Markov chain Monte Carlo idea

* Situation:
- Given a target distribution $f(x)$
- Want to estimate

$$
\mu=\mathrm{E}_{f}[g(X)]=\int g(x) f(x) \mathrm{d} x
$$

- Want to generate samples from $f(x)$
\star Idea:
- construct a Markov chain $\left\{X_{i}\right\}_{i=1}^{\infty}$ so that

$$
\lim _{i \rightarrow \infty} P\left(X_{i}=x\right)=f(x)
$$

- simulate the Markov chain for many iterations
- for m large enough x_{m}, x_{m+1}, \ldots are (essentially) from $f(x)$
- estimate μ by

$$
\widetilde{\mu}=\frac{1}{n} \sum_{i=m}^{m+n-1} g\left(x_{i}\right)
$$

Metropolis-Hastings algorithm

* We have discussed:
- how to construct the Markov chain
- different proposal strategies
- how to combine proposal strategies
- how to evaluate the convergence/burn-in based on simulation output
* Remains to discuss:
- how to evaluate the convergence/burn-in based on simulation output
- how to compare algorithms
- variance estimation from simulation output
- typical MCMC problems

Convergence diagnostics

* Formal convergence diagnostics exists
- some based on a single Markov chain run
- some based on several Markov chain runs
* To see when a chain has convergence, we need to simulate much longer than to convergence
* If some properties of the target distribution is known: use it to check convergence!
* All convergence diagnostics can (and do) fail
- has this bivariate chain converged?

Convergence diagnostics

\star Has it converged now?

Convergence diagnostics

\star Has it converged now?

\star And now?

Convergence diagnostics

\star And now?

Convergence diagnostics

\star And now?

* This is how the distribution looks like

- used random walk proposals $y \mid x \sim N_{2}\left(0,0.3^{2} \cdot I\right)$

Compare algorithms

* Assume: have two (or more) Markov chains with limiting distribution $f(x)$
* Which one should we prefer?
* Estimate and compare autocorrelation functions
- ignore burn-in periods!
- assume stationary time series
- must again consider scalar functions $g(x)$

Compare algorithms: Toy example

* Random walk proposal example, choice of tuning parameter

$$
\sigma=0.05, \text { acceptance rate }=0.69
$$

$\sigma=0.20$, acceptance rate $=0.11$

$$
\sigma=0.30, \text { acceptance rate }=0.018
$$

Typical MCMC problems

* Note: If you knows the solution, it is easy to solve a problem!
* Properties of $f(x)$ that may make MCMC difficult
- strong dependency between variables
- several modes
- different scales on different variables

* In toy examples: this is not a problem
- we know how $f(x)$ looks like
* In real problems: this may be difficult
- we have a formula for $f(x)$
- we don't know how $f(x)$ looks like
- Need to iterate

Strong dependencies

* Gibbs sampling doesn't work

* Changing one variable at a time doesn't work

Strong dependencies

* Blocking may solve the problem
$-x=x\left(x^{1}, x^{2}, \ldots, x^{n}\right)$
- x^{1} and x^{2} are highly correlated
- propose joint updates for x^{1} and x^{2}
* block Gibbs: $\left(y^{1}, y^{2}\right) \mid x \sim f\left(y^{1}, y^{2} \mid x^{-\{1,2\}}\right)$
* random walk Metropolis-Hastings:

$$
\left(y^{1}, y^{2}\right) \left\lvert\, x \sim \mathrm{~N}_{2}\left(\left[\begin{array}{c}
x^{1} \\
x^{2}
\end{array}\right], R\right)\right.
$$

* in toy example: target correlation 0.999, proposal correlation 0.90

Strong dependencies

* Reparameterisation may solve the problem
- $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$
- x^{1} and x^{2} are highly correlated
- define

$$
\left[\begin{array}{c}
\tilde{x}^{1} \\
\tilde{x}^{2}
\end{array}\right]=A\left[\begin{array}{l}
x^{1} \\
x^{2}
\end{array}\right]
$$

and

$$
\tilde{x}^{i}=x^{i} \text { for } i=3, \ldots, n
$$

- with suitable choice of matrix A, the correlation between \tilde{x}^{1} and \tilde{x}^{2} in $f(\tilde{x})$ will be much lower

Multimodal target distribution

^ Random walk proposals doesn't work

* To come from one mode to another: needs to visit low probability area - happens very seldomly

Multimodal target distributions

* If you know (approximately) the modes
- can combine
* independent proposals

$$
y \left\lvert\, x \sim \frac{1}{2} g_{1}(y)+\frac{1}{2} g_{2}(y)\right.
$$

* random walk proposals

$$
y \mid x \sim \mathrm{~N}(x, R)
$$

- randomly or systematically

Multimodal target distributions

\star Simulated tempering

- let $f(x)=c \exp \{-U(x)\}$
- introduce an extra variable, $k \in\{1,2, \ldots, K\}$
- define K temperatures: $1=T_{1}<T_{2}<\ldots<T_{K}$
- define K distributions and constants c_{1}, \ldots, c_{K}

$$
f_{k}(x)=c_{k} \exp \left\{-\frac{1}{T_{k}} U(x)\right\}
$$

* note: $f_{0}(x)=f(x)$

- define joint distribution: $f(x, k) \propto f_{k}(x)$
- simulate from $f(x, k)$ with Metropolis-Hastings
- keep simulated x 's that corresponds to $k=1$
* Note: the T_{k} 's and c_{k} 's must be chosen carefully

Multimodal target distributions

* Other solutions has been proposed
- MCMCMC: Metropolis coupled MCMC
* simulate one x_{k} for each temperate T_{k}
* simulate each x_{k} by standard Metropolis-Hastings
* occasionally propose to swap "neighbour" states x_{k} and x_{k+1}
* accept/reject according to MH acceptance probability
- mode-jumping
* in a Metropolis-Hastings algorithm: use local optimisation to locate a local maximum, propose a new value from that mode

Different scales

* With Gibbs: different scales are not a problem
- Gibbs finds the appropriate scale
* If Gibbs not possible: have to tune to find appropriate scales

* Tempting to tune the proposal scales automatically based on the history of the Markov chain
- careful!! it is no longer Markov
- more difficult to get the required limiting distribution
- some adaptive MCMC algorithms exist

