Markov chain Monte Carlo idea

 \star Situation:

- Given a target distribution f(x)
- Want to estimate

$$\mu = \mathsf{E}_f[g(X)] = \int g(x)f(x)\mathsf{d} x$$

- Want to generate samples from f(x)

★ Idea:

- construct a Markov chain $\{X_i\}_{i=1}^{\infty}$ so that

$$\lim_{i\to\infty}P(X_i=x)=f(x)$$

- simulate the Markov chain for many iterations
- for *m* large enough x_m, x_{m+1}, \ldots are (essentially) from f(x)
- estimate μ by

$$\widetilde{\mu} = \frac{1}{n} \sum_{i=m}^{m+n-1} g(x_i)$$

Metropolis-Hastings algorithm

- \star We have discussed:
 - how to construct the Markov chain
 - different proposal strategies
 - how to combine proposal strategies
 - how to evaluate the convergence/burn-in based on simulation output
- ★ Remains to discuss:
 - how to evaluate the convergence/burn-in based on simulation output
 - how to compare algorithms
 - variance estimation from simulation output
 - typical MCMC problems

- \star Formal convergence diagnostics exists
 - some based on a single Markov chain run
 - some based on several Markov chain runs
- $\star\,$ To see when a chain has convergence, we need to simulate much longer than to convergence
- * If some properties of the target distribution is known: use it to check convergence!
- \star All convergence diagnostics can (and do) fail
 - has this bivariate chain converged?

 $\star\,$ Has it converged now?

 $\star\,$ Has it converged now?

* And now?

 \star And now?

★ And now?

 \star This is how the distribution looks like

– used random walk proposals $y|x \sim \mathsf{N}_2(0, 0.3^2 \cdot I)$

Compare algorithms

- * Assume: have two (or more) Markov chains with limiting distribution f(x)
- * Which one should we prefer?
- * Estimate and compare autocorrelation functions
 - ignore burn-in periods!
 - assume stationary time series
 - must again consider scalar functions g(x)

Compare algorithms: Toy example

* Random walk proposal example, choice of tuning parameter

Typical MCMC problems

- \star Note: If you knows the solution, it is easy to solve a problem!
- * Properties of f(x) that may make MCMC difficult
 - strong dependency between variables
 - several modes
 - different scales on different variables

- \star In toy examples: this is not a problem
 - we know how f(x) looks like
- ★ In real problems: this may be difficult
 - we have a formula for f(x)
 - we don't know how f(x) looks like
- Need to iterate

Strong dependencies

 $\star\,$ Gibbs sampling doesn't work

 $\star\,$ Changing one variable at a time doesn't work

Strong dependencies

* Blocking may solve the problem

$$-x = x(x^1, x^2, \dots, x^n)$$

- $-x^1$ and x^2 are highly correlated
- propose joint updates for x^1 and x^2
 - * block Gibbs: $(y^1, y^2)|x \sim f(y^1, y^2|x^{-\{1,2\}})$
 - * random walk Metropolis-Hastings:

$$(y^1, y^2)|x \sim \mathsf{N}_2\left(\left[\begin{array}{c}x^1\\x^2\end{array}\right], R\right)$$

* in toy example: target correlation 0.999, proposal correlation 0.90

Strong dependencies

 $\star\,$ Reparameterisation may solve the problem

$$\begin{array}{l} - x = (x^{1}, x^{2}, \dots, x^{n}) \\ - x^{1} \text{ and } x^{2} \text{ are highly correlated} \\ - \text{ define} \\ \begin{bmatrix} \tilde{x}^{1} \\ \tilde{x}^{2} \end{bmatrix} = A \begin{bmatrix} x^{1} \\ x^{2} \end{bmatrix} \end{array}$$

and

$$\tilde{x}^i = x^i$$
 for $i = 3, \ldots, n$

with suitable choice of matrix A, the correlation between x¹
 and x² in f(x) will be much lower

Multimodal target distribution

* Random walk proposals doesn't work

★ To come from one mode to another: needs to visit low probability area — happens very seldomly

Multimodal target distributions

- $\star\,$ If you know (approximately) the modes
 - can combine
 - * independent proposals

$$y|x\sim rac{1}{2}g_1(y)+rac{1}{2}g_2(y)$$

* random walk proposals

$$y|x \sim N(x, R)$$

- randomly or systematically

Multimodal target distributions

* Simulated tempering

- let
$$f(x) = c \exp \{-U(x)\}$$

- introduce an extra variable, $k \in \{1, 2, \dots, K\}$
- define K temperatures: $1 = T_1 < T_2 < \ldots < T_K$
- define K distributions and constants c_1, \ldots, c_K

$$f_k(x) = c_k \exp\left\{-\frac{1}{T_k}U(x)
ight\}$$

* note:
$$f_0(x) = f(x)$$

- define joint distribution: $f(x, k) \propto f_k(x)$
- simulate from f(x, k) with Metropolis-Hastings
- keep simulated x's that corresponds to k = 1
- \star Note: the T_k 's and c_k 's must be chosen carefully

Multimodal target distributions

- $\star\,$ Other solutions has been proposed
 - MCMCMC: Metropolis coupled MCMC
 - * simulate one x_k for each temperate T_k
 - * simulate each x_k by standard Metropolis-Hastings
 - * occasionally propose to swap "neighbour" states x_k and x_{k+1}
 - * accept/reject according to MH acceptance probability
 - mode-jumping
 - * in a Metropolis–Hastings algorithm: use local optimisation to locate a local maximum, propose a new value from that mode

Different scales

- \star With Gibbs: different scales are not a problem
 - Gibbs finds the appropriate scale
- $\star\,$ If Gibbs not possible: have to tune to find appropriate scales

- ★ Tempting to tune the proposal scales automatically based on the history of the Markov chain
 - careful!! it is no longer Markov
 - more difficult to get the required limiting distribution
 - some adaptive MCMC algorithms exist