\ \alpha(y|x) & = & \min \left\{ 1, \frac{f(y)}{f(x)} \cdot \frac{p \ Q_1(x|y) + (1-p)Q_2(x|y)}{p \ Q_1(y|x) + (1-p)Q_2(y|x)} \right\} \end{array}$$

Alternative 2:

$$P_{i}(y|x) = \begin{cases} Q_{i}(y|x)\alpha_{i}(y|x) & \text{for } y \neq x, \\ 1 - \sum_{z \neq x} Q_{i}(z|x)\alpha_{i}(z|x) & \text{for } y = z \end{cases}$$

$$\alpha_{i}(y|x) = \min \left\{ 1, \frac{f(y)}{f(x)} \cdot \frac{Q_{i}(x|y)}{Q_{i}(y|x)} \right\}$$

$$P(y|x) = p P_{1}(y|x) + (1 - p)P_{2}(y|x)$$

- Alternative 3: We will discuss a third alternative today
- ⋆ Note: Alt. 2 costs less cpu time per iteration than Alt. 1

Toy example: Combination of strategies

* Target distribution $f(x), x = (x^1, x^2) \in \mathbb{R}^2$

- * Proposal distributions, p = 1/2
 - $Q_1(y|x)$:
 - + propose $y^1 \sim N(x^1, \sigma^2)$
 - + keep $y^2 = x^2$ unchanged
 - $Q_2(y|x)$:
 - + propose $y^2 \sim N(x^2, \sigma^2)$
 - + keep $y^1 = x^1$ unchanged
- * Note: $Q_1(y|x)$ and $Q_2(y|x)$ don't give irreducible Markov chains separately, together they do.

Toy example: Combination of strategies

* Target distribution $f(x), x = (x^1, x^2) \in \mathbb{R}^2$

- * Proposal distributions, p = 1/2
 - $Q_1(y|x)$:
 - + propose $y^1 \sim N(x^1, 0.3^2)$
 - + keep $y^2 = x^2$ unchanged
 - $Q_2(y|x)$:
 - + propose $y^2 \sim N(x^2, 0.3^2)$
 - + keep $y^1 = x^1$ unchanged
- * Note: $Q_1(y|x)$ and $Q_2(y|x)$ don't give irreducible Markov chains separately, together they do.

Toy example: Gibbs for a bivariate normal

* Target distribution, $x \sim N(0, \Sigma), \Sigma = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$

- ★ Full conditional distributions
 - $-x^{1}|x^{2} \sim N(0.7x^{2}, 0.51)$
 - $-x^{2}|x^{1} \sim N(0.7x^{1}, 0.51)$
- * Note:
 - contains no tuning parameter
 - must be able to find (and sample from) the full conditionals
 - waist of time to update the same coordinate two times in a row

Toy example: Gibbs for a bivariate normal

* Target distribution, $x \sim N(0, \Sigma), \Sigma = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$

- * Full conditional distributions
 - $-x^{1}|x^{2} \sim N(0.7x^{2}, 0.51)$
 - $-x^2|x^1 \sim N(0.7x^1, 0.51)$
- ⋆ Note:
 - contains no tuning parameter
 - must be able to find (and sample from) the full conditionals
 - waist of time to update the same coordinate two times in a row

Convergence diagnostics

- * When has the Markov chain converged?
- \star Several theoretical results exist: for a given $\epsilon > 0$

$$||f(\cdot) - P_n(\cdot)|| \le \epsilon \text{ for all } n \le N(\epsilon)$$

where $N(\epsilon)$ can be computed.

- bounds too weak to be of any practical value
- * Standard start to evaluate convergence:
 - look at trace plots (ex. Ising model)

One long chain or many shorter chains?

- * With fixed cpu-time available, should we
 - use all time in one long Markov chain run, or
 - run several shorter Markov chain runs?
- ⋆ One long Markov chain run

* Several shorter Markov chain runs

One long chain or many shorter chains?

- * With fixed cpu-time available, should we
 - use all time in one long Markov chain run, or
 - run several shorter Markov chain runs?
- ⋆ One long Markov chain run

- only one burn-in period to discard
- more likely that you really have converged
- * Several shorter Markov chain runs

- easier to evaluate the convergence
- easier to estimate estimation variance (the chains are independent)