Rejection sampling

- Goal: Want to sample $x \sim f(x)$ (density)
- Assume: We know how to sample $x \sim g(x)$ and we know a c so that

$$rac{f(x)}{g(x)} \leq c$$
 for all x where $f(x) > 0$

Rejection sampling

- Goal: Want to sample $x \sim f(x)$ (density)
- Assume: We know how to sample $x \sim g(x)$ and we know a c so that

$$rac{f(x)}{g(x)} \leq c$$
 for all x where $f(x) > 0$

Rejection sampling algorithm:

```
finished = 0

while (finished = 0) do

x \sim g(x)

\alpha = \frac{1}{c} \cdot \frac{f(x)}{g(x)}

u \sim U[0, 1]

if (u \le \alpha) then

finished = 1

end if

end while
```

Rejection sampling

- Goal: Want to sample $x \sim f(x)$ (density)
- Assume: We know how to sample $x \sim g(x)$ and we know a c so that

$$rac{f(x)}{g(x)} \leq c ext{ for all } x ext{ where } f(x) > 0$$

• Rejection sampling algorithm:

```
finished = 0

while (finished = 0) do

x \sim g(x)

\alpha = \frac{1}{c} \cdot \frac{f(x)}{g(x)}

u \sim U[0, 1]

if (u \le \alpha) then

finished = 1

end if

end while
```

• Efficiency: #tries ~ Geom $\left(p = \frac{1}{c}\right)$ so E[#tries $] = \frac{1}{p} = c$

The art of rejection sampling is to find a g(x) that is similar to f(x) and which we know how to sample from.

Adaptive rejection sampling idea

RS algorithm:

finished = 0 while (finished = 0) do $x \sim g(x)$ $\alpha = \frac{1}{c} \cdot \frac{f(x)}{g(x)}$ $u \sim U[0, 1]$ if $(u \le \alpha)$ then finished = 1 end if end while

Modified RS algorithm: finished = 0 i = 0while (finished = 0) do i = i + 1 $x \sim g_i(x)$ $\alpha = \frac{1}{c_i} \cdot \frac{f(x)}{g_i(x)}$ $u \sim U[0, 1]$ if $(u \le \alpha)$ then finished = 1 end if

end while

Adaptive rejection sampling idea

RS algorithm: finished = 0while (finished = 0) do $x \sim g(x)$ $\alpha = \frac{1}{c} \cdot \frac{f(x)}{\sigma(x)}$ $u \sim U[0, 1]$ if $(u < \alpha)$ then finished = 1end if end while

Modified RS algorithm: finished = 0i = 0while (finished = 0) do i = i + 1 $x \sim g_i(x)$ $\alpha = \frac{1}{c_i} \cdot \frac{f(x)}{\sigma_i(x)}$ $u \sim U[0, 1]$ if $(u \leq \alpha)$ then finished = 1end if end while

Question: How should we choose g_i(x) so that g_i(x) is becoming more similar to f(x) when i increases?