Brief reminder: Empirical distribution and plug-in principle

® assume iid observations F — (x1,...,X,)
e empirical distribution £ puts prob. 1/n to each observed value.
® parameter of interest: 6 = t(F)

® plug-in estimator: § = t(F)



Plug in estimate - example

where
p=E(X)and o =

What is the plug in estimate?

Var(X)



Brief reminder: Bootstrap estimator for standard error

® assume

F—(x1,...,%n) =X
F : empirical distribution

0 =t(F)

0 = s(x)

* want to estimate SDg(0

)
bootstrap sample: £ — (x},...,x*) = x*

* bootstrap replication of §: 0* = s(x )

ideal bootstrap estimate of SDf(f): SDg(6*).

® this estimate can in principle be computed in practice usually not

(need to be approximated via MC).



Bootstrap estimate of standard error - example

E(X3) — 3uo? — 12
o3

0=t(F)=

where
= E(X) and 0 = /Var(X)

The plug in estimate is:

What is the standard error of §7?
i

tShow code boot _example.R



Bootstrapping regression

Consider the ordinary multiple regression model
Yi=x'B+¢, fori=1,...,n,

where ¢; are iid mean zero random variables with constant variance.

® Parameters of interest 3

~

® Want to estimate SD([3)



Review: Linear Regression

® | east square estimate of 3

= argmln{z B)P}=p8=X"X)"XxTY

® Residuals

35

Fitted
points |

1 4 regression line
y=1.33+ 14x




Bootstrap regression

Alternative 1: Bootstrap the residuals ¢ = Y; — x,-TB

Alternative 2: Bootstrap the pairs Z; = (X;, Y;)



Bootstrap the residuals

1. Fit the regression model to the observed data and obtain the fitted

responses y; and residuals €;.

2. Sample a bootstrap set of residuals €7, ..., & from the set of fitted

residuals completely at random and with replacement.

3. Generate a bootstrap set of pseudo responses
Y =y;+¢&, fori=1....n

4. Regress Y* on x to obtain a bootstrap estimate B*.

Repeat this process to get an empirical distribution of 3*.



Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.

Note: Bootstrapping the residuals is reliant on
® The model provides an appropriate fit
® The residuals have a constant variance

Otherwise, a different scheme is recommended.

Comment: No need to bootstrap for linear regression model and least

squares estimation, as analytical results are then available.



Bootstrap the pair Z; = (X}, Y;)

Suppose response and predictors are measured from a collection of

individuals selected at random

= Data pairs z; = (x;, ;) can be regarded as iid realisation from

Z; = (X;, Y;) drawn from a joint response-predictor distribution.

Bootstrap:
® Sample Z7, ..., Z; completely at random with replacement from
Z1,...,2Z,.

® Apply regression model on pseudo dataset to get B*.

Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions,

e.g. adequacy of regression model, than bootstrapping the residuals.



Copper-nickel alloy

Data: 13 measurements of corrosion loss (y;) in copper-nickel alloys,

each with a specific iron content (x;).

Question: Change in corrosion loss in the alloys as the iron content

increases, relative to corrosion loss where there is no iron, i.e. 8 = 51/0o.

x; 001 048 071 095 1.19 001 048
yi 1276 1240 1108 103.9 1015 130.1 1220
x; 144 071 196 0.01 1.44  1.96
yi 923 1131 837 1280 914 86.2

The observed data yield § = /@1/5’0 = —0.185.
Show R-code demo-pairedBootstrap.R



Bias of an estimator

® We observe X1, X5,..., X, ~ F iid
® Parameter of interest 6 = t(F)
e Estimator § = s(X)
(may or may not be based on the plug-in principle)

® Bias definition

biase((6), 0) = Ef[0] — 6 = Ef[s(x)] — t(F)



Bootstrap estimate of bias

We want to estimate

~

biasg((0),0) = Er[s(x)] — t(F)

Idea: Apply the plug-in principle and define the bootstrap estimate of
bias as:

biasp = Eg[s(x*)] — t(F)

where F is an estimate of F (for example the empirical distribution)



Bias estimate of the bias

1. Generate B bootstrap samples x**, ..., xB*.

2. Evaluate the corresponding parameter estimates
0<(b) = s(x**), b=1,2,...,B

3. Approximate the bootstrap expectation Ez[s(x*)] as

4. Approximate the ideal bootstrap estimate for bias as

vy} \

biasg = 6+(-) — t(F)



Bias corrected estimate

One we have estimated the bias we can compute the bias-corrected

estimator

~ A

O = 0 — biasg = 0 — [6+(-) — t(F)]

Note: Bias correction will not always give an improved estimator.

We have that Var(6.) > Var(0) so if the bias is small is better not to do

bias correction.



Bootstrap bias correction

Copper-nickel alloy example

The mean value of
6 — 6

among the pseudo datasets is about —0.00125.

The bias-corrected bootstrap estimate of 31/ is
—0.18507 — (—0.00125) = —0.184.



Confidence intervals (percentile method)

A “simple-minded” two-sided confidence interval with coverage (1 — )

for a parameter « is given by

[0 2: 91— /2]
where g7 is the a-bootstrap quantile in the distribution of 6.

Experience: Often good, but often too low coverage, i.e the true « for
the interval is lower than the specified value.

Note: Better bootstrap confidence intervals exist and often have better
coverage accuracy — at the price of being somewhat more difficult to

implement



Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.

Lutenizing hormon Auto-correlation function
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Bootstrapping dependent data

Consider a first-order stationary autoregressive process, the AR(1) model:
X = aXi—1+ €

where |a| < 1 and €, are iid with mean zero and constant variance.

Here, a method akin to bootstrapping the residuals for linear regression

can be applied.



AR(1) model: A model based approach

1. Use a standard method to estimate a

2. Define the estimated innovations é& = X; — &X;_1 fort =2,...,n

and let € be the mean of these.
3. Recenter é; to have mean zero by defining €, = & — &.

4. Resample n+ 1 values from the set {&,...,€,} with replacement to
yield pseudo innovations {¢§, ..., €5}

5. Generate pseudo data as XJ = ¢} and X = &X;_; + €} for
t=1,...,n.

6. From each bootstrap sample compute &*



AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.

Remedy: Sample larger number of pseudo innovations and generate data
series earlier, i.e. X} for k much less than zero. The first portion of the

data can be discarded as burn-in.

Show Lutenizing_boot.R code



Block bootstrap

An alternative bootstrap procedure for time series data is to draw blocks

from the observed series.

® [ssue: We cannot simply sample from the individual observations, as

this would destroy the correlation that we try to capture.
® |dea: Block data to preserve covariance structure within each block,
even though structure is lost between blocks.
Here, we consider
® Non-moving blocks bootstrap

® Moving blocks bootstrap



Non-moving blocks bootstrap

[llustration and example:

See blackboard



Non-moving blocks bootstrap (I1)

® Split xq,...,x, into b non-overlapping blocks of length /, where
ideally n=1- b.

® Sample B}, ..., B} independently from {Bs, ..., By} with
replacement. Concatenate these blocks to form a pseudo dataset
X* = (Bt,...,B;).

® Replicate this process B times and estimate for each bootstrap
sample 0%

e Approximate the distribution of 8 by the distribution of these B

pseudo values.



Moving blocks bootstrap

Illustration:
See blackboard

Show Lutenizing_boot.R code



Block bootstrap

® |dea: With blocks bootstrap, choose block size / large enough so

that observations more than / units apart will be nearly independent.
® Advantage: Less model dependent than residuals approach.
However, choice of block size / can be quite important, and effective

methods to choose / are still laking.



Permutation test

(related to idea of bootstrapping.)

Consider a medical experiment where rats are randomly assigned to
treatment and control groups. Under the null hypothesis the outcome

measured does not depend on the group assignment.

Idea: Shuffling the labels randomly among rates will not change the joint
null distribution of the data.



Recall: P-value

® Let t; denote the original test statistic, e.g. difference of group
mean outcomes, and t», ..., tg the test statistics computed from the

datasets resulting from B permutations of labels.

® Under the null hypothesis t», ..., tg are from the same distribution

that yielded t; = We can compare them.
We can use the P-value:

P-value is the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming that

the null hypothesis is true.



Permutation test: Example

The simple model for independent data from two sources:

_)/,"'\-‘Fl7 i:17...,m
zi~Fy, j=1,...,n

X:(.yvz):(YIv"'7)/mazla"'7zn)

The permutation method for hypothesis testing is based on resampling
under the null hypothesis Hy : F; = F», by permuting the order of the
original data to generate B bootstrap samples x*, valid given that the
null hypothesis is true.

The p-value for a test based on a test quantity t(x) can be estimated as
#{t(x*) > t(x)}/B. Hyg is rejected if the p-value is smaller than a given
threshold (typically 0.05 or 0.01)



Permutation test: Example

1. We test the hypothesis
H() ZF1 = F2 against Hl . F1 7& F2

using the test quantity T = |y — Z|, by means of the permutation

method to compute an estimate tof the p-value for the test.

2. The test only tests for differences that can be detected by the test

quantity. Consider an alternative test quantity

1 m )2 1 n )2

T = (EZf—ly') o (F j—1Z/)
= T m 2 I 0 2
m 2ai=1Yi n 2uj=17%




Permutation test: R-code

see demo-permTest.R



