
Introduction to Bayesian statistics

◮ Example (Thomas Bayes, 1763):
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∫
1

0
p̃x(1 − p̃)n−xdp̃

=
px(1 − p)n−x

B(x + 1, n − x + 1)

◮ This is a beta-distribution, B(x + 1, n − x + 1), with

E[p|x ] =
x + 1

n + 2

◮ A natural estimator for p

p̂ =
X + 1

n + 2
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P(X = x |p) =

(
n

x

)
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(
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)
px(1 − p)n−x , for x = 0, 1, . . . , n

◮ Assume p ∼ B(α, β):

f (p) =
1

B(α, β)
pα−1(1 − p)β−1

◮ This gives:

f (p|x) =
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P(X = x)
∝ f (p)P(X = x |p)

∝ pα−1(1 − p)β−1px(1 − p)n−x

= pα+x−1(1 − p)β+n−x−1

◮ Thus p|x ∼ B(α+ x , β + n − x), so

E[p|x ] =
α+ x

α+ β + n

◮ Observed n = 100, x = 26:



Bayesian statistics — an example

◮ Before observing the value of x , f (p):
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◮ After observing n = 100 and x = 26, f (p|x):
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E[p|x ] = 0.265 E[p|x ] = 0.255 E[p|x ] = 0.230 E[p|x ] = 0.183



Interpretation of probability

◮ Frequentist (objective): Probability of event A is

P(A) = lim
n→∞

m

n

where m: # times A occurres in n identical and independent trials

◮ Bayesian (subjective): Probability of event A, P(A), is a measure of
someone’s degree of belief in the occurrence of A.

◮ different persons may have different P(A)



Prior and posterior distribution

◮ Prior distribution: f (θ)

◮ a measure of our belief about the value of θ before we have
observed the data, based on prior information/experience

◮ Observation and Likelihood: f (x |θ)

◮ observed value x , and its probability distribution given θ

◮ Posterior distribution: f (θ|x)

◮ a measure of our belief about the of value of θ after we have
observed the data x , based on prior information/experience
and the observed data x

◮ Bayes theorem

f (θ|x) =
f (θ, x)

f (x)
∝ f (θ, x) = f (θ)f (x |θ)



Conjugate priors

◮ In examples: posteriors are all available on closed form

◮ this is because we have used conjugate priors

◮ binomial conjugate prior

◮ x |p ∼ binomial(n, p)
◮ p ∼ beta(α, β)
◮ p|x ∼ beta(·, ·)
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◮ In examples: posteriors are all available on closed form

◮ this is because we have used conjugate priors

◮ binomial conjugate prior

◮ x |p ∼ binomial(n, p)
◮ p ∼ beta(α, β)
◮ p|x ∼ beta(·, ·)

◮ normal (mean) conjugate prior

◮ x1, . . . , xn|µ ∼ N(µ, σ2

0
)

◮ µ ∼ N(µ0, τ
2)

◮ µ|x1, . . . , xn ∼ N(·, ·)

◮ normal (variance) conjugate prior

◮ x1, . . . , xn|σ
2 ∼ N(µ0, σ

2)
◮ σ2 ∼ IG(α, β)
◮ σ2|x1, . . . , xn ∼ IG(·, ·)

◮ Conjugate priors makes analytical evaluations easier

◮ and may make sampling from the posterior easier ...
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◮ A simple example (from George et al., 1993)

◮ Analysis of 10 power plant pumps
◮ xi , ti : number of failures for pump i and length of operation
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◮ observed: x1, . . . , xn
◮ posterior distribution of interest:

f (α, β, θ1, . . . , θ10|x1, . . . , x10)



Hierarchical Bayesian modeling — a simple example

◮ Data:

Pump 1 2 3 4 5 6 7 8 9 10
ti 94.3 15.7 62.9 126 5.24 31.4 1.05 1.05 2.1 10.5
xi 5 1 5 14 3 19 1 1 4 22

◮ Posterior density plots:
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Hierarchical Bayesian modeling — a simple example

◮ Data:

Pump 1 2 3 4 5 6 7 8 9 10
ti 94.3 15.7 62.9 126 5.24 31.4 1.05 1.05 2.1 10.5
xi 5 1 5 14 3 19 1 1 4 22

◮ Posterior mean for θi compared to xi/ti

parameter posterior mean xi/ti
θ1 0.0598 0.0530
θ2 0.1017 0.0636
θ3 0.0892 0.0795
θ4 0.1157 0.1111
θ5 0.6011 0.5725
θ6 0.6095 0.6051
θ7 0.8910 0.9524
θ8 0.8928 0.9524
θ9 1.5867 1.9047
θ10 1.9901 2.0952




