
Brief reminder: Empirical distribution and plug-in principle

• assume iid observations F ! (x1, . . . , xn)

• empirical distribution F̂ puts prob. 1/n to each observed value.

• parameter of interest: ✓ = t(F )

• plug-in estimator: ✓̂ = t(F̂ )



Plug in estimate - example

✓ = t(F ) = E

X � µ

�

�
=

E(X 3)� 3µ�2 � µ2

�3

where
µ = E(X ) and � =

p
Var(X )

What is the plug in estimate?



Brief reminder: Bootstrap estimator for standard error

• assume

F ! (x1, . . . , xn) = x

F̂ : empirical distribution

✓ = t(F )

✓̂ = s(x)

• want to estimate SDF (✓̂)

• bootstrap sample: F̂ ! (x?1 , . . . , x
?
n ) = x

?

• bootstrap replication of ✓̂: ✓̂? = s(x?)

• ideal bootstrap estimate of SDF (✓̂): SDF̂ (✓̂
?).

• this estimate can in principle be computed in practice usually not
(need to be approximated via MC).



Bootstrap estimate of standard error - example

✓ = t(F ) =
E(X 3)� 3µ�2 � µ2

�3

where
µ = E(X ) and � =

p
Var(X )

The plug in estimate is:

✓̂ = s(x) =
(̄x3)� 3x̄ s

2 � µ2

s3

What is the standard error of ✓̂?
†

†
Show code boot_example.R



Bootstrapping regression

Consider the ordinary multiple regression model

Yi = x>
i � + ✏i , for i = 1, . . . , n,

where ✏i are iid mean zero random variables with constant variance.

• Parameters of interest �

• Want to estimate SD(�̂)



Review: Linear Regression

• Least square estimate of �

�̂ = argmin{
X

(Yi � x>
i �)2} ) �̂ = (XTX )�1XTY

• Residuals
ei = Yi � x>

i �̂

http://fsweb.bainbridge.edu/dbyrd/statistics/regression.htm



Bootstrap regression

Alternative 1: Bootstrap the residuals ei = Yi � x>
i �̂

Alternative 2: Bootstrap the pairs Zi = (Xi ,Yi )



Bootstrap the residuals

1. Fit the regression model to the observed data and obtain the fitted
responses ŷi and residuals ✏̂i .

2. Sample a bootstrap set of residuals ✏̂?1, . . . , ✏̂
?
n from the set of fitted

residuals completely at random and with replacement.

3. Generate a bootstrap set of pseudo responses

Y
?
i = ŷi + ✏̂?i , for i = 1, . . . , n.

4. Regress Y
? on x to obtain a bootstrap estimate �̂?.

Repeat this process to get an empirical distribution of �̂?.



Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.

Note: Bootstrapping the residuals is reliant on

• The model provides an appropriate fit

• The residuals have a constant variance

Otherwise, a different scheme is recommended.

Comment: No need to bootstrap for linear regression model and least
squares estimation, as analytical results are then available.



Bootstrap the pair Zi = (Xi ,Yi)

Suppose response and predictors are measured from a collection of
individuals selected at random

) Data pairs zi = (xi , yi ) can be regarded as iid realisation from
Zi = (Xi ,Yi ) drawn from a joint response-predictor distribution.

Bootstrap:

• Sample Z?
1 , . . . ,Z?

n completely at random with replacement from
z1, . . . , zn.

• Apply regression model on pseudo dataset to get �̂?.

Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions,
e.g. adequacy of regression model, than bootstrapping the residuals.



Copper-nickel alloy

Data: 13 measurements of corrosion loss (yi ) in copper-nickel alloys,
each with a specific iron content (xi ).

Question: Change in corrosion loss in the alloys as the iron content
increases, relative to corrosion loss where there is no iron, i.e. ✓ = �1/�0.

xi 0.01 0.48 0.71 0.95 1.19 0.01 0.48
yi 127.6 124.0 110.8 103.9 101.5 130.1 122.0
xi 1.44 0.71 1.96 0.01 1.44 1.96
yi 92.3 113.1 83.7 128.0 91.4 86.2

The observed data yield ✓̂ = �̂1/�̂0 = �0.185.
Show R-code demo-pairedBootstrap.R



Bias of an estimator

• We observe X1,X2, . . . ,Xn ⇠ F iid

• Parameter of interest ✓ = t(F )

• Estimator ✓̂ = s(X )

(may or may not be based on the plug-in principle)

• Bias definition

biasF ((̂✓), ✓) = EF [✓̂]� ✓ = EF [s(x)]� t(F )



Bootstrap estimate of bias

We want to estimate

biasF ((̂✓), ✓) = EF [s(x)]� t(F )

Idea: Apply the plug-in principle and define the bootstrap estimate of
bias as:

biasF̂ = EF̂ [s(x
?)]� t(F̂ )

where F̂ is an estimate of F (for example the empirical distribution)



Bias estimate of the bias

1. Generate B bootstrap samples x
1?, . . . , xB?.

2. Evaluate the corresponding parameter estimates

✓̂?(b) = s(xb?), b = 1, 2, . . . ,B

3. Approximate the bootstrap expectation EF̂ [s(x
?)] as:

✓̂?(·) = 1
B

BX

b=1

✓̂?(b)

4. Approximate the ideal bootstrap estimate for bias as

dbiasB = ✓̂?(·)� t(F̂ )



Bias corrected estimate

One we have estimated the bias we can compute the bias-corrected
estimator

✓̂c = ✓̂ � dbiasB = ✓̂ � [✓̂?(·)� t(F̂ )]

Note: Bias correction will not always give an improved estimator.
We have that Var(✓̂c) � Var(✓̂) so if the bias is small is better not to do
bias correction.



Bootstrap bias correction

Copper-nickel alloy example

The mean value of
✓̂? � ✓̂

among the pseudo datasets is about �0.00125.

The bias-corrected bootstrap estimate of �1/�0 is
�0.18507 � (�0.00125) = �0.184.



Confidence intervals (percentile method)

A “simple-minded” two-sided confidence interval with coverage (1 � ↵)

for a parameter ↵ is given by

[q?↵/2, q
?
1�↵/2]

where q
?
↵ is the ↵-bootstrap quantile in the distribution of ✓̂?.

Experience: Often good, but often too low coverage, i.e the true ↵ for
the interval is lower than the specified value.
Note: Better bootstrap confidence intervals exist and often have better
coverage accuracy — at the price of being somewhat more difficult to
implement



Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.
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Bootstrapping dependent data

Consider a first-order stationary autoregressive process, the AR(1) model:

Xt = ↵Xt�1 + ✏t

where |↵| < 1 and ✏t are iid with mean zero and constant variance.

Here, a method akin to bootstrapping the residuals for linear regression
can be applied.



AR(1) model: A model based approach

1. Use a standard method to estimate ↵

2. Define the estimated innovations êt = Xt � ↵̂Xt�1 for t = 2, . . . , n
and let ✏̄ be the mean of these.

3. Recenter êt to have mean zero by defining ✏̂t = êt � ē.

4. Resample n+ 1 values from the set {✏̂2, . . . , ✏̂n} with replacement to
yield pseudo innovations {✏?0, . . . , ✏?n}.

5. Generate pseudo data as X
?
0 = ✏?0 and X

?
t = ↵̂X ?

t�1 + ✏?t for
t = 1, . . . , n.

6. From each bootstrap sample compute ↵̂?



AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.

Remedy: Sample larger number of pseudo innovations and generate data
series earlier, i.e. X

?
k for k much less than zero. The first portion of the

data can be discarded as burn-in.

Show Lutenizing_boot.R code



Block bootstrap

An alternative bootstrap procedure for time series data is to draw blocks
from the observed series.

• Issue: We cannot simply sample from the individual observations, as
this would destroy the correlation that we try to capture.

• Idea: Block data to preserve covariance structure within each block,
even though structure is lost between blocks.

Here, we consider

• Non-moving blocks bootstrap

• Moving blocks bootstrap



Non-moving blocks bootstrap

Illustration and example:

See blackboard



Non-moving blocks bootstrap (II)

• Split x1, . . . , xn into b non-overlapping blocks of length l , where
ideally n = l · b.

• Sample B?
1 , . . . ,B?

b independently from {B1, . . . ,Bb} with
replacement. Concatenate these blocks to form a pseudo dataset
X ? = (B?

1 , . . . ,B?
b).

• Replicate this process B times and estimate for each bootstrap
sample ✓̂?i .

• Approximate the distribution of ✓̂ by the distribution of these B

pseudo values.



Moving blocks bootstrap

Illustration:

See blackboard

Show Lutenizing_boot.R code



Block bootstrap

• Idea: With blocks bootstrap, choose block size l large enough so
that observations more than l units apart will be nearly independent.

• Advantage: Less model dependent than residuals approach.
However, choice of block size l can be quite important, and effective
methods to choose l are still laking.



Permutation test

(related to idea of bootstrapping.)

Consider a medical experiment where rats are randomly assigned to
treatment and control groups. Under the null hypothesis the outcome
measured does not depend on the group assignment.

Idea: Shuffling the labels randomly among rates will not change the joint
null distribution of the data.



Recall: P-value

• Let t1 denote the original test statistic, e.g. difference of group
mean outcomes, and t2, . . . , tB the test statistics computed from the
datasets resulting from B permutations of labels.

• Under the null hypothesis t2, . . . , tB are from the same distribution
that yielded t1 ) We can compare them.

We can use the P-value:

P-value is the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming that
the null hypothesis is true.



Permutation test: Example

The simple model for independent data from two sources:

yi ⇠ F1, i = 1, . . . ,m

zj ⇠ F2, j = 1, . . . , n

x = (y , z) = (y1, . . . , ym, z1, . . . , zn)

The permutation method for hypothesis testing is based on resampling
under the null hypothesis H0 : F1 = F2, by permuting the order of the
original data to generate B bootstrap samples x⇤, valid given that the
null hypothesis is true.
The p-value for a test based on a test quantity t(x) can be estimated as
#{t(x⇤) � t(x)}/B . H0 is rejected if the p-value is smaller than a given
threshold (typically 0.05 or 0.01)



Permutation test: Example

1. We test the hypothesis

H0 :F1 = F2 against H1 : F1 6= F2

using the test quantity T = |y � z |, by means of the permutation
method to compute an estimate tof the p-value for the test.

2. The test only tests for differences that can be detected by the test
quantity. Consider an alternative test quantity

T =

����
( 1

m

Pm
i=1 yi)2

1
m

Pm
i=1 y2

i
� ( 1

n

Pn
j=1 zj)2

1
n

Pn
j=1 z2

j

����



Permutation test: R-code

see demo-permTest.R


