Lecture 2: inverse transform technique

Let F be a distribution, and let $U \sim \mathcal{U}[0,1]$.
a) Let F be the distribution function of a random variable taking non-negative integer values. The random variable X given by

$$
X=x_{i} \quad \text { if and only if } \quad F_{i-1}<u \leq F_{i}
$$

has distribution function F.
b) If F is a continuous function, the random variable $X=F^{-1}(u)$ has distribution function F.

Review: inverse transform technique (II)

a) Discrete case:

b) Continuous case:

The inverse transform technique is conceptually easy, but

- in the discrete case, a large number of comparisons may be necessary.
- in the continuous case, F^{-1} must be available.

Note

- The inversion method cannot always be used! We must have a formula for $F(x)$ and be able to find $F^{-1}(u)$. This is for example not possible for the normal, χ^{2}, gamma and t-distributions.
- In some cases we can use known relationships between RV to simulate

Gamma distribution

Let $X \sim \operatorname{Ga}($ shape $=\alpha$, rate $=\beta$), i.e.

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta \cdot x}, x>0
$$

If $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\lambda)$, then $Y=\sum_{i=1}^{n} X_{i} \sim \operatorname{Ga}(n, \lambda)$.
This gives how to simulate when α is an integer.

$$
\begin{aligned}
& y=0 \\
& \text { for } i=1,2, \ldots, n \text { do } \\
& \quad \text { generate } u \sim U(0,1) \\
& \quad x \leftarrow-\frac{1}{\lambda} \log (u) \\
& \quad y \leftarrow y+x \\
& \text { end for } \\
& \text { return } \mathrm{y}
\end{aligned}
$$

χ^{2} distribution

Remember: $\chi_{\nu}^{2}=\operatorname{Ga}\left(\frac{\nu}{2}, \frac{1}{2}\right)$,
$X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1) \Rightarrow \sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}$.
Thus, we can simulate $X \sim \mathrm{Ga}\left(\frac{n}{2}, \frac{1}{2}\right)$ by
$x=0$
for $i=1,2, \ldots, n$ do
generate $y \sim \mathcal{N}(0,1) \quad \triangleright$ Still have to learn how
$x \leftarrow x+y^{2}$
end for
return \times

Gamma Distribution

We can now simulate $Y \sim \mathrm{Ga}(\alpha, \beta)$ distributed RV when

- α is integer
- $\nu=(0.5 \alpha)$ is integer

How about the β parameter?

Gamma Distribution

We can now simulate $Y \sim \operatorname{Ga}(\alpha, \beta)$ distributed RV when

- α is integer
- $\nu=(0.5 \alpha)$ is integer

How about the β parameter? β is a rate (inverse scale) parameter, i.e.

$$
X \sim \operatorname{Ga}(\alpha, 1) \quad \Leftrightarrow \quad X / \beta \sim \operatorname{Ga}(\alpha, \beta)
$$

This gives us a way to sample from a Gamma distribution $\mathrm{Ga}\left(\frac{n}{2}, \beta\right)$ where n is an integer

Gamma distribution - simulate $X \sim \operatorname{Ga}\left(\frac{n}{2}, \beta\right)$

$x=0$
for $i=1,2, \ldots, n$ do
generate $y \sim \mathcal{N}(0,1)$
\triangleright Still have to learn how

$$
x \leftarrow x+y^{2}
$$

end for
$x \leftarrow \frac{1}{2} x$
$x \leftarrow \frac{1}{\beta} x$
return x
$\triangleright \operatorname{Ga}\left(\frac{n}{2}, \frac{1}{2}\right), \chi_{n}^{2}$
$\triangleright \mathrm{Ga}\left(\frac{n}{2}, 1\right)$
$\triangleright \mathrm{Ga}\left(\frac{n}{2}, \beta\right)$

Linear transformations

Many distributions have scale parameters, for example

$$
\begin{array}{lll}
X \sim \mathcal{N}(0,1) & \Leftrightarrow & \sigma X \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
X \sim \operatorname{Exp}(1) & \Leftrightarrow & \frac{1}{\lambda} X \sim \operatorname{Exp}(\lambda) \\
X \sim \mathcal{U}[0,1] & \Leftrightarrow & \beta X \sim \mathcal{U}[0, \beta]
\end{array}
$$

Linear transformations

Many distributions have scale parameters, for example

$$
\begin{array}{lll}
X \sim \mathcal{N}(0,1) & \Leftrightarrow & \sigma X \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
X \sim \operatorname{Exp}(1) & \Leftrightarrow & \frac{1}{\lambda} X \sim \operatorname{Exp}(\lambda) \\
X \sim \mathcal{U}[0,1] & \Leftrightarrow & \beta X \sim \mathcal{U}[0, \beta]
\end{array}
$$

Adding a constant can also help in some situations

$$
X \sim \mathcal{N}(0,1) \quad \Leftrightarrow \quad X+\mu \sim \mathcal{N}(\mu, 1)
$$

and thereby

$$
X \sim \mathcal{N}(0,1) \quad \Leftrightarrow \quad \sigma X+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Review: Change of variable

let $X \sim f_{X}(x)$ and $Y=g(X)$ with $g(\cdot)$ being a one-to-one function so that $Y=g^{-1}(X)$, then:

$$
f_{Y}(y)=f_{X}\left(g^{-1}(x)\right)\left|\frac{d g^{-1}(x)}{d x}\right|
$$

Review scaling: Change of variables

$X \sim \operatorname{Exp}(1)$. We are interested in $Y=\frac{1}{\lambda} X$, i.e. $y=g(x)=\frac{1}{\lambda} x$.

$$
g^{-1}(y)=\lambda y \quad \frac{d g^{-1}(y)}{d y}=\lambda
$$

Application of the change of variables formula leads to:

$$
f_{Y}(y)=\exp (-\lambda y) \lambda
$$

It follows: $Y \sim \operatorname{Exp}(\lambda)$.

Exercise: Check other transformations, we mentioned.

Bivariate techniques

Remember:

$$
\begin{aligned}
\text { If }\left(x_{1}, x_{2}\right) & \sim f_{X}\left(x_{1}, x_{2}\right) \\
\text { and }\left(y_{1}, y_{2}\right) & =g\left(x_{1}, x_{2}\right) \\
& \Uparrow \\
\left(x_{1}, x_{2}\right) & =g^{-1}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

where g is a one-to-one differentiable transformation. Then

$$
f_{Y}\left(y_{1}, y_{2}\right)=f_{X}\left(g^{-1}\left(y_{1}, y_{2}\right)\right)|\mathbf{J}|
$$

with the determinant of the Jacobian matrix J

$$
|\mathbf{J}|=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|
$$

\Rightarrow Multivariate version of the change-of-variables transformation

Bivariate techniques (II)

If we know how to simulate from $f_{X}\left(x_{1}, x_{2}\right)$ we can also simulate from $f_{Y}\left(y_{1}, y_{2}\right)$ by

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \sim f_{X}\left(x_{1}, x_{2}\right) \\
& \left(y_{1}, y_{2}\right)=g\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Return $\left(y_{1}, y_{2}\right)$.

Example: Normal distribution (Box-Muller)

see blackboard

Review: Box-Muller algorithm

Generate

$x_{1} \sim U(0,2 \pi)$
$x_{2} \sim \exp (0.5)$
Compute
$\left.y_{1} \leftarrow \sqrt{(} x_{2}\right) \cos \left(x_{1}\right)$
$\left.y_{2} \leftarrow \sqrt{(} x_{2}\right) \sin \left(x_{1}\right)$
return $\left(y_{1}, y_{2}\right)$

x 1

Ratio-of-uniforms method

General method for arbitrary densities f known up to a proportionality constant.

Theorem
Let $f^{\star}(x)$ be a non-negative function with $\int_{-\infty}^{\infty} f^{\star}(x) d x<\infty$. Let
$C_{f}=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, 0 \leq x_{1} \leq \sqrt{f^{\star}\left(\frac{x_{2}}{x_{1}}\right)}\right.\right\}$.
a) Then C_{f} has a finite area

Let $\left(x_{1}, x_{2}\right)$ be uniformly distributed on C_{f}.
b) Then $y=\frac{x_{2}}{x_{1}}$ has a distribution with density

$$
f(y)=\frac{f^{\star}(y)}{\int_{-\infty}^{\infty} f^{\star}(u) d u}
$$

Example: Standard Cauchy distribution

see blackboard

Algorithm to sample form a standard Cauchy

Generate $\left(x_{1}, x_{2}\right)$ from $\mathcal{U}\left(C_{f}\right)$
\triangleright How can we do this?
Compute $y=\frac{x_{2}}{x_{1}}$
return y

Proof of theorem

see blackboard

