
Lecture 2: inverse transform technique

Let F be a distribution, and let U ∼ U [0, 1].

a) Let F be the distribution function of a random variable taking

non-negative integer values. The random variable X given by

X = xi if and only if Fi−1 < u ≤ Fi

has distribution function F .

b) If F is a continuous function, the random variable X = F−1(u)

has distribution function F.
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Review: inverse transform technique (II)
a) Discrete case:
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The inverse transform technique is conceptually easy, but

• in the discrete case, a large number of comparisons may be

necessary.

• in the continuous case, F−1 must be available.
2 / 1



Note

• The inversion method cannot always be used! We must have a

formula for F (x) and be able to find F−1(u). This is for

example not possible for the normal, χ2, gamma and

t-distributions.

• In some cases we can use known relationships between RV to

simulate
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Gamma distribution
Let X ∼ Ga(shape=α, rate=β), i.e.

f (x) =
βα

Γ(α)
xα−1e−β·x , x > 0.

If X1, . . . ,Xn
iid∼ Exp(λ), then Y =

∑n
i=1 Xi ∼ Ga(n, λ).

This gives how to simulate when α is an integer.

y = 0

for i = 1, 2, . . . , n do

generate u ∼ U(0, 1)

x ← − 1
λ log(u)

y ← y + x

end for

return y
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χ2 distribution

Remember: χ2
ν = Ga(ν2 ,

1
2),

X1, . . . ,Xn
iid∼ N (0, 1)⇒

∑n
i=1 X

2
i ∼ χ2

n.

Thus, we can simulate X ∼ Ga(n2 ,
1
2) by

x = 0

for i = 1, 2, . . . , n do

generate y ∼ N (0, 1) . Still have to learn how

x ← x + y2

end for

return x
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Gamma Distribution

We can now simulate Y ∼ Ga(α, β) distributed RV when

• α is integer

• ν = (0.5 α) is integer

How about the β parameter?

β is a rate (inverse scale) parameter,

i.e.

X ∼ Ga(α, 1) ⇔ X/β ∼ Ga(α, β)

This gives us a way to sample from a Gamma distribution Ga(n2 , β)

where n is an integer
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Gamma distribution - simulate X ∼ Ga(n2 , β)

x = 0

for i = 1, 2, . . . , n do

generate y ∼ N (0, 1) . Still have to learn how

x ← x + y2

end for . Ga(n2 ,
1
2),χ2

n

x ← 1
2x . Ga(n2 , 1)

x ← 1
β x . Ga(n2 , β)

return x
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Linear transformations
Many distributions have scale parameters, for example

X ∼ N (0, 1) ⇔ σX ∼ N (0, σ2)

X ∼ Exp(1) ⇔ 1
λ
X ∼ Exp(λ)

X ∼ U [0, 1] ⇔ βX ∼ U [0, β]

Adding a constant can also help in some situations

X ∼ N (0, 1) ⇔ X + µ ∼ N (µ, 1)

and thereby

X ∼ N (0, 1) ⇔ σX + µ ∼ N (µ, σ2)
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Review: Change of variable

let X ∼ fX (x) and Y = g(X ) with g(·) being a one-to-one function

so that Y = g−1(X ), then:

fY (y) = fX (g−1(x))|d g−1(x)

d x
|
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Review scaling: Change of variables

X ∼ Exp(1). We are interested in Y = 1
λX , i.e. y = g(x) = 1

λx .

g−1(y) = λy
dg−1(y)

dy
= λ

Application of the change of variables formula leads to:

fY (y) = exp(−λy)λ

It follows: Y ∼ Exp(λ).

Exercise: Check other transformations, we mentioned.
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Bivariate techniques

Remember: If (x1, x2) ∼ fX (x1, x2)

and (y1, y2) = g(x1, x2)

m

(x1, x2) = g−1(y1, y2)

where g is a one-to-one differentiable transformation. Then
fY (y1, y2) = fX (g−1(y1, y2))|J|

with the determinant of the Jacobian matrix J

|J| =

∣∣∣∣∣ ∂x1
∂y1

∂x2
∂y1

∂x1
∂y2

∂x2
∂y2

∣∣∣∣∣
⇒ Multivariate version of the change-of-variables transformation
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Bivariate techniques (II)

If we know how to simulate from fX (x1, x2) we can also simulate

from fY (y1, y2) by

(x1, x2) ∼ fX (x1, x2)

(y1, y2) = g(x1, x2)

Return (y1, y2).

12 / 1



Example: Normal distribution (Box-Muller)

see blackboard
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Review: Box-Muller algorithm

Generate

x1 ∼ U(0, 2π)

x2 ∼ exp(0.5)

Compute

y1 ←
√

(x2) cos(x1)

y2 ←
√

(x2) sin(x1)

return (y1, y2)
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Ratio-of-uniforms method
General method for arbitrary densities f known up to a

proportionality constant.

Theorem
Let f ?(x) be a non-negative function with

∫∞
−∞ f ?(x)dx <∞. Let

Cf = {(x1, x2) | 0 ≤ x1 ≤
√
f ?
(
x2
x1

)
}.

a) Then Cf has a finite area

Let (x1, x2) be uniformly distributed on Cf .

b) Then y = x2
x1

has a distribution with density

f (y) =
f ?(y)∫∞

−∞ f ?(u)du
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Example: Standard Cauchy distribution

see blackboard
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Algorithm to sample form a standard Cauchy

Generate (x1, x2) from U(Cf ) . How can we do this?

Compute y = x2
x1

return y
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Proof of theorem

see blackboard
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