
The expectation-maximisation (EM) algorithm

• The expectation maximization (EM) algorithm (Dempster et al.,
2007) is an alternative procedure for the computation of maximum
likelihood estimators.

• In certain models – particularly missing data and data augmentation
problems – the EM algorithm appears naturally and simplifies the
maximum likelihood problem.



Motivation: mixture models

Histogram of data from a mixture of two gaussian distribution.
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! Mixture of two univariate normal distributions



Statistical model

• We model the data as coming from a normal mixture

yi ⇠ ⇡1N (µ1, 1) + ⇡2N (µ2, 1),

i = 1, . . . , n with ⇡1 2 (0, 1), ⇡1 + ⇡2 = 1

• The vector of unknowns is ✓ = (⇡1, µ1, µ2)>

• What is the likelihood function?

See Blackboard



EM for gaussian mixture

1. Take initial guesses for ⇡̂j , µ̂j .

2. E-Step: Compute

�̂zi (k) = E{I (zi = k)|xi ,✓} =
⇡̂k fk(xi |µ̂k , 1)P2
k=1 ⇡̂k fk(xi |µ̂k , 1)

3. M-Step: Compute the mixing parameters and weighted means:

⇡̂k =

P
i �zi (k)

n

µ̂k =

P
i �zi (k)xiP
i �zi (k)

4. Iterate steps 2 and 3 until convergence.



EM for gaussian mixtures
D
en
si
ty

−2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

We obtain ⇡̂1 = 0.439, µ̂1 = �0.08, µ̂2 = 3.534.



Direct Maximization

• Possible with the R function optim()

• Advantage: Standard errors are directly available

• Important: Choose good starting values



EM algorithm in general

Situation:

• Observed variables X

• Unobserved/hidden variables Z

• Complete dataset Y = (X ,Z )



The EM algorithm to maximize log L(✓; x)

We would like to maximize L(✓; x) regarding ✓, but we use L(✓; y) or
rather `(✓; y) = log L(✓; y).

Input: Function `(✓; y) and start value ✓(0)

i  0;

while not converged do

E-Step: Compute the conditional expectation

Q(✓) = Q(✓|✓(i)) = E(`(✓; y)|x ,✓(i)),

where `(✓; y) is the complete data loglikelihood ;

M-Step: Determine ✓(i+1) = argmax✓2⇥Q(✓)

Update iteration number: i  i + 1;

end



Gene Example

See Blackboard



Properties of the EM algorithm

+ In each iteration step of the EM algorithm the (incomplete)
likelihood is increased:

L(✓(i+1); y) � L(✓(i); y)

+ Parameter restrictions are (mostly) automatically fulfilled

� Convergence can be very slow – this especially depends on the
“amount” of missing data

� Standard errors are not directly available. Some methods exist to try
to approximate it, but they are not so easy to use in practice. Much
easier just to bootstrap your data!



Frequent applications of the EM algorithm

• Mixture models, cluster analysis

• Hidden Markov models

• Likelihood-based parameter estimation with missing data


