
Rejection sampling
I Goal: Want to sample x ∼ f (x) (density)
I Assume: We know how to sample x ∼ g(x) and we know a c so that

f (x)

g(x)
≤ c for all x where f (x) > 0

I Rejection sampling algorithm:
finished = 0
while (finished = 0) do

x ∼ g(x)

α = 1
c · f (x)

g(x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while
I Efficiency: #tries ∼ Geom

(
p = 1

c

)
so E [#tries] = 1

p = c

I The art of rejection sampling is to find a g(x) that is similar to f (x)
and which we know how to sample from.



Rejection sampling
I Goal: Want to sample x ∼ f (x) (density)
I Assume: We know how to sample x ∼ g(x) and we know a c so that

f (x)

g(x)
≤ c for all x where f (x) > 0

I Rejection sampling algorithm:
finished = 0
while (finished = 0) do

x ∼ g(x)

α = 1
c · f (x)

g(x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while

I Efficiency: #tries ∼ Geom
(
p = 1

c

)
so E [#tries] = 1

p = c

I The art of rejection sampling is to find a g(x) that is similar to f (x)
and which we know how to sample from.



Rejection sampling
I Goal: Want to sample x ∼ f (x) (density)
I Assume: We know how to sample x ∼ g(x) and we know a c so that

f (x)

g(x)
≤ c for all x where f (x) > 0

I Rejection sampling algorithm:
finished = 0
while (finished = 0) do

x ∼ g(x)

α = 1
c · f (x)

g(x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while
I Efficiency: #tries ∼ Geom

(
p = 1

c

)
so E [#tries] = 1

p = c

I The art of rejection sampling is to find a g(x) that is similar to f (x)
and which we know how to sample from.



Adaptive rejection sampling idea

RS algorithm:
finished = 0
while (finished = 0) do

x ∼ g(x)

α = 1
c · f (x)

g(x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while

Modified RS algorithm:
finished = 0
i = 0
while (finished = 0) do

i = i + 1
x ∼ gi (x)

α = 1
ci
· f (x)
gi (x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while

I Question: How should we choose gi (x) so that gi (x) is becoming
more similar to f (x) when i increases?



Adaptive rejection sampling idea

RS algorithm:
finished = 0
while (finished = 0) do

x ∼ g(x)

α = 1
c · f (x)

g(x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while

Modified RS algorithm:
finished = 0
i = 0
while (finished = 0) do

i = i + 1
x ∼ gi (x)

α = 1
ci
· f (x)
gi (x)

u ∼ U[0, 1]
if (u ≤ α) then

finished = 1
end if

end while

I Question: How should we choose gi (x) so that gi (x) is becoming
more similar to f (x) when i increases?


