
Lecture 3: Review

• Inversion Method:
I Discrete RV
I Continuous RV (where it is possible to compute F−1(x))

• Use known relationship between RV
I Examples: Gamma, χ2 distributions

• Change of variables
I Univariate: scale and location parameters
I Bivariate: Box-Muller algorithm

• Ratio of uniforms method
I Don’t need to know the normalising constant
I Example: Cauchy distribution
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Review: Bivariate techniques

• (x1, x2) ∼ fX (x1, x2)

• (y1, y2) = g(x1, x2)⇔ (x1, x2) = g−1(y1, y2)

• fY (y1, y2) = fX (g−1(y1, y2)) · |J|

Example: Box-Muller to simulate from N (0, 1)
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Review: Box-Muller algorithm

Let

X1 ∼ U [0, 2π] and X2 ∼ Exp
(
1
2

)
independently (We already know how to do this).

Let
y1 =

√
x2 cos x1

y2 =
√
x2 sin x2

⇔
x1 = tan−1

(
y2
y1

)
x2 = y2

1 + y2
2

This defines a one-to-one function g .

Then hat y1 ∼ N (0, 1) and y2 ∼ N (0, 1) independently.

Graphical interpretation:

Relationship between polar and Cartesian coordinates.
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Review: Ratio-of-uniforms method

• f ?(x) non-negative function with
∫∞
−∞ f ?(x)dx <∞

• Cf = {(x1, x2)|0 ≤ x1 ≤
√
f ?(x2/x1)}

Thus

a) then Cf has finite area.

Let (x1, x2) be uniformly distributed on Cf .

b) Let y = x2
x1
, then f (y) = f ?(y)∫∞

−∞ f ?(u)du

In general, it can be difficult to sample uniformly from Cf ....
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How to sample from Cf ?
but it is easy in some special cases....

We have Cf = {(x1, x2) | 0 ≤ x1 ≤
√
f ?
(
x2
x1

)
}.

If f ?(x) and x2f ?(x) are bounded we have

Cf ⊂ [0, a]× [b−, b+], with

• a =
√

supx f
?(x) > 0

• b+ =
√

supx≥0(x2f ?(x))

• b− = −
√

supx≤0(x2f ?(x))

Proof: see blackboard

Use Rejection sampling to sample from Cf .
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Methods based on mixtures

Remember: f (x1, x2) = f (x1|x2)f (x2)

Thus: To generate (x1, x2) ∼ f (x1, x2) we can

• generate x2 ∼ f (x2)

• generate x1 ∼ f (x1|x2), where x2 is the value just generated.

Note: This mechanism automatically provides a value x1 from its

marginal distribution, i.e. x1 ∼ f (x1) =
∫∞
−∞ f (x1, x2)dx2.

⇒ We are able to generate a value for x1 even when its marginal

density is awkward to sample from directly.
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Example: Simulation from Student-t (I)

The density of a Student t distribution with n > 0 degrees of

freedom, mean µ and scale σ2 is

ft(x) =
Γ
(
n+1
2

)
Γ
(
n
2

) 1√
nπσ2

[
1 +

1
n

(
x − µ
σ

)2
]− n+1

2

, −∞ < x <∞.

Let
x2 ∼ Ga

(n
2
,
n

2

)
x1|x2 ∼ N

(
µ,
σ2

x2

)
It can be shown that then

x1 ∼ tn(µ, σ2) (show yourself)

7 / 1



Example: Simulation from Student-t (II)

Thus, we can simulate x1 ∼ tn(µ, σ2) by

Generate x1 ∼ Ga
(
n
2 ,

n
2

)
Generate x2|x1 ∼ N

(
µ, σ

2

x2

)
return x2

Another application is, i.e. mixture of two normals.
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Multivariate normal distribution

x = (x1, . . . , xd)> ∼ Nd(µ,Σ) if the density is

f (x) =
1

(2π)
d
2
· 1√
|Σ|

exp

(
−1
2

(x − µ)>Σ−1(x − µ)

)
with

• x ∈ Rd

• µ = (µ1, . . . , µd)>

• Σ ∈ Rd×d , Σ must be positive definite.
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Important properties (I)
Important properties of Nd(µ,Σ)

(known from “Linear statistical models”)

i) Linear transformations:

x ∼ Nd(µ,Σ) ⇒ y = Ax + b ∼ Nr (Aµ + b,AΣA>), with

A ∈ Rr×d , b ∈ Rr .

ii) Marginal distributions:

Let x ∼ Nd(µ,Σ) with

x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)
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Important properties (II)

iii) Conditional distributions:

With the same notation as in ii) we also have

x1|x2 ∼ N (µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21)

iv) Quadratic forms:

x ∼ Nd(µ,Σ) ⇒ (x − µ)>Σ−1(x − µ) ∼ χ2
d
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Simulation from the multivariate normal

How can we simulate from Nd(µ,Σ)?

Let x ∼ Nd(0, I)

y = µ + Ax
i)⇒ y ∼ N (µ,AA>)

Thus, if we choose A so that AA> = Σ we are done.

Note: There are several choices of A. A popular choice is to let A

be the Cholesky decomposition of Σ.
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Rejection sampling
We discuss a general approach to generate samples from some

target distribution with density f (x), called rejection sampling,

without actually sampling from f (x).

Rejection sampling

The goal is to effectively simulate a random number X ∼ f (x)

using two independent random numbers

• U ∼ U(0, 1) and

• X ∼ g(x),

where g(x) is called proposal density and can be chosen arbitrarily

under the assumption that there exists an c ≥ 1 with

f (x) ≤ c · g(x) for all x ∈ R .

13 / 1



Rejection sampling
We discuss a general approach to generate samples from some

target distribution with density f (x), called rejection sampling,

without actually sampling from f (x).

Rejection sampling

The goal is to effectively simulate a random number X ∼ f (x)

using two independent random numbers

• U ∼ U(0, 1) and

• X ∼ g(x),

where g(x) is called proposal density and can be chosen arbitrarily

under the assumption that there exists an c ≥ 1 with

f (x) ≤ c · g(x) for all x ∈ R .

13 / 1



Rejection sampling - Algorithm

Let f (x) denote the target density.

1. Generate x ∼ g(x)

2. Generate u ∼ U(0, 1).

3. Compute α = 1
c ·

f (x)
g(x) .

4. If u ≤ α return x (acceptance step).

5. Otherwise go back to (1) (rejection step).

Note α ∈ [0, 1] and α is called acceptance probability.

Claim: The returned x is distributed according to f (x).
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Proof

See blackboard
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Rejection sampling

• We want x ∼ f (x) (density).

• We know how to generate realisations from a density g(x)

• We know a a value c > 1, so that f (x)
g(x) ≤ c for all x where

f (x) > 0.

Algorithm:

finished = 0

while (finished = 0)

generate x ∼ g(x)

compute α = 1
c ·

f (x)
g(x)

generate u ∼ U[0, 1]

if u ≤ α set finished = 1

return x
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Rejection sampling

c * g(x)

f(x)f(x)

Alternative c *g(x)
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Rejection sampling

What is the overall acceptance probability??

P(U ≤ 1
c
· g(X )

f (X )
) =

∫ ∞
−∞

f (x)

c · g(x)
g(x) dx =

∫ ∞
−∞

f (x)

c
dx = c−1.

The single trials are independent, so the number of trials up to the

first success is geometrically distributed with parameter 1/c .

The expected number of trials up to the first success is therefore c .

Problem:
In high-dimensional spaces c is generally large so many samples will

get rejected.
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Example: Sample from N(0, 1) with rejection sampling
Target distribution:

f (x) =
1√
2π

exp

(
−x2

2

)
.

Proposal distribution:

g(x) =
λ

2
exp(−λ|x |), λ > 0

−4 −2 0 2 4
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4
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Sampling from a double exponential

Proposal distribution:

g(x) =
λ

2
exp(−λ|x |), λ > 0

How to sample from g(x):
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Sampling from a double exponential
Proposal distribution:

g(x) =
λ

2
exp(−λ|x |), λ > 0

How to sample from g(x):

Simulate x ∼ exp(λ)

Simulate

y ∼ Bern(p = 0.5)

if y = 0 then
x = z

else
x = −z

end if
return x
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Example: Sample from N(0, 1) with rejection sampling

Target distribution:

f (x) =
1√
2π

exp

(
−x2

2

)
.

Proposal distribution:

g(x) =
λ

2
exp(−λ|x |), λ > 0

• Need to find c such that f (x)
g(x) < c , ∀x where f (x) > 0
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Example: Find an efficient bound c

f (x)

g(x)
≤
√

2
π
λ−1 exp

(
1
2
λ2
)
≤ c

Which value of λ should we choose?

We need to choose the smallest possible value for c
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Example: Illustration
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• Left: Comparison of f (x) versus c · g(x) when λ = 1 and

λ = 1.
• Right: Distribution of accepted samples compared to f (x).

10000 samples were generated and 7582 accepted for λ = 1.

10000 samples were generated and 4774 accepted for λ = 0.5. 24 / 1


