
TMA4300 Computer Intensive Statistical Methods
Exercise 2, Spring 2017

Note: Solutions of Problems B, C and D must be handed in no later than 20th March 2017,

16:00. All answers including derivations, computer code and graphics (preferably in one pdf document)

should be submitted to

Xin Luo (xin.luo@ntnu.no).

Getting started: The aim of this exercise is to get experience with MCMC algorithms by implementing

and running such algorithms for various target distributions, and to use the MCMC output to estimate

properties of the target distributions. Whenever you need to sample from a standard univariate distribu-

tions you may use the build-in random number functions in R or you can use the corresponding functions

you coded in Exercise 1. However, remember that there are two common parameterisations for the gamma

distribution, so if you use the build-in function rgamma you must first check what parameterisation is

used by this function.

Important: For each function of code chunk you write in this exercise you should try to check that it is

working properly. You typically do not have available analytical properties for the target distribution as

in Exercise 1, but you should still carefully consider whether the simulated values are reasonable.

Whenever you are using MCMC output to estimate properties of the target distribution you need to

discuss how you decided the length of the burn-in period and include the relevant plots in your solution.

Problem A: MCMC for a toy example

In this problem we consider the following Bayesian model. We have observations x1, . . . , xn, which we

assume to be independent and identically distributed xi|µ, ϕ ∼ N(µ, 1/ϕ), given some parameters µ and

ϕ. Except in the last item of this problem, we adopt a prior where µ and ϕ are independent, µ is normal

with zero mean and unit variance, and ϕ is gamma distributed with mean one and standard deviation

two.

1. As this is a toy example, start this exercise by generating your own data x1, . . . , xn, i.e choose

your favourite values for µ and ϕ and simulate n = 20 observations x1, . . . , xn independently from

N(µ, 1/ϕ). In the rest of this exercise we will pretend that the true values for µ and ϕ are unknown

and learn about these values by simulating values from the posterior distribution µ, ϕ|x1, . . . , xn.

2. Show that the full conditional distribution for µ is a normal distribution and find formulas for the

parameters of this normal distribution. Correspondingly, show that the full conditional distribution

for ϕ is a gamma distribution and find formulas for the parameters of this gamma distribution.

3. Implement a Gibbs sampler algorithm for the posterior distribution µ, ϕ|x1, . . . , xn. Estimate the

marginal posterior distributions f(µ|x1, . . . , xn) and f(ϕ|x1, . . . , xn) by making histograms of the

simulated values for µ and ϕ, respectively. Remember to discard the burn-in period! Use also

the simulated values to estimate E[µ|x1, . . . , xn], E[
√

1/ϕ|x1, . . . , xn] and Corr[µ,
√

1/ϕ|x1, . . . , xn].

You may repeat the simulation experiment for different simulated data sets (i.e. you may vary the

values of µ, ϕ and n used when simulating your “observations”). Can you intuitively understand

what you observe?

4. Implement a single site random walk proposal Metropolis–Hastings algorithm for the posterior

distribution µ, ϕ|x1, . . . , xn. Thus, an update for µ is performed by first proposing a potential new

value for µ, µ̃, according to µ̃|µ ∼ N(µ, σ2
µ) and then accepting or rejecting the proposed value

1

mailto:xin.luo@ntnu.no

according to the Metropolis–Hastings acceptance probability. Correspondingly, an update for ϕ

is performed by first proposing a potential new value for ϕ, ϕ̃, according to ϕ̃|ϕ ∼ N(ϕ, σ2
ϕ) and

then accepting or rejecting it according to the Metropolis–Hastings acceptance probability. Run the

algorithm for different values of the tuning parameters σ2
µ and σ2

ϕ and observe how this influence

the length of the burn-in period and mixing properties of the Markov chain, but do not influence

the limiting distribution. Also check that the simulation results are consistent with your results in

A.3.

5. Implement a block random walk proposal Metropolis–Hastings algorithm for the posterior distribu-

tion µ, ϕ|x1, . . . , xn. Thus, one iteration consists of first proposing new values for (µ, ϕ) according

to µ̃|µ ∼ N(µ, σ2
µ) and ϕ̃|ϕ ∼ N(ϕ, σ2

ϕ) independently, and thereafter accepting or rejecting (µ̃, ϕ̃)

jointly according to the Metropolis–Hastings acceptance probability. Run the algorithm for differ-

ent values of the tuning parameters σ2
µ and σ2

ϕ and observe how this influence the length of the

burn-in period and mixing properties of the Markov chain, but again do not influence the limiting

distribution. Again check that the simulated values are consistent with your results in A.3.

6. As the last MCMC algorithm in this exercise, implement a single site random walk Metropolis–

Hastings algorithm for the posterior distribution µ, ϕ|x1, . . . , xn where the update for µ is as in A.4,

but the potential new value for ϕ, ϕ̃, is generated by first sampling u ∼ Unif(1/a, a) for some value

a > 1 and then setting ϕ̃ = ϕ · u. Run the algorithm for different values of the tuning parameters

σ2
µ and a and evaluate the results as before.

Problem B: Ising model

Consider a 2D rectangular lattice consisting of m× n nodes. To each node (i, j) in the lattice associate

a stochastic variable xij ∈ {0, 1}, and let x = {xij ; i = 1, . . . ,m, j = 1, . . . , n}. The Ising model is then

defined by

f(x) ∝ exp

−β ∑
(i,j)∼(k,l)

I(xij 6= xkl)

 ,

where β is a parameter, the sum is over all pairs of nodes that are (first order) neighbours, and I(·) is

the indicator function taking the value one if the argument is true and zero otherwise.

1. Define and implement a Metropolis–Hastings algorithm for f(x). Run the Metropolis–Hastings

algorithm for β = 0.5, β = 0.87 and β = 1.0. Try four different initial values for x, a) all xij equal

to zero, b) all xij equal to one, c) independent random values in each node, and d) a checkerboard

pattern. Compare the results and evaluate the convergence properties of your simulation algorithm.

Present results for a 50× 50 or 100× 100 lattice.

Hint: When testing your algorithm it is best to use a small lattice, for example a 10× 10 or 20× 20

lattice. You solution only needs to contain results for a large lattice.

2. For the values of β (tried above) where you obtained convergence, use the simulation output to

estimate to following.

a) The distribution of

1

mn

m∑
i=1

n∑
j=1

xij

and in particular the mean value

µa = E

 1

mn

m∑
i=1

n∑
j=1

xij

 .
2

b) The mean value

µb = E

 1

(m− 1)n

m−1∑
i=1

n∑
j=1

I(xij = xi+1,j)

 .
3. For µa and µb defined in B.2, estimate also a variance for each of the estimates you found in B.2,

and use this to find 95% confidence intervals for µa and µb.

Problem C: Microarray data

In the two last exercises we will consider a simple hierarchical Bayesian model to analyse what is called

microarray data. You can read more about microarray data, how they are produced and what they are

used for by searching for microarray data on the web. Here only the stochastic model that we will apply

is discussed. Our data consists of a matrix of (real) values, one for each of a set of genes for a number

of samples (or patients). The patients belong to two groups, this can for example be patients with two

different types of cancer or patients that have had two types of treatments. Thus, for a gene g, our data

consists of xgi, i = 1, . . . , S1 for one of the two types of patients, and ygi, i = 1, . . . , S2 for the other

group. Our focus here will be to decide whether gene g shows differential expression, i.e. whether the

mean values for the two groups of patients differ. For this we will use the following simple model. Assume

the data to be independent (given parameters νg, ∆g and τg), and

xgi|νg,∆g, τg ∼ N

(
νg + ∆g,

1

τg

)
and

ygi|νg,∆g, τg ∼ N

(
νg −∆g,

1

τg

)
.

Note that instead of parameterising by the variance σ2
g , we use the precision τg = 1

σ2
g
. Thus, the question

is whether ∆g differ from zero or not. In this problem we will consider only one gene g at a time, whereas

in the next problem we will consider the situation with many genes jointly.

Two data sets to be used both in this and the next problem can be downloaded from the course home

page. For the first data the xgi data is found in ’x1.txt’ and the ygi data in ’y1.txt’. Correspondingly,

’x2.txt’ and ’y2.txt’ contain the second data set. In the files each row is a gene and each column is a

sample or patient. The second data set is a subset of the first data set.

1. Show that the normal distribution is the (conditional) conjugate distribution for νg, i.e. show that if

νg to have a normal prior distribution then the full conditional νg|xg1, . . . , xgS1
, yg1, . . . , ygS2

,∆g, τg
is also normal.

2. Similarly, show that the normal distribution is also the (conditional) conjugate distribution for ∆g,

and that the gamma distribution is the (conditional) conjugate distribution for τg.

3. Now assume the priors for νg and ∆g to be normal, both with means zero and variances 100, and

the prior for τg to a gamma distribution with mean 1 and variance 100. Visualise the resulting

Bayesian model as a graphical model. Implement and run (for each of the two data sets) a Gibbs

algorithm for the posterior distribution for νg, ∆g and τg. Use the data in the first three rows

(genes) of the data files, i.e. do separate Metropolis–Hastings runs for each of the first three genes

in the data sets. Evaluate the convergence properties and visualise your simulation results. Will

you conclude that any of these genes are differential expressed?

3

Problem D: More on microarray data

Now consider the situation with many genes g = 1, . . . , G. For each gene g we adopt the same likelihood

as above, but redefine the prior distribution. Note that we now have separate parameters νg, ∆g and τg
for each gene g. Apriori we now assume the νg’s to be normally distributed with mean µ and precision ρ,

the ∆g’s to be normally distributed with mean m and precision r, and the τg’s to be gamma distributed

with mean α and variance β. The hyper-parameters µ, ρ, m, r, α and β we assume to be apriori

independent. For µ and m we assume (improper) uniform prior distributions on (−∞,∞). For ρ we

assume the (improper) prior p(ρ) ∝ 1/ρ, and correspondingly for r, p(r) ∝ 1/r. For α and β we use

(improper) uniform prior distributions on (0,∞).

1. Visualise the resulting Bayesian model as a graphical model. Define a Metropolis–Hastings al-

gorithm to simulate from the resulting posterior distribution, i.e. specify what kind of proposal

distributions you will use, what the corresponding acceptance probabilities are, and how you plan

to combine your updates.

2. Implement and run (for each of the two data sets) the Metropolis–Hastings algorithm. If your code

runs very slowly you may reduce the number of genes you are using. Evaluate the convergence

properties of your algorithm and visualise your simulation results. Compare the results for the first

three genes with what you obtained in problem C. Discuss.

Oral presentations

Date Problem Team

17.03.2017 2: Problems A1, A2, A3 and A4 Solveig Fosal and Frida Marie Bruun

2: Problems A5 and A6 Sabuj Bhowmick and Venuga Sivarajah

2: Problem B1 Knut Nordanger

2: Problems B2 and B3 Anders Sætherø and Scott Macody Lund

2: Problem C1, C2 and C3 Hans Olav Vogt Myklebust and Markus Brabrand Urfjell

4

