Markov chain Monte Carlo idea

* Situation:

— Given a target distribution (x)
— Want to generate samples from f(x)

* |dea:

— construct a Markov chain {X;}%°; so that

lim P(X; = x) = f(x)

i—o0

— simulate the Markov chain for many iterations
— for m large enough Xm, Xm+1, - . . are (essentially) from f(x)

How to construct the Markov chain
* How to construct such a Markov chain? (x € Q discrete)

— Markov chain transition probabilities:
P(y|x) = P(Xis1 = y|X; = x)
— Need to have

fly) =Y _ f(x)P(ylx) forallycQ

xeQ
— Sufficient condition: Detailed balance condition
f(x)P(y|x) = f(y)P(x|ly) forall x,y € Q
* Metropolis—Hastings setup for P(y|x):
P(ylx) = Q(ylx)alyl|x) when y # x

P(xx) =1=Y " Q(ylx)a(y|x)
y#x
where

alyb) = min {1. 223 250

Common proposal types

* Independent proposals: Q(y|x) = q(y)
— usually not a good alternative (alone)
* Random walk proposals: Q(y|x) = N(y|x,o?I)

— is used a lot
— includes a tuning parameter: o

* Langevin proposals: Q(y|x) = N(y|x + hV In f(x), h?I)

— needs Vn f(x)
— includes a tuning parameter: h

* Gibbs updates: We haven't discussed this yet

Combination of strategies

* Have two (or more) proposal kernels, Q1(y|x), Q2(y|x)
— Alternative 1:
Qlylx) = pQulylx)+(1-p)Q(ylx)
— oinJ1 f0) P QuXly) + (1 - p)@a(x]y)
b = min L - o)
— Alternative 2:
) — Qily |X)Oé:(Y|X) for y # x,
Pilylx) = { ZZ 4 Qi(z|x)ai(z|x) fory ==z
ailyl) = {1 . 2t
P(ylx) = pPi(ylx)+(1—p)P2(y[x)

— Alternative 3: We will discuss a third alternative today

Combination of strategies

* Have two (or more) proposal kernels, Q1(y|x), Qz(y|x)

— Alternative 1:

Qlylx) = p@i(ylx)+(1—p)Qa(ylx)

— mind 1 f0) P QiXly) + (1~ p)Qa(x]y)
ol = {1’ 09 P Q) T (1=)@l)

— Alternative 2:

oy = 1l |X)Oé:(Y|X) for y # x,

Filk) = { S Qiex)onlzlx) fory =z
_ f(y) Qi(xly)

ailylx) {1 Tfx) @ yIX)}

P(ylx) = pPi(ylx)+(1—p)Py|x)

— Alternative 3: We will discuss a third alternative today

* Note: Alt. 2 costs less cpu time per iteration than Alt. 1

Toy example: Combination of strategies

* Target distribution f(x),x = (x!,x?) € R?

* Proposal distributions, p =1/2

- Qulylx):
+ propose y* ~ N(x*,0?)
+ keep y? = x? unchanged
- Qa(ylx):

+ propose y? ~ N(x?,0?)
+ keep y! = x! unchanged
* Note: Q1(y|x) and Q2(y|x) don’t give irreducible Markov chains
separately, together they do.

Toy example: Combination of strategies

* Target distribution f(x),x = (x!,x?) € R?

* Proposal distributions, p =1/2

= Qu(y[x):
+ propose y* ~ N(x*,0.3?%)
+ keep y? = x? unchanged
- Qo)

+ propose y? ~ N(x?,0.3%)
+ keep y! = x! unchanged
* Note: Q1(y|x) and Q2(y|x) don’t give irreducible Markov chains
separately, together they do.

Toy example: Gibbs for a bivariate normal

1 0.7}

* Target distribution, x ~ N(0,X), X = [07 1

* Full conditional distributions
- x1|x2 ~ N(0.7x2,0.51)
- x2|xt ~ N(0.7x%,0.51)
* Note:

— contains no tuning parameter
— must be able to find (and sample from) the full conditionals
— waist of time to update the same coordinate two times in a row

Toy example: Gibbs for a bivariate normal

1 0.7}

* Target distribution, x ~ N(0,X), X = [07 1

* Full conditional distributions
- x1|x2 ~ N(0.7x2,0.51)
- x?|x! ~ N(0.7x',0.51)
* Note:

— contains no tuning parameter
— must be able to find (and sample from) the full conditionals
— waist of time to update the same coordinate two times in a row

Convergence diagnostics
* When has the Markov chain converged?
* Several theoretical results exist: for a given ¢ > 0
[1F(:) = Pa(9)]| < e forall n < N(e)
where N(¢) can be computed.
— bounds too weak to be of any practical value
* Standard start to evaluate convergence:

— look at trace plots (ex. Ising model)

0-1 neighbours

30000
30000

10000
10000

[
0

One long chain or many shorter chains?

* With fixed cpu-time available, should we

— use all time in one long Markov chain run, or
— run several shorter Markov chain runs?

* One long Markov chain run

- 4

(=3 Toooo o000 006006 o000 coo

* Several shorter Markov chain runs

T mW a0 e o o T mW a0 e o o T mW a0 e o o T mW a0 e o o

One long chain or many shorter chains?

* With fixed cpu-time available, should we

— use all time in one long Markov chain run, or
— run several shorter Markov chain runs?

* One long Markov chain run

(=3 To000 600 SO0000 Fo0o00 sSo00600

— only one burn-in period to discard
— more likely that you really have converged

* Several shorter Markov chain runs

L T AW W0 @ T T W W0 e T T W W0 @ T

— easier to evaluate the convergence
— easier to estimate estimation variance (the chains are
independent)

