
Integrated Nested Laplace Approximation (INLA)

What is it? A numerical method to do fast approximate bayesian

inference

Why? We do not want to way for the MCMC to converge..

Where can it be applied? The (wide) class of Latent Gaussian Models

How does it work? Uses GMRF and sparse matrix computations, Laplace

approximation, numerical integration

How do we use it Already implemented in the R-INLA library



Latent Gaussian models
A very general way of specifying the problem is by modelling the mean

for the i-th unit by means of an additive linear predictor, defined on a

suitable scale (e.g. logistic for binomial data)

ηi = α +
L∑

l=1

fl(uli ) +
K∑

k=1

βkzki + εi

where

• α is the intercept

• β = (β1, . . . , βK ) quantify the effect of x = (x1, . . . , xK ) on the

response

• f = (f1, . . . , fL) is a set of functions defined in terms of some

covariates z = (z1, . . . , zK )

And assume

x = (α,β, f ) ∼ N (0,Q(θ)−1)



Latent Gaussian Models: a Unified framework

Observations: y Assumed conditionally independent given x and θ1

y |x ,θ1 ∼
∏
i

π(yi |xi , ,θ).

Latent field: x Assumed to be a GMRF with sparse precision matrix

Q(θ2)

x |θ1 ∼ N (0,Q(θ2)−1)

The latent field x can be large (101 − 106)

Hyperparameters: θ = (θ1,θ2) Precision parameters of the Gaussian

field and parameters of the likelihood

θ ∼ π(θ)

The vector θ is usually small (1-10)



Example: Disease Mapping in Germany

We observed larynx cancer mortality counts for males in 544 district of

Germany from 1986 to 1990 and want to make a model.
Information available:

yi The count in disctrict

i

Ei An offset, expected

number of cases in

district i

ci A covariate (level of

smoking consumption

in district i)

si Spatial location i

(district)



Example: Disease Mapping in Germany

• Poisson likelihood

yi |ηi ∼ Poisson(Ei exp(ηi ))

• Laten Gaussian model

ηi = µ+ fs(si ) + f (ci ) + ui

The latent field is x = {µ, (fs(·)), (f (·)), u1, . . . , un}

• Hyperparameters: τc , τf , τη : The precisions (inverse variances) of

the covariate effect, spatial effect and unstructured effect,

respectively.



Example: Disease Mapping in Germany

Posterior of interest

Effect of the covariate:

π(f (ci )|y)

Structured spatial effect:

π(fs(si )|y)



INLA computing scheme
From the posterior π(θ, x |y) we are mostly interested in

π(θj |y) and π(xi |y)

• Approximate π(θ|y) using Laplace approximation
I Use numerical integration to approximate

π(θj |y) =
∫
π(θ|y)dθ−j

I This integral is not difficult to solve (dimension of θ is small)

• Approximate π(xi |θ, y) using Laplace approximation
I Use numerical integration to approximate

π(xi |y) =
∫
π(xi |θ, y)dθ

I This integral is not difficult to solve (dimension of θ is small)



Smoothing noisy observations

Assume

yi = f (i) + εi

where

εi ∼ N (0, 1)

f (i) smooth function of i

We have noisy observation, we want

to recover the f function
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Hierarchical Model

Data Gaussian Observations with known precision

yi |xi ∼ N (xi , 1)

Latent Model : A Gaussian model for the smooth function (RW2 model)

π(x|θ) ∝ θ(n−2)/n exp

{
−θ
2

n∑
i=2

(xi − 2xi−1 + xi−2)2

}

Hyperparameter The precision of the smooth function θ. We assign a

Gamma prior

π(θ) ∝ θa−1 exp(−bθ)



Posterior marginal for hyperparameter

We have that

π(x, θ, y) = π(x|θ, y)π(θ|y)π(y)

so

π(θ|y) =
π(x, θ, y)

π(x|θ, y)π(y)
∝ π(y, x|θ) π(θ)

π(x|θ, y)

Since the likelihood is Gaussian, then π(y, x|θ) is also Gaussian. We have

then:

π(θ|y) ∝

Gaussian︷ ︸︸ ︷
π(y, x|θ) π(θ)

π(x|θ, y)︸ ︷︷ ︸
Gaussian

This is valid for any x



Posterior marginal for the hyperparameter

Select a grid of points to represent the density π(θ|x)
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Posterior marginals for latent field

Again we have that

x, y|θ ∼ N(·, ·)

so also π(xi |θ, y) is Gaussian!!

We compute

π(xi |y) =
∫
π(xi |θ, y)π(θ|y)dθ

≈
∑

k π(xi |θk , y)π(θk |y)∆k

where θk , k = 1, . . . ,K are the representative points of π(θ|y) and ∆k

are the corresponding weights



Posterior marginals for latent field

Compute the conditional posterior marginal for xi given each θk
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Posterior marginals for latent field

Weighted the conditional posterior marginal for π(xi |θk , y) by π(θk |y)´k
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Posterior marginals for latent field

Sum to get the posterior marginal for xi |y
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Fitted Spline
The posterior marginals are used to calculate summary statistics, like

means, variances and credible intervals:
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Extending the method

This is the basic idea behind INLA. It is quite simple. However, we need

to extend this basic idea so we can deal with

• More than one hyperparameter

• Non-Gaussian observations



Non-Gaussian Observations: Approximating π(x |)θy

Let x denote a GMRF with precision matrix Q and mean µ. Approximate

π(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

log π(yi |xi )

)

by using a second-order Taylor expansion of log π(yi |xi ) around µ0, say.

Recall

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2 = a + bx − 1

2
cx2

with b = f ′(x0)− f ′′(x0)x0 and c = −f ′′(x0).



The GMRF approximation (II)

Thus,

π̃(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

(ai + bixi − 0.5cix2
i )

)

∝ exp

(
−1
2
xT (Q + diag(c))x + bTx

)
to get a Gaussian approximation with precision matrix Q + diag(c) and

mean given by the solution of (Q + diag(c))µ = b. The canonical

parameterization is

NC (b,Q + diag(c))

which corresponds to

N ((Q + diag(c))−1b, (Q + diag(c))−1).



The GMFR approximation - One dimensional example

Assume

y |λ ∼ Poisson(λ) Likelihood

λ = exp(x) Likelihood

x ∼ N (0, 1) Latent Model

we have that

π(x |y) ∝ π(y |x)π(x) ∝ exp{−1
2
x2 + xy − exp(x)︸ ︷︷ ︸

non-gaussian part

}

(Show R-code Taylor_expansion.R)



Non-Gaussian Observations

In many cases π(x |y , θ) is very close to a Gaussian distribution, and can

be replaced with a Laplace approximation:

• This means that all the really hard, high-dimensional integrals with

respect to the latent field are easy, and only the integrals with

respect to the hyperparameters remain

• If the number of hyperparameters is low, these integrals can be done

efficiently numerically



Limitations

• The dimension of the latent field x can be large (102 − 106)

• The dimension of the hyperparameters θ must be small (≤ 9)

In other words, each random effect can be big, but there cannot be too

many random effects unless they share parameters.



Gaussian Markov Random Fields

A GMRF x = (x1, x2, . . . , xn) is a random vector following a multivariate

Gaussian distribution

x ∼ N (0,Q−1) where Q−1 = Σ

and that is endowed with some Markov properties like

xj ⊥ xi |x−ij

where x−ij indicates "all elements of x other than i and j"

The easiest example is a AR(1) model



Gaussian Markov Random Fields

If Σ is the covariance matrix of a Gaussian vector and Q = Σ−1 is the

precision matrix, we have that

xi ⊥ xj ⇐⇒ Σij = 0

and

xi ⊥ xj ⇐⇒ Qij = 0

GMRF have sparse precision matrices....this means it is "easy" to

compute determinant and invert Q








