
Markov chain Monte Carlo idea

⋆ Situation:

– Given a target distribution f (x)
– Want to estimate

µ = Ef [g(X )] =

∫
g(x)f (x)dx

– Want to generate samples from f (x)

⋆ Idea:

– construct a Markov chain {Xi}
∞

i=1
so that

lim
i→∞

P(Xi = x) = f (x)

– simulate the Markov chain for many iterations
– for m large enough xm, xm+1, . . . are (essentially) from f (x)
– estimate µ by

µ̃ =
1

n

m+n−1∑

i=m

g(xi )



Metropolis–Hastings algorithm

⋆ We have discussed:

– how to construct the Markov chain
– different proposal strategies
– how to combine proposal strategies
– how to evaluate the convergence/burn-in based on simulation

output

⋆ Remains to discuss:

– how to evaluate the convergence/burn-in based on simulation
output

– how to compare algorithms
– variance estimation from simulation output
– typical MCMC problems



Convergence diagnostics

⋆ Formal convergence diagnostics exists

– some based on a single Markov chain run
– some based on several Markov chain runs

⋆ To see when a chain has convergence, we need to simulate much
longer than to convergence

⋆ If some properties of the target distribution is known: use it to
check convergence!

⋆ All convergence diagnostics can (and do) fail

– has this bivariate chain converged?
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Convergence diagnostics

⋆ Has it converged now?
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Convergence diagnostics

⋆ Has it converged now?
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⋆ And now?
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Convergence diagnostics

⋆ And now?
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Convergence diagnostics

⋆ And now?
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⋆ This is how the distribution looks like
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– used random walk proposals y |x ∼ N2(0, 0.3
2 · I )



Compare algorithms

⋆ Assume: have two (or more) Markov chains with limiting
distribution f (x)

⋆ Which one should we prefer?

⋆ Estimate and compare autocorrelation functions

– ignore burn-in periods!
– assume stationary time series
– must again consider scalar functions g(x)



Compare algorithms: Toy example

⋆ Random walk proposal example, choice of tuning parameter

σ = 0.05, acceptance rate = 0.69
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σ = 0.20, acceptance rate = 0.11
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σ = 0.30, acceptance rate = 0.018
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Typical MCMC problems

⋆ Note: If you knows the solution, it is easy to solve a problem!

⋆ Properties of f (x) that may make MCMC difficult

– strong dependency between variables
– several modes
– different scales on different variables
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⋆ In toy examples: this is not a problem

– we know how f (x) looks like

⋆ In real problems: this may be difficult

– we have a formula for f (x)
– we don’t know how f (x) looks like

◮ Need to iterate



Strong dependencies

⋆ Gibbs sampling doesn’t work
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⋆ Changing one variable at a time doesn’t work
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Strong dependencies

⋆ Blocking may solve the problem

– x = x(x1, x2, . . . , xn)
– x1 and x2 are highly correlated
– propose joint updates for x1 and x2

* block Gibbs: (y1
, y2)|x ∼ f (y1

, y2|x−{1,2})
* random walk Metropolis–Hastings:

(y1
, y

2)|x ∼ N2

([

x1

x2

]

,R

)
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* in toy example: target correlation 0.999, proposal correlation
0.90



Strong dependencies

⋆ Reparameterisation may solve the problem

– x = (x1, x2, . . . , xn)
– x1 and x2 are highly correlated
– define [

x̃1

x̃2

]
= A

[
x1

x2

]

and
x̃ i = x i for i = 3, . . . , n

– with suitable choice of matrix A, the correlation between x̃1

and x̃2 in f (x̃) will be much lower



Multimodal target distribution

⋆ Random walk proposals doesn’t work
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⋆ To come from one mode to another: needs to visit low probability
area — happens very seldomly



Multimodal target distributions

⋆ If you know (approximately) the modes

– can combine
* independent proposals

y |x ∼
1

2
g1(y) +

1

2
g2(y)

* random walk proposals

y |x ∼ N(x ,R)

– randomly or systematically

−2 −1 0 1 2 3 4

−
4

−
3

−
2

−
1

0
1

2



Multimodal target distributions

⋆ Simulated tempering

– let f (x) = c exp {−U(x)}
– introduce an extra variable, k ∈ {1, 2, . . . ,K}
– define K temperatures: 1 = T1 < T2 < . . . < TK

– define K distributions and constants c1, . . . , cK

fk(x) = ck exp

{
−

1

Tk

U(x)

}

* note: f0(x) = f (x)

T = 1 T = 5 T = 10
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– define joint distribution: f (x , k) ∝ fk(x)
– simulate from f (x , k) with Metropolis–Hastings
– keep simulated x ’s that corresponds to k = 1

⋆ Note: the Tk ’s and ck ’s must be chosen carefully



Multimodal target distributions

⋆ Other solutions has been proposed

– MCMCMC: Metropolis coupled MCMC

* simulate one xk for each temperate Tk

* simulate each xk by standard Metropolis-Hastings
* occasionally propose to swap “neighbour” states xk and xk+1

* accept/reject according to MH acceptance probability

– mode-jumping

* in a Metropolis–Hastings algorithm: use local optimisation to
locate a local maximum, propose a new value from that mode



Different scales

⋆ With Gibbs: different scales are not a problem

– Gibbs finds the appropriate scale

⋆ If Gibbs not possible: have to tune to find appropriate scales

equal scale tuned scales
in proposals in proposals
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⋆ Tempting to tune the proposal scales automatically based on the
history of the Markov chain

– careful!! it is no longer Markov
– more difficult to get the required limiting distribution
– some adaptive MCMC algorithms exist




