Lecture 2: inverse transform technique

Let F be a distribution, and let $U \sim \mathcal{U}[0, 1]$.

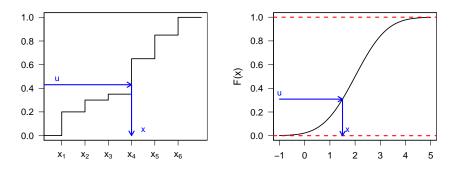
a) Let F be the distribution function of a random variable taking non-negative integer values. The random variable X given by

$$X = x_i$$
 if and only if $F_{i-1} < u \le F_i$

has distribution function F.

b) If F is a continuous function, the random variable $X = F^{-1}(u)$ has distribution function F.

Review: inverse transform technique (II) a) Discrete case: b) Continuous case:



The inverse transform technique is conceptually easy, but

- in the discrete case, a large number of comparisons may be necessary.
- in the continuous case, F^{-1} must be available.

Note

- The inversion method cannot always be used! We must have a formula for *F*(*x*) and be able to find *F*⁻¹(*u*). This is for example not possible for the normal, χ², gamma and t-distributions.
- In some cases we can use known relationships between RV to simulate

Gamma distribution

Let
$$X \sim Ga(shape=\alpha, rate=\beta)$$
, i.e.
$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta \cdot x}, x > 0.$$

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\lambda)$, then $Y = \sum_{i=1}^n X_i \sim \operatorname{Ga}(n, \lambda)$.

This gives how to simulate when α is an integer.

$$y = 0$$

for $i = 1, 2, ..., n$ do
generate $u \sim U(0, 1)$
 $x \leftarrow -\frac{1}{\lambda} \log(u)$
 $y \leftarrow y + x$
end for
return y

χ^2 distribution

Remember:
$$\chi_{\nu}^{2} = Ga(\frac{\nu}{2}, \frac{1}{2}),$$

 $X_{1}, \dots, X_{n} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1) \Rightarrow \sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}.$
Thus, we can simulate $X \sim Ga(\frac{n}{2}, \frac{1}{2})$ by
 $x = 0$
for $i = 1, 2, \dots, n$ do
generate $y \sim \mathcal{N}(0, 1)$ \triangleright Still have to learn how
 $x \leftarrow x + y^{2}$
end for

return x

Gamma Distribution

We can now simulate $Y \sim Ga(\alpha, \beta)$ distributed RV when

- α is integer
- $\nu = (0.5 \ \alpha)$ is integer

How about the β parameter?

Gamma Distribution

We can now simulate $Y \sim Ga(\alpha, \beta)$ distributed RV when

- α is integer
- $\nu = (0.5 \alpha)$ is integer

How about the β parameter? β is a rate (inverse scale) parameter, i.e.

$$X \sim \mathsf{Ga}(\alpha, 1) \qquad \Leftrightarrow \qquad X/\beta \sim \mathsf{Ga}(\alpha, \beta)$$

This gives us a way to sample from a Gamma distribution $Ga(\frac{n}{2},\beta)$ where *n* is an integer Gamma distribution - simulate $X \sim Ga(\frac{n}{2},\beta)$

$$x = 0$$

for $i = 1, 2, ..., n$ do
generate $y \sim \mathcal{N}(0, 1)$
 $x \leftarrow x + y^2$
end for
 $x \leftarrow \frac{1}{2}x$
 $x \leftarrow \frac{1}{\beta}x$
return x

▷ Still have to learn how

$$\triangleright \operatorname{Ga}(\frac{n}{2},\frac{1}{2}),\chi_n^2$$
$$\triangleright \operatorname{Ga}(\frac{n}{2},1)$$
$$\triangleright \operatorname{Ga}(\frac{n}{2},\beta)$$

Linear transformations

Many distributions have scale parameters, for example

$X \sim \mathcal{N}(0,1)$	\Leftrightarrow	$\sigma X \sim \mathcal{N}(0, \sigma^2)$
$X \sim Exp(1)$	\Leftrightarrow	$rac{1}{\lambda} X \sim Exp(\lambda)$
$X \sim \mathcal{U}[0,1]$	\Leftrightarrow	$eta X \sim \mathcal{U}[0,eta]$

Linear transformations

Many distributions have scale parameters, for example

$X \sim \mathcal{N}(0,1)$	\Leftrightarrow	$\sigma X \sim \mathcal{N}(0, \sigma^2)$
$X \sim Exp(1)$	\Leftrightarrow	$rac{1}{\lambda} X \sim Exp(\lambda)$
$X \sim \mathcal{U}[0,1]$	\Leftrightarrow	$eta X \sim \mathcal{U}[0,eta]$

Adding a constant can also help in some situations

$$X \sim \mathcal{N}(0,1) \qquad \qquad \Leftrightarrow \qquad X+\mu \sim \mathcal{N}(\mu,1)$$

and thereby

$$X \sim \mathcal{N}(0,1) \qquad \quad \Leftrightarrow \qquad \sigma X + \mu \sim \mathcal{N}(\mu,\sigma^2)$$

Review: Change of variable

let $X \sim f_X(x)$ and Y = g(X) with $g(\cdot)$ being a one-to-one function so that $Y = g^{-1}(X)$, then:

$$f_Y(y) = f_X(g^{-1}(x)) |\frac{d g^{-1}(x)}{d x}|$$

Review scaling: Change of variables

 $X \sim \text{Exp}(1)$. We are interested in $Y = \frac{1}{\lambda}X$, i.e. $y = g(x) = \frac{1}{\lambda}x$.

$$g^{-1}(y) = \lambda y$$
 $\frac{dg^{-1}(y)}{dy} = \lambda$

Application of the change of variables formula leads to:

$$f_Y(y) = \exp(-\lambda y)\lambda$$

It follows: $Y \sim \text{Exp}(\lambda)$.

Exercise: Check other transformations, we mentioned.

Bivariate techniques

Remember:

$$\begin{aligned} \mathsf{lf}(x_1, x_2) &\sim f_X(x_1, x_2) \\ \mathsf{and}(y_1, y_2) &= g(x_1, x_2) \\ & \\ & \\ & \\ & \\ & (x_1, x_2) &= g^{-1}(y_1, y_2) \end{aligned}$$

where g is a one-to-one differentiable transformation. Then $f_Y(y_1,y_2) = f_X(g^{-1}(y_1,y_2))|\mathbf{J}|$

with the determinant of the Jacobian matrix ${\bf J}$

$$|\mathbf{J}| = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

 \Rightarrow Multivariate version of the change-of-variables transformation

Bivariate techniques (II)

If we know how to simulate from $f_X(x_1, x_2)$ we can also simulate from $f_Y(y_1, y_2)$ by

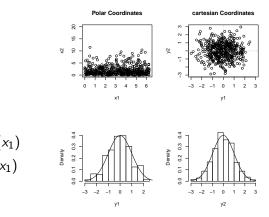
 $(x_1, x_2) \sim f_X(x_1, x_2)$ $(y_1, y_2) = g(x_1, x_2)$

Return (y_1, y_2) .

Example: Normal distribution (Box-Muller)

see blackboard

Review: Box-Muller algorithm



 $x_1 \sim U(0, 2\pi)$ $x_2 \sim \exp(0.5)$ Compute $y_1 \leftarrow \sqrt{(x_2)}\cos(x_1)$ $y_2 \leftarrow \sqrt{(x_2)}\sin(x_1)$

Generate

return (y_1, y_2)

Ratio-of-uniforms method

General method for arbitrary densities f known up to a proportionality constant.

Theorem

Let $f^{\star}(x)$ be a non-negative function with $\int_{-\infty}^{\infty} f^{\star}(x) dx < \infty$. Let $C_f = \{(x_1, x_2) \mid 0 \le x_1 \le \sqrt{f^{\star}\left(\frac{x_2}{x_1}\right)}\}.$

a) Then C_f has a finite area

Let (x_1, x_2) be uniformly distributed on C_f .

b) Then $y = \frac{x_2}{x_1}$ has a distribution with density

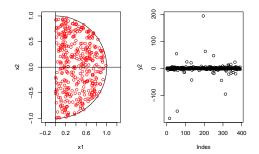
$$f(y) = \frac{f^{\star}(y)}{\int_{-\infty}^{\infty} f^{\star}(u) du}$$

Example: Standard Cauchy distribution

see blackboard

Algorithm to sample form a standard Cauchy

Generate (x_1, x_2) from $\mathcal{U}(C_f)$ Compute $y = \frac{x_2}{x_1}$ return y \triangleright How can we do this?



Proof of theorem

see blackboard