Markov chain Monte Carlo idea

* Situation:

— Given a target distribution (x)
— Want to estimate

p=Erlg(X)] = [ g(x)f(x)dx
— Want to generate samples from f(x)
* ldea:

— construct a Markov chain {X;}2°; so that

lim P(X; = x) = f(x)

1—00

— simulate the Markov chain for many iterations
for m large enough X, Xm11, . .. are (essentially) from f(x)

estimate u by
“on
i=m



Metropolis—Hastings algorithm

* We have discussed:

— how to construct the Markov chain

different proposal strategies

— how to combine proposal strategies

— how to evaluate the convergence/burn-in based on simulation
output

* Remains to discuss:

— how to evaluate the convergence/burn-in based on simulation
output

— how to compare algorithms

variance estimation from simulation output

typical MCMC problems



Convergence diagnostics

* Formal convergence diagnostics exists

— some based on a single Markov chain run
— some based on several Markov chain runs

* To see when a chain has convergence, we need to simulate much
longer than to convergence

* If some properties of the target distribution is known: use it to
check convergence!

* All convergence diagnostics can (and do) fail

— has this bivariate chain converged?
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Convergence diagnostics

* Has it converged now?
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Convergence diagnostics

* Has it converged now?
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* And now?
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Convergence diagnostics

* And now?
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Convergence diagnostics

* And now?
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* This is how the distribution looks like

— used random walk proposals y|x ~ N(0,0.3% - /)



Compare algorithms

* Assume: have two (or more) Markov chains with limiting
distribution f(x)

* Which one should we prefer?

* Estimate and compare autocorrelation functions

— ignore burn-in periods!
— assume stationary time series
— must again consider scalar functions g(x)



Compare algorithms: Toy example
* Random walk proposal example, choice of tuning parameter

o = 0.05, acceptance rate = 0.69
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Typical MCMC problems

* Note: If you knows the solution, it is easy to solve a problem!

* Properties of f(x) that may make MCMC difficult

— strong dependency between variables
— several modes
— different scales on different variables

* In toy examples: this is not a problem
— we know how f(x) looks like
* In real problems: this may be difficult

— we have a formula for f(x)
— we don't know how f(x) looks like

» Need to iterate



Strong dependencies

* Gibbs sampling doesn’t work




Strong dependencies

* Blocking may solve the problem

- x=x(x1,x%,...,x")
— x* and x? are highly correlated
— propose joint updates for x! and x?
% (12 1 2(—{1,2}
block Gibbs: (y*,y*)|x ~ f(y*, y*|x )
* random walk Metropolis—Hastings:

oo ([ 22 ] )

* in toy example: target correlation 0.999, proposal correlation
0.90



Strong dependencies

* Reparameterisation may solve the problem

- x= (x4, %% x™)
— x* and x2 are highly correlated
— define o )
X X
[ ]=al% ]
and

X'=x" fori=3,...,n

— with suitable choice of matrix A, the correlation between %!

and %2 in f(%) will be much lower



Multimodal target distribution

* Random walk proposals doesn't work
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* To come from one mode to another: needs to visit low probability
area — happens very seldomly



Multimodal target distributions

* If you know (approximately) the modes

— can combine
* independent proposals

1 1
yix ~ Sgi(y) + 5&2(y)

* random walk proposals
ylx ~ N(x, R)

— randomly or systematically
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Multimodal target distributions

* Simulated tempering
— let f(x) = cexp{—-U(x)}
— introduce an extra variable, k € {1,2,..., K}
— define K temperatures: 1 =Ty < Th <...< Tk
— define K distributions and constants cy, ..., ck

fi(x) = c exp {—TikU(x)}

— define joint distribution: f(x, k) o fi(x)
— simulate from f(x, k) with Metropolis—Hastings
— keep simulated x's that corresponds to k =1

* Note: the T;'s and ¢,'s must be chosen carefully



Multimodal target distributions

* Other solutions has been proposed
- MCMCMC: Metropolis coupled MCMC

* X *

*

simulate one xx for each temperate Ty

simulate each xix by standard Metropolis-Hastings
occasionally propose to swap “neighbour” states xx and xi+1
accept/reject according to MH acceptance probability

— mode-jumping

*

in a Metropolis—Hastings algorithm: use local optimisation to
locate a local maximum, propose a new value from that mode



Different scales

* With Gibbs: different scales are not a problem

— Gibbs finds the appropriate scale

* If Gibbs not possible: have to tune to find appropriate scales

equal scale tuned scales
in proposals in proposals

* Tempting to tune the proposal scales automatically based on the
history of the Markov chain

— carefulll it is no longer Markov
— more difficult to get the required limiting distribution
— some adaptive MCMC algorithms exist






