- Example (Thomas Bayes, 1763):
 - ▶ A billiard ball is dropped on the interval [0,1]
 - it stops at p
 - assume p is uniformly distributed on [0, 1]
 - Drop the billiard ball n new times
 - record $y_i = 1$ if ball stops to the left of p
 - $y_i = 0$ otherwise

• set
$$x = \sum_{i=1}^{n} y_i$$

Example (Thomas Bayes, 1763):

- ▶ A billiard ball is dropped on the interval [0,1]
 - it stops at p
 - assume p is uniformly distributed on [0, 1]
- Drop the billiard ball n new times
 - record $y_i = 1$ if ball stops to the left of p
 - $y_i = 0$ otherwise

• set
$$x = \sum_{i=1}^{n} y_i$$

• thus
$$x|p \sim bin(n, p)$$
,

$$\mathsf{P}(X=x|p)=\left(\begin{array}{c}n\\x\end{array}\right)p^{x}(1-p)^{n-x}, x=0,1,\ldots,n$$

Example (Thomas Bayes, 1763):

- ▶ A billiard ball is dropped on the interval [0,1]
 - it stops at p
 - assume p is uniformly distributed on [0, 1]
- Drop the billiard ball n new times
 - record $y_i = 1$ if ball stops to the left of p
 - $y_i = 0$ otherwise

• set
$$x = \sum_{i=1}^{n} y_i$$

• thus $x|p \sim bin(n, p)$,

$$\mathsf{P}(X=x|p)=\left(egin{array}{c}n\\x\end{array}
ight)p^x(1-p)^{n-x}$$
 , $x=0,1,\ldots,n$

- want to estimate p from observed x
- standard estimator for p in binomial distr.:

$$\widehat{p} = \frac{X}{n}$$

Example (Thomas Bayes, 1763):

- ▶ A billiard ball is dropped on the interval [0,1]
 - it stops at p
 - assume p is uniformly distributed on [0, 1]
- Drop the billiard ball n new times
 - record $y_i = 1$ if ball stops to the left of p
 - ▶ y_i = 0 otherwise

• set
$$x = \sum_{i=1}^{n} y_i$$

• thus $x|p \sim bin(n, p)$,

$$\mathsf{P}(X=x|p)=\left(\begin{array}{c}n\\x\end{array}\right)p^{x}(1-p)^{n-x}, x=0,1,\ldots,n$$

- want to estimate p from observed x
- standard estimator for p in binomial distr.:

$$\widehat{p} = \frac{X}{n}$$

but we know p ~ Uniform[0, 1],

$$f(p) = \left\{ egin{array}{cc} 1 & ext{ for } x \in [0,1], \\ 0 & ext{ otherwise} \end{array}
ight.$$

Recall

$$f(p) = \begin{cases} 1 & \text{for } x \in [0, 1], \\ 0 & \text{otherwise} \end{cases}$$
$$P(X = x | p) = {n \choose x} p^{x} (1 - p)^{n - x} , x = 0, 1, \dots, n$$

Recall

$$f(p) = \begin{cases} 1 & \text{for } x \in [0, 1], \\ 0 & \text{otherwise} \end{cases}$$
$$\mathsf{P}(X = x | p) = \binom{n}{x} p^{x} (1 - p)^{n - x} , x = 0, 1, \dots, n$$

Thus

$$f(p|x) = \frac{f(p,x)}{P(X=x)} = \frac{f(p)P(X=x|p)}{\int_0^1 P(X=x|\tilde{p})f(\tilde{p})d\tilde{p}}$$
$$= \frac{p^x(1-p)^{n-x}}{\int_0^1 \tilde{p}^x(1-\tilde{p})^{n-x}d\tilde{p}} = \frac{p^x(1-p)^{n-x}}{B(x+1,n-x+1)}$$

Recall

$$f(p) = \begin{cases} 1 & \text{for } x \in [0, 1], \\ 0 & \text{otherwise} \end{cases}$$
$$P(X = x | p) = {n \choose x} p^{x} (1 - p)^{n - x}, x = 0, 1, \dots, n$$

Thus

$$f(p|x) = \frac{f(p,x)}{\mathsf{P}(X=x)} = \frac{f(p)\mathsf{P}(X=x|p)}{\int_0^1 \mathsf{P}(X=x|\tilde{p})f(\tilde{p})\mathsf{d}\tilde{p}}$$

$$= \frac{p^{x}(1-p)^{n-x}}{\int_{0}^{1} \tilde{p}^{x}(1-\tilde{p})^{n-x} \mathrm{d}\tilde{p}} = \frac{p^{x}(1-p)^{n-x}}{B(x+1,n-x+1)}$$

► This is a beta-distribution, $\mathcal{B}(x+1, n-x+1)$, with $E[p|x] = \frac{x+1}{n+2}$

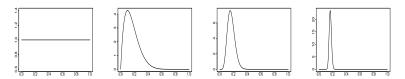
A natural estimator for p

$$\widehat{p} = \frac{X+1}{n+2}$$

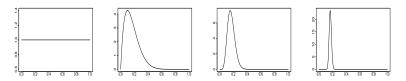
- In previous example: p is a stochastic variable because it is the result of a stochastic experiment
- Bayesian modelling: consider parameters as stochastic variables also when their value is not the result of a stochastic experiment

- In previous example: p is a stochastic variable because it is the result of a stochastic experiment
- Bayesian modelling: consider parameters as stochastic variables also when their value is not the result of a stochastic experiment
- Another (toy) example:
 - I have a dice, let p: probability of getting a six
 - Consider p as a stochastic variable, you don't know it is a proper dice
 - what distribution would you assign to p?

- In previous example: p is a stochastic variable because it is the result of a stochastic experiment
- Bayesian modelling: consider parameters as stochastic variables also when their value is not the result of a stochastic experiment
- Another (toy) example:
 - I have a dice, let p: probability of getting a six
 - Consider p as a stochastic variable, you don't know it is a proper dice
 - what distribution would you assign to p?



- In previous example: p is a stochastic variable because it is the result of a stochastic experiment
- Bayesian modelling: consider parameters as stochastic variables also when their value is not the result of a stochastic experiment
- Another (toy) example:
 - I have a dice, let p: probability of getting a six
 - Consider p as a stochastic variable, you don't know it is a proper dice
 - what distribution would you assign to p?



we roll the dice n times, let x: number of sixes

$$\mathsf{P}(X=x|p)=\left(egin{array}{c}n\\x\end{array}
ight)p^x(1-p)^{n-x}$$
 , for $x=0,1,\ldots,n$

► Recall $P(X = x | p) = {n \choose x} p^{x} (1 - p)^{n-x} , \text{ for } x = 0, 1, ..., n$ ► Assume $p \sim \mathcal{B}(\alpha, \beta)$: $f(p) = \frac{1}{B(\alpha, \beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$

This gives:

$$f(p|x) = \frac{f(p,x)}{P(X=x)}$$

► Recall $P(X = x | p) = {n \choose x} p^{x} (1 - p)^{n-x} , \text{ for } x = 0, 1, ..., n$ ► Assume $p \sim \mathcal{B}(\alpha, \beta)$:

$$f(p) = \frac{1}{\mathsf{B}(\alpha,\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

This gives:

$$f(p|x) = \frac{f(p,x)}{\mathsf{P}(X=x)} \propto f(p)\mathsf{P}(X=x|p)$$

► Recall $P(X = x | p) = {n \choose x} p^{x} (1 - p)^{n-x} , \text{ for } x = 0, 1, ..., n$ ► Assume $p \sim \mathcal{B}(\alpha, \beta)$:

$$f(p) = \frac{1}{\mathsf{B}(\alpha,\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

This gives:

$$f(p|x) = \frac{f(p,x)}{\mathsf{P}(X=x)} \propto f(p)\mathsf{P}(X=x|p)$$
$$\propto p^{\alpha-1}(1-p)^{\beta-1}p^{x}(1-p)^{n-x}$$

► Recall $P(X = x | p) = {n \choose x} p^{x} (1 - p)^{n-x} , \text{ for } x = 0, 1, ..., n$ ► Assume $p \sim \mathcal{B}(\alpha, \beta)$:

$$f(p) = \frac{1}{\mathsf{B}(\alpha,\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

This gives: $f(p|x) = \frac{f(p,x)}{P(X=x)} \propto f(p)P(X=x|p)$ $\propto p^{\alpha-1}(1-p)^{\beta-1}p^{x}(1-p)^{n-x}$ $= p^{\alpha+x-1}(1-p)^{\beta+n-x-1}$

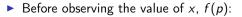
Recall $\mathsf{P}(X=x|p)=\left(egin{array}{c}n\\x\end{array}
ight)p^x(1-p)^{n-x}$, for $x=0,1,\ldots,n$ • Assume $p \sim \mathcal{B}(\alpha, \beta)$: $f(p) = \frac{1}{\mathsf{B}(\alpha,\beta)} p^{\alpha-1} (1-p)^{\beta-1}$ This gives: $f(p|x) = \frac{f(p,x)}{P(X=x)} \propto f(p)P(X=x|p)$ $\propto p^{\alpha-1}(1-p)^{\beta-1}p^{x}(1-p)^{n-x}$ $= p^{\alpha+x-1}(1-p)^{\beta+n-x-1}$

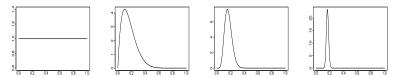
► Thus $p|x \sim \mathcal{B}(\alpha + x, \beta + n - x)$, so $\mathsf{E}[p|x] = \frac{\alpha + x}{\alpha + \beta + n}$

Recall $\mathsf{P}(X=x|p)=\left(egin{array}{c}n\\x\end{array}
ight)p^{x}(1-p)^{n-x}$, for $x=0,1,\ldots,n$ • Assume $p \sim \mathcal{B}(\alpha, \beta)$: $f(p) = \frac{1}{\mathsf{B}(\alpha,\beta)} p^{\alpha-1} (1-p)^{\beta-1}$ This gives: $f(p|x) = \frac{f(p,x)}{P(X=x)} \propto f(p)P(X=x|p)$ $\propto p^{\alpha-1}(1-p)^{\beta-1}p^{x}(1-p)^{n-x}$ $= p^{\alpha+x-1}(1-p)^{\beta+n-x-1}$ • Thus $p|x \sim \mathcal{B}(\alpha + x, \beta + n - x)$, so $\mathsf{E}[\boldsymbol{p}|\boldsymbol{x}] = \frac{\alpha + \boldsymbol{x}}{\alpha + \beta + \boldsymbol{r}}$

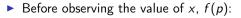
• Observed n = 100, x = 26:

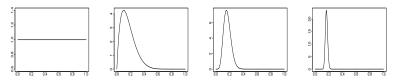
Bayesian statistics — an example



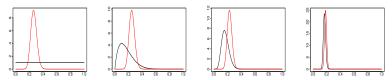


Bayesian statistics — an example

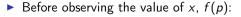


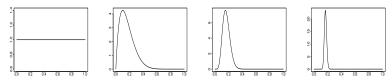


• After observing n = 100 and x = 26, f(p|x):

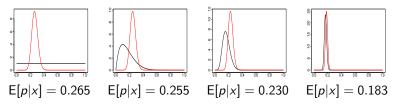


Bayesian statistics — an example





• After observing n = 100 and x = 26, f(p|x):



Interpretation of probability

Frequentist (objective): Probability of event A is

$$\mathsf{P}(A) = \lim_{n \to \infty} \frac{m}{n}$$

where m: # times A occurres in n identical and independent trials

- Bayesian (subjective): Probability of event A, P(A), is a measure of someone's degree of belief in the occurrence of A.
 - different persons may have different P(A)

Prior and posterior distribution

- Prior distribution: $f(\theta)$
 - a measure of our belief about the value of θ before we have observed the data, based on prior information/experience
- Observation and Likelihood: $f(x|\theta)$
 - observed value x, and its probability distribution given θ
- Posterior distribution: $f(\theta|x)$
 - a measure of our belief about the of value of θ after we have observed the data x, based on prior information/experience and the observed data x
 - Bayes theorem

$$f(\theta|x) = \frac{f(\theta, x)}{f(x)} \propto f(\theta, x) = f(\theta)f(x|\theta)$$

- ▶ In examples: posteriors are all available on closed form
 - this is because we have used conjugate priors
- binomial conjugate prior
 - ► x|p ~ binomial(n, p)
 - $p \sim \text{beta}(\alpha, \beta)$
 - $p|x \sim \text{beta}(\cdot, \cdot)$

- In examples: posteriors are all available on closed form
 - this is because we have used conjugate priors
- binomial conjugate prior
 - ► x|p ~ binomial(n, p)
 - $p \sim \text{beta}(\alpha, \beta)$
 - $p|x \sim \mathsf{beta}(\cdot, \cdot)$
- normal (mean) conjugate prior
 - $x_1,\ldots,x_n|\mu \sim \mathsf{N}(\mu,\sigma_0^2)$
 - $\mu \sim N(\mu_0, \tau^2)$
 - $\mu|x_1,\ldots,x_n \sim \mathsf{N}(\cdot,\cdot)$

- ▶ In examples: posteriors are all available on closed form
 - this is because we have used conjugate priors
- binomial conjugate prior
 - ► x|p ~ binomial(n, p)
 - $p \sim \text{beta}(\alpha, \beta)$
 - $p|x \sim \mathsf{beta}(\cdot, \cdot)$
- normal (mean) conjugate prior
 - $x_1,\ldots,x_n|\mu \sim \mathsf{N}(\mu,\sigma_0^2)$
 - $\mu \sim N(\mu_0, \tau^2)$
 - $\mu|x_1,\ldots,x_n \sim \mathsf{N}(\cdot,\cdot)$

normal (variance) conjugate prior

$$x_1, \dots, x_n | \sigma^2 \sim \mathsf{N}(\mu_0, \sigma^2)$$

$$\sigma^2 \sim \mathsf{IG}(\alpha, \beta)$$

$$\sigma^2 | x_1, \dots, x_n \sim \mathsf{IG}(\cdot, \cdot)$$

- In examples: posteriors are all available on closed form
 - this is because we have used conjugate priors
- binomial conjugate prior
 - ► x|p ~ binomial(n, p)
 - $p \sim \text{beta}(\alpha, \beta)$
 - $p|x \sim \mathsf{beta}(\cdot, \cdot)$
- normal (mean) conjugate prior
 - $x_1,\ldots,x_n|\mu \sim \mathsf{N}(\mu,\sigma_0^2)$
 - $\mu \sim N(\mu_0, \tau^2)$
 - $\mu|x_1,\ldots,x_n \sim N(\cdot,\cdot)$
- normal (variance) conjugate prior

•
$$x_1, \ldots, x_n | \sigma^2 \sim \mathsf{N}(\mu_0, \sigma^2)$$

•
$$\sigma^2 \sim \mathsf{IG}(\alpha, \beta)$$

- $\sigma^2|x_1,\ldots,x_n\sim \mathsf{IG}(\cdot,\cdot)$
- Conjugate priors makes analytical evaluations easier
 - ▶ and may make sampling from the posterior easier ...

- A simple example (from George et al., 1993)
 - Analysis of 10 power plant pumps
 - x_i, t_i: number of failures for pump i and length of operation time on that pump (in 1000 hours)
 - Modelling:

- A simple example (from George et al., 1993)
 - Analysis of 10 power plant pumps
 - x_i, t_i: number of failures for pump i and length of operation time on that pump (in 1000 hours)
 - Modelling:
 - $x_i | \theta_i \sim \text{Poisson}(\theta_i t_i)$
 - conjugate prior for θ_i : $\theta_i | \alpha, \beta \sim \mathsf{Gamma}(\alpha, \beta)$

- A simple example (from George et al., 1993)
 - Analysis of 10 power plant pumps
 - x_i, t_i: number of failures for pump i and length of operation time on that pump (in 1000 hours)
 - Modelling:
 - $x_i | \theta_i \sim \text{Poisson}(\theta_i t_i)$
 - conjugate prior for θ_i : $\theta_i | \alpha, \beta \sim \mathsf{Gamma}(\alpha, \beta)$
 - hyper-prior distribution on α and β

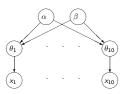
 $lpha \sim \mathsf{Exp}(1.0)$, $eta \sim \mathsf{Gamma}(0.1, 1.0)$

A simple example (from George et al., 1993)

- Analysis of 10 power plant pumps
- x_i, t_i: number of failures for pump i and length of operation time on that pump (in 1000 hours)
- Modelling:
 - $x_i | \theta_i \sim \text{Poisson}(\theta_i t_i)$
 - conjugate prior for θ_i : $\theta_i | \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$
 - hyper-prior distribution on α and β

 $lpha \sim \mathsf{Exp}(1.0)$, $eta \sim \mathsf{Gamma}(0.1, 1.0)$

graphical model:

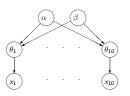


A simple example (from George et al., 1993)

- Analysis of 10 power plant pumps
- x_i, t_i: number of failures for pump i and length of operation time on that pump (in 1000 hours)
- Modelling:
 - $x_i | \theta_i \sim \text{Poisson}(\theta_i t_i)$
 - conjugate prior for θ_i : $\theta_i | \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$
 - hyper-prior distribution on α and β

 $lpha \sim \mathsf{Exp}(1.0)$, $eta \sim \mathsf{Gamma}(0.1, 1.0)$

graphical model:

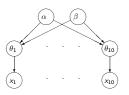


• observed: x_1, \ldots, x_n

- A simple example (from George et al., 1993)
 - Analysis of 10 power plant pumps
 - x_i, t_i: number of failures for pump i and length of operation time on that pump (in 1000 hours)
 - Modelling:
 - $x_i | \theta_i \sim \text{Poisson}(\theta_i t_i)$
 - conjugate prior for θ_i: θ_i|α, β ~ Gamma(α, β)
 - hyper-prior distribution on α and β

 $lpha \sim \mathsf{Exp}(1.0)$, $eta \sim \mathsf{Gamma}(0.1, 1.0)$

graphical model:



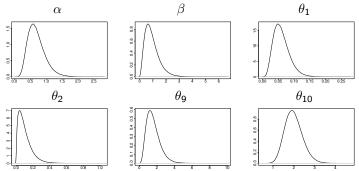
- observed: x_1, \ldots, x_n
- posterior distribution of interest:

 $f(\alpha, \beta, \theta_1, \ldots, \theta_{10}|x_1, \ldots, x_{10})$

Data:

Pump	1	2	3	4	5	6	7	8	9	10
ti	94.3	15.7	62.9	126	5.24	31.4	1.05	1.05	2.1	10.5
Xi	5	1	5	14	3	19	1	1	4	22

Posterior density plots:



Data:

Pump	1	2	3	4	5	6	7	8	9	10
ti	94.3	15.7	62.9	126	5.24	31.4	1.05	1.05	2.1	10.5
Xi	5	1	5	14	3	19	1	1	4	22

• Posterior mean for θ_i compared to x_i/t_i

parameter	posterior mean	x_i/t_i		
θ_1	0.0598	0.0530		
θ_2	0.1017	0.0636		
θ_3	0.0892	0.0795		
θ_4	0.1157	0.1111		
θ_5	0.6011	0.5725		
θ_6	0.6095	0.6051		
θ_7	0.8910	0.9524		
θ_8	0.8928	0.9524		
θ_9	1.5867	1.9047		
θ_{10}	1.9901	2.0952		