Brief reminder: Empirical distribution and plug-in principle

- assume iid observations $F \rightarrow\left(x_{1}, \ldots, x_{n}\right)$
- empirical distribution \hat{F} puts prob. $1 / n$ to each observed value.
- parameter of interest: $\theta=t(F)$
- plug-in estimator: $\hat{\theta}=t(\hat{F})$

Plug in estimate - example

$$
\theta=t(F)=\mathrm{E}\left[\frac{X-\mu}{\sigma}\right]=\frac{\mathrm{E}\left(X^{3}\right)-3 \mu \sigma^{2}-\mu^{2}}{\sigma^{3}}
$$

where

$$
\mu=\mathrm{E}(X) \text { and } \sigma=\sqrt{\operatorname{Var}(X)}
$$

What is the plug in estimate?

Brief reminder: Bootstrap estimator for standard error

- assume

$$
\begin{aligned}
& F \rightarrow\left(x_{1}, \ldots, x_{n}\right)=x \\
& \hat{F}: \text { empirical distribution } \\
& \theta=t(F) \\
& \hat{\theta}=s(x)
\end{aligned}
$$

- want to estimate $\mathrm{SD}_{F}(\hat{\theta})$
- bootstrap sample: $\hat{F} \rightarrow\left(x_{1}^{\star}, \ldots, x_{n}^{\star}\right)=x^{\star}$
- bootstrap replication of $\hat{\theta}: \hat{\theta}^{\star}=s\left(x^{\star}\right)$
- ideal bootstrap estimate of $S D_{F}(\hat{\theta}): S D_{\hat{F}}\left(\hat{\theta}^{\star}\right)$.
- this estimate can in principle be computed in practice usually not (need to be approximated via MC).

Bootstrap estimate of standard error - example

$$
\theta=t(F)=\frac{\mathrm{E}\left(X^{3}\right)-3 \mu \sigma^{2}-\mu^{2}}{\sigma^{3}}
$$

where

$$
\mu=\mathrm{E}(X) \text { and } \sigma=\sqrt{\operatorname{Var}(X)}
$$

The plug in estimate is:

$$
\hat{\theta}=s(\boldsymbol{x})=\frac{\left.\overline{\left(x^{3}\right.}\right)-3 \bar{x} s^{2}-\mu^{2}}{s^{3}}
$$

What is the standard error of $\hat{\theta}$?
\dagger

Bootstrapping regression

Consider the ordinary multiple regression model

$$
Y_{i}=\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}+\epsilon_{i}, \quad \text { for } i=1, \ldots, n,
$$

where ϵ_{i} are iid mean zero random variables with constant variance.

- Parameters of interest $\boldsymbol{\beta}$
- Want to estimate $S D(\hat{\beta})$

Review: Linear Regression

- Least square estimate of $\boldsymbol{\beta}$

$$
\hat{\boldsymbol{\beta}}=\operatorname{argmin}\left\{\sum\left(Y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right\} \Rightarrow \hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}
$$

- Residuals

$$
e_{i}=Y_{i}-\boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{\beta}}
$$

Bootstrap regression

Alternative 1: Bootstrap the residuals $e_{i}=Y_{i}-\boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{\beta}}$
Alternative 2: Bootstrap the pairs $\boldsymbol{Z}_{i}=\left(\boldsymbol{X}_{i}, Y_{i}\right)$

Bootstrap the residuals

1. Fit the regression model to the observed data and obtain the fitted responses \hat{y}_{i} and residuals $\hat{\epsilon}_{i}$.
2. Sample a bootstrap set of residuals $\hat{\epsilon}_{1}^{\star}, \ldots, \hat{\epsilon}_{n}^{\star}$ from the set of fitted residuals completely at random and with replacement.
3. Generate a bootstrap set of pseudo responses

$$
Y_{i}^{\star}=\hat{y}_{i}+\hat{\epsilon}_{i}^{\star}, \quad \text { for } i=1, \ldots, n .
$$

4. Regress Y^{\star} on x to obtain a bootstrap estimate $\hat{\boldsymbol{\beta}}^{\star}$.

Repeat this process to get an empirical distribution of $\hat{\boldsymbol{\beta}}^{\star}$.

Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.
Note: Bootstrapping the residuals is reliant on

- The model provides an appropriate fit
- The residuals have a constant variance

Otherwise, a different scheme is recommended.

Comment: No need to bootstrap for linear regression model and least squares estimation, as analytical results are then available.

Bootstrap the pair $\boldsymbol{Z}_{i}=\left(\boldsymbol{X}_{i}, Y_{i}\right)$

Suppose response and predictors are measured from a collection of individuals selected at random
\Rightarrow Data pairs $\boldsymbol{z}_{\boldsymbol{i}}=\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{y}_{\boldsymbol{i}}\right)$ can be regarded as iid realisation from $\boldsymbol{Z}_{\boldsymbol{i}}=\left(\boldsymbol{X}_{i}, Y_{i}\right)$ drawn from a joint response-predictor distribution.

Bootstrap:

- Sample $\boldsymbol{Z}_{1}^{\star}, \ldots, \boldsymbol{Z}_{n}^{\star}$ completely at random with replacement from z_{1}, \ldots, z_{n}.
- Apply regression model on pseudo dataset to get $\hat{\boldsymbol{\beta}}^{\star}$. Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions, e.g. adequacy of regression model, than bootstrapping the residuals.

Copper-nickel alloy

Data: 13 measurements of corrosion loss $\left(y_{i}\right)$ in copper-nickel alloys, each with a specific iron content $\left(x_{i}\right)$.

Question: Change in corrosion loss in the alloys as the iron content increases, relative to corrosion loss where there is no iron, i.e. $\theta=\beta_{1} / \beta_{0}$.

x_{i}	0.01	0.48	0.71	0.95	1.19	0.01	0.48
y_{i}	127.6	124.0	110.8	103.9	101.5	130.1	122.0
x_{i}	1.44	0.71	1.96	0.01	1.44	1.96	
y_{i}	92.3	113.1	83.7	128.0	91.4	86.2	

The observed data yield $\hat{\theta}=\hat{\beta}_{1} / \hat{\beta}_{0}=-0.185$.
Show R-code demo-pairedBootstrap.R

Bias of an estimator

- We observe $X_{1}, X_{2}, \ldots, X_{n} \sim F$ iid
- Parameter of interest $\theta=t(F)$
- Estimator $\hat{\theta}=s(X)$
(may or may not be based on the plug-in principle)
- Bias definition

$$
\left.\operatorname{bias}_{F}(\hat{(} \theta), \theta\right)=\mathrm{E}_{F}[\hat{\theta}]-\theta=\mathrm{E}_{F}[s(\boldsymbol{x})]-t(F)
$$

Bootstrap estimate of bias

We want to estimate

$$
\left.\operatorname{bias}_{F}(\hat{(} \theta), \theta\right)=\mathrm{E}_{F}[s(\boldsymbol{x})]-t(F)
$$

Idea: Apply the plug-in principle and define the bootstrap estimate of bias as:

$$
\operatorname{bias}_{\hat{F}}=\mathrm{E}_{\hat{F}}\left[s\left(\boldsymbol{x}^{\star}\right)\right]-t(\hat{F})
$$

where \hat{F} is an estimate of F (for example the empirical distribution)

Bias estimate of the bias

1. Generate B bootstrap samples $x^{1 \star}, \ldots, x^{B \star}$.
2. Evaluate the corresponding parameter estimates

$$
\hat{\theta^{\star}}(b)=s\left(x^{b \star}\right), \quad b=1,2, \ldots, B
$$

3. Approximate the bootstrap expectation $\mathrm{E}_{\hat{f}}\left[s\left(\boldsymbol{x}^{\star}\right)\right]$ as:

$$
\hat{\theta^{\star}}(\cdot)=\frac{1}{B} \sum_{b=1}^{B} \hat{\theta^{\star}}(b)
$$

4. Approximate the ideal bootstrap estimate for bias as

$$
\widehat{\operatorname{bias}}_{B}=\hat{\theta^{\star}}(\cdot)-t(\hat{F})
$$

Bias corrected estimate

One we have estimated the bias we can compute the bias-corrected estimator

$$
\hat{\theta}_{c}=\hat{\theta}-\widehat{\operatorname{bias}}_{B}=\hat{\theta}-\left[\hat{\theta^{\star}}(\cdot)-t(\hat{F})\right]
$$

Note: Bias correction will not always give an improved estimator. We have that $\operatorname{Var}\left(\hat{\theta}_{c}\right) \geq \operatorname{Var}(\hat{\theta})$ so if the bias is small is better not to do bias correction.

Bootstrap bias correction

Copper-nickel alloy example

The mean value of

$$
\hat{\theta}^{\star}-\hat{\theta}
$$

among the pseudo datasets is about -0.00125 .

The bias-corrected bootstrap estimate of β_{1} / β_{0} is
$-0.18507-(-0.00125)=-0.184$.

Confidence intervals (percentile method)

A "simple-minded" two-sided confidence interval with coverage ($1-\alpha$) for a parameter α is given by

$$
\left[q_{\alpha / 2}^{\star}, q_{1-\alpha / 2}^{\star}\right]
$$

where q_{α}^{\star} is the α-bootstrap quantile in the distribution of $\hat{\theta}^{\star}$.
Experience: Often good, but often too low coverage, i.e the true α for the interval is lower than the specified value.
Note: Better bootstrap confidence intervals exist and often have better coverage accuracy - at the price of being somewhat more difficult to implement

Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.

Auto-correlation function

Bootstrapping dependent data

Consider a first-order stationary autoregressive process, the $\operatorname{AR}(1)$ model:

$$
X_{t}=\alpha X_{t-1}+\epsilon_{t}
$$

where $|\alpha|<1$ and ϵ_{t} are iid with mean zero and constant variance.
Here, a method akin to bootstrapping the residuals for linear regression can be applied.

AR(1) model: A model based approach

1. Use a standard method to estimate α
2. Define the estimated innovations $\hat{e}_{t}=X_{t}-\hat{\alpha} X_{t-1}$ for $t=2, \ldots, n$ and let $\bar{\epsilon}$ be the mean of these.
3. Recenter \hat{e}_{t} to have mean zero by defining $\hat{\epsilon}_{t}=\hat{e}_{t}-\bar{e}$.
4. Resample $n+1$ values from the set $\left\{\hat{\epsilon}_{2}, \ldots, \hat{\epsilon}_{n}\right\}$ with replacement to yield pseudo innovations $\left\{\epsilon_{0}^{\star}, \ldots, \epsilon_{n}^{\star}\right\}$.
5. Generate pseudo data as $X_{0}^{\star}=\epsilon_{0}^{\star}$ and $X_{t}^{\star}=\hat{\alpha} X_{t-1}^{\star}+\epsilon_{t}^{\star}$ for $t=1, \ldots, n$.
6. From each bootstrap sample compute $\hat{\alpha}^{\star}$

AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.
Remedy: Sample larger number of pseudo innovations and generate data series earlier, i.e. X_{k}^{\star} for k much less than zero. The first portion of the data can be discarded as burn-in.

Show Lutenizing_boot.R code

Block bootstrap

An alternative bootstrap procedure for time series data is to draw blocks from the observed series.

- Issue: We cannot simply sample from the individual observations, as this would destroy the correlation that we try to capture.
- Idea: Block data to preserve covariance structure within each block, even though structure is lost between blocks.

Here, we consider

- Non-moving blocks bootstrap
- Moving blocks bootstrap

Non-moving blocks bootstrap

Illustration and example:
See blackboard

Non-moving blocks bootstrap (II)

- Split x_{1}, \ldots, x_{n} into b non-overlapping blocks of length I, where ideally $n=l \cdot b$.
- Sample $\mathcal{B}_{1}^{\star}, \ldots, \mathcal{B}_{b}^{\star}$ independently from $\left\{\mathcal{B}_{1}, \ldots, \mathcal{B}_{b}\right\}$ with replacement. Concatenate these blocks to form a pseudo dataset $\mathcal{X}^{\star}=\left(\mathcal{B}_{1}^{\star}, \ldots, \mathcal{B}_{b}^{\star}\right)$.
- Replicate this process B times and estimate for each bootstrap sample $\hat{\theta}_{i}^{\star}$.
- Approximate the distribution of $\hat{\theta}$ by the distribution of these B pseudo values.

Moving blocks bootstrap

Illustration:

See blackboard

Show Lutenizing_boot.R code

Block bootstrap

- Idea: With blocks bootstrap, choose block size / large enough so that observations more than / units apart will be nearly independent.
- Advantage: Less model dependent than residuals approach. However, choice of block size / can be quite important, and effective methods to choose I are still laking.

Permutation test

(related to idea of bootstrapping.)
Consider a medical experiment where rats are randomly assigned to treatment and control groups. Under the null hypothesis the outcome measured does not depend on the group assignment.

Idea: Shuffling the labels randomly among rates will not change the joint null distribution of the data.

Recall: P-value

- Let t_{1} denote the original test statistic, e.g. difference of group mean outcomes, and t_{2}, \ldots, t_{B} the test statistics computed from the datasets resulting from B permutations of labels.
- Under the null hypothesis t_{2}, \ldots, t_{B} are from the same distribution that yielded $t_{1} \Rightarrow$ We can compare them.

We can use the P -value:
P-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

Permutation test: Example

The simple model for independent data from two sources:

$$
\begin{aligned}
y_{i} & \sim F_{1}, \quad i=1, \ldots, m \\
z_{j} & \sim F_{2}, \quad j=1, \ldots, n \\
\boldsymbol{x} & =(\boldsymbol{y}, \boldsymbol{z})=\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

The permutation method for hypothesis testing is based on resampling under the null hypothesis $H_{0}: F_{1}=F_{2}$, by permuting the order of the original data to generate B bootstrap samples \boldsymbol{x}^{*}, valid given that the null hypothesis is true.
The p -value for a test based on a test quantity $t(\boldsymbol{x})$ can be estimated as $\#\left\{t\left(x^{*}\right) \geq t(x)\right\} / B . H_{0}$ is rejected if the p-value is smaller than a given threshold (typically 0.05 or 0.01)

Permutation test: Example

1. We test the hypothesis

$$
H_{0}: F_{1}=F_{2} \quad \text { against } \quad H_{1}: F_{1} \neq F_{2}
$$

using the test quantity $T=|\bar{y}-\bar{z}|$, by means of the permutation method to compute an estimate tof the p -value for the test.
2. The test only tests for differences that can be detected by the test quantity. Consider an alternative test quantity

$$
T=\left|\frac{\left(\frac{1}{m} \sum_{i=1}^{m} y_{i}\right)^{2}}{\frac{1}{m} \sum_{i=1}^{m} y_{i}^{2}}-\frac{\left(\frac{1}{n} \sum_{j=1}^{n} z_{j}\right)^{2}}{\frac{1}{n} \sum_{j=1}^{n} z_{j}^{2}}\right|
$$

Permutation test: R-code
see demo-permTest.R

