Lecture 3: Review

- Inversion Method:
- Discrete RV
- Continuous RV (where it is possible to compute $F^{-1}(x)$)
- Use known relationship between RV
- Examples: Gamma, χ^{2} distributions
- Change of variables
- Univariate: scale and location parameters
- Bivariate: Box-Muller algorithm
- Ratio of uniforms method
- Don't need to know the normalising constant
- Example: Cauchy distribution

Review: Bivariate techniques

- $\left(x_{1}, x_{2}\right) \sim f_{X}\left(x_{1}, x_{2}\right)$
- $\left(y_{1}, y_{2}\right)=g\left(x_{1}, x_{2}\right) \Leftrightarrow\left(x_{1}, x_{2}\right)=g^{-1}\left(y_{1}, y_{2}\right)$
- $f_{Y}\left(y_{1}, y_{2}\right)=f_{X}\left(g^{-1}\left(y_{1}, y_{2}\right)\right) \cdot|\mathbf{J}|$

Example: Box-Muller to simulate from $\mathcal{N}(0,1)$

Review: Box-Muller algorithm

Let

$$
X_{1} \sim \mathcal{U}[0,2 \pi] \text { and } X_{2} \sim \operatorname{Exp}\left(\frac{1}{2}\right)
$$

independently (We already know how to do this).
Let

$$
\left.\begin{array}{l}
y_{1}=\sqrt{x_{2}} \cos x_{1} \\
y_{2}=\sqrt{x_{2}} \sin x_{2}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
x_{1}=\tan ^{-1}\left(\frac{y_{2}}{y_{1}}\right) \\
x_{2}=y_{1}^{2}+y_{2}^{2}
\end{array}\right.
$$

This defines a one-to-one function g.
Then hat $y_{1} \sim \mathcal{N}(0,1)$ and $y_{2} \sim \mathcal{N}(0,1)$ independently.

Graphical interpretation:
Relationship between polar and Cartesian coordinates.

Review: Ratio-of-uniforms method

- $f^{\star}(x)$ non-negative function with $\int_{-\infty}^{\infty} f^{\star}(x) d x<\infty$
- $C_{f}=\left\{\left(x_{1}, x_{2}\right) \mid 0 \leq x_{1} \leq \sqrt{f^{\star}\left(x_{2} / x_{1}\right)}\right\}$

Thus
a) then C_{f} has finite area.

Let $\left(x_{1}, x_{2}\right)$ be uniformly distributed on C_{f}.
b) Let $y=\frac{x_{2}}{x_{1}}$, then $f(y)=\frac{f^{\star}(y)}{\int_{-\infty}^{\infty} f \star(u) d u}$

In general, it can be difficult to sample uniformly from $C_{f} \ldots$

How to sample from C_{f} ?

but it is easy in some special cases....
We have $C_{f}=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, 0 \leq x_{1} \leq \sqrt{f^{\star}\left(\frac{x_{2}}{x_{1}}\right)}\right.\right\}$.
If $f^{\star}(x)$ and $x^{2} f^{\star}(x)$ are bounded we have

$$
C_{f} \subset[0, a] \times\left[b_{-}, b_{+}\right], \quad \text { with }
$$

- $a=\sqrt{\sup _{x} f^{\star}(x)}>0$
- $b_{+}=\sqrt{\sup _{x \geq 0}\left(x^{2} f^{\star}(x)\right)}$
- $b_{-}=-\sqrt{\sup _{x \leq 0}\left(x^{2} f^{\star}(x)\right)}$

Proof: see blackboard
Use Rejection sampling to sample from C_{f}.

Methods based on mixtures

Remember: $f\left(x_{1}, x_{2}\right)=f\left(x_{1} \mid x_{2}\right) f\left(x_{2}\right)$

Thus: To generate $\left(x_{1}, x_{2}\right) \sim f\left(x_{1}, x_{2}\right)$ we can

- generate $x_{2} \sim f\left(x_{2}\right)$
- generate $x_{1} \sim f\left(x_{1} \mid x_{2}\right)$, where x_{2} is the value just generated.

Note: This mechanism automatically provides a value x_{1} from its marginal distribution, i.e. $x_{1} \sim f\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}$.
\Rightarrow We are able to generate a value for x_{1} even when its marginal density is awkward to sample from directly.

Example: Simulation from Student-t (I)

The density of a Student t distribution with $n>0$ degrees of freedom, mean μ and scale σ^{2} is
$f_{t}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{1}{\sqrt{n \pi \sigma^{2}}}\left[1+\frac{1}{n}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\frac{n+1}{2}}, \quad-\infty<x<\infty$.
Let

$$
\begin{aligned}
x_{2} & \sim \mathrm{Ga}\left(\frac{n}{2}, \frac{n}{2}\right) \\
x_{1} \mid x_{2} & \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{x_{2}}\right)
\end{aligned}
$$

It can be shown that then

$$
x_{1} \sim t_{n}\left(\mu, \sigma^{2}\right) \quad \text { (show yourself) }
$$

Example: Simulation from Student-t (II)

Thus, we can simulate $x_{1} \sim t_{n}\left(\mu, \sigma^{2}\right)$ by

Generate $x_{1} \sim \operatorname{Ga}\left(\frac{n}{2}, \frac{n}{2}\right)$
Generate $x_{2} \left\lvert\, x_{1} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{x_{2}}\right)\right.$
return x_{2}
Another application is, i.e. mixture of two normals.

Multivariate normal distribution

$\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$ if the density is

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{\frac{d}{2}}} \cdot \frac{1}{\sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

with

- $x \in \mathbb{R}^{d}$
- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)^{\top}$
- $\Sigma \in \mathbb{R}^{d \times d}, \Sigma$ must be positive definite.

Important properties (I)

Important properties of $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$
(known from "Linear statistical models")
i) Linear transformations:
$\boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \Rightarrow \boldsymbol{y}=\mathbf{A} \boldsymbol{x}+\boldsymbol{b} \sim \mathcal{N}_{r}\left(\mathbf{A} \boldsymbol{\mu}+\boldsymbol{b}, \mathbf{A} \Sigma \mathbf{A}^{\top}\right)$, with
$\mathbf{A} \in \mathbb{R}^{r \times d}, \boldsymbol{b} \in \mathbb{R}^{r}$.
ii) Marginal distributions:

Let $\boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$ with

$$
\boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{x}_{1} \\
\boldsymbol{x}_{2}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

Then

$$
\begin{aligned}
& x_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{11}\right) \\
& x_{2} \sim \mathcal{N}\left(\mu_{2}, \Sigma_{22}\right)
\end{aligned}
$$

Important properties (II)

iii) Conditional distributions:

With the same notation as in ii) we also have

$$
x_{1} \mid x_{2} \sim \mathcal{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

iv) Quadratic forms:

$$
\boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \Rightarrow(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \sim \chi_{d}^{2}
$$

Simulation from the multivariate normal

How can we simulate from $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$?

Simulation from the multivariate normal

How can we simulate from $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$?
Let $x \sim \mathcal{N}_{d}(0, \mathrm{I})$

Simulation from the multivariate normal

How can we simulate from $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$?
Let $x \sim \mathcal{N}_{d}(0, \mathrm{I})$

$$
\boldsymbol{y}=\boldsymbol{\mu}+\mathbf{A} \boldsymbol{x} \quad \stackrel{\text { i) }}{\Rightarrow} \quad \boldsymbol{y} \sim \mathcal{N}\left(\boldsymbol{\mu}, \mathbf{A A}^{\top}\right)
$$

Thus, if we choose \mathbf{A} so that $\mathbf{A A}^{\top}=\Sigma$ we are done.

Note: There are several choices of \mathbf{A}. A popular choice is to let \mathbf{A} be the Cholesky decomposition of Σ.

Rejection sampling

We discuss a general approach to generate samples from some target distribution with density $f(x)$, called rejection sampling, without actually sampling from $f(x)$.

Rejection sampling

We discuss a general approach to generate samples from some target distribution with density $f(x)$, called rejection sampling, without actually sampling from $f(x)$.

Rejection sampling

The goal is to effectively simulate a random number $X \sim f(x)$ using two independent random numbers

- $U \sim \mathrm{U}(0,1)$ and
- $X \sim g(x)$,
where $g(x)$ is called proposal density and can be chosen arbitrarily under the assumption that there exists an $c \geq 1$ with

$$
f(x) \leq c \cdot g(x) \quad \text { for all } x \in \mathbb{R}
$$

Rejection sampling - Algorithm

Let $f(x)$ denote the target density.

1. Generate $x \sim g(x)$
2. Generate $u \sim \mathcal{U}(0,1)$.
3. Compute $\alpha=\frac{1}{c} \cdot \frac{f(x)}{g(x)}$.
4. If $u \leq \alpha$ return \times (acceptance step).
5. Otherwise go back to (1) (rejection step).

Note $\alpha \in[0,1]$ and α is called acceptance probability.
Claim: The returned x is distributed according to $f(x)$.

Proof

See blackboard

Rejection sampling

- We want $x \sim f(x)$ (density).
- We know how to generate realisations from a density $g(x)$
- We know a a value $c>1$, so that $\frac{f(x)}{g(x)} \leq c$ for all x where $f(x)>0$.

Algorithm:
finished $=0$
while (finished $=0$)
generate $x \sim g(x)$
compute $\alpha=\frac{1}{c} \cdot \frac{f(x)}{g(x)}$
generate $u \sim U[0,1]$
if $u \leq \alpha$ set finished $=1$
return x

Rejection sampling

Rejection sampling

What is the overall acceptance probability??

$$
\mathrm{P}\left(U \leq \frac{1}{c} \cdot \frac{g(X)}{f(X)}\right)=\int_{-\infty}^{\infty} \frac{f(x)}{c \cdot g(x)} g(x) d x=\int_{-\infty}^{\infty} \frac{f(x)}{c} d x=c^{-1} .
$$

The single trials are independent, so the number of trials up to the first success is geometrically distributed with parameter $1 / c$.
The expected number of trials up to the first success is therefore c.
Problem:
In high-dimensional spaces c is generally large so many samples will get rejected.

Example: Sample from $N(0,1)$ with rejection sampling
Target distribution:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) .
$$

Proposal distribution:

$$
g(x)=\frac{\lambda}{2} \exp (-\lambda|x|), \lambda>0
$$

Sampling from a double exponential

Proposal distribution:

$$
g(x)=\frac{\lambda}{2} \exp (-\lambda|x|), \lambda>0
$$

How to sample from $g(x)$:

Sampling from a double exponential

Proposal distribution:

$$
g(x)=\frac{\lambda}{2} \exp (-\lambda|x|), \lambda>0
$$

How to sample from $g(x)$:
Simulate $x \sim \exp (\lambda)$
Simulate
$y \sim \operatorname{Bern}(p=0.5)$
if $y=0$ then

$$
x=z
$$

else

$$
x=-z
$$

end if
return x

Example: Sample from $N(0,1)$ with rejection sampling

Target distribution:

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Proposal distribution:

$$
g(x)=\frac{\lambda}{2} \exp (-\lambda|x|), \lambda>0
$$

- Need to find c such that $\frac{f(x)}{g(x)}<c, \forall x$ where $f(x)>0$

Example: Find an efficient bound c

$$
\frac{f(x)}{g(x)} \leq \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(\frac{1}{2} \lambda^{2}\right) \leq c
$$

Which value of λ should we choose?

Example: Find an efficient bound c

$$
\frac{f(x)}{g(x)} \leq \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp \left(\frac{1}{2} \lambda^{2}\right) \leq c
$$

Which value of λ should we choose?

We need to choose the smallest possible value for c

Example: Illustration

- Left: Comparison of $f(x)$ versus $c \cdot g(x)$ when $\lambda=1$ and $\lambda=1$.
- Right: Distribution of accepted samples compared to $f(x)$. 10000 samples were generated and 7582 accepted for $\lambda=1$. 10000 samples were generated and 4774 accepted for $\lambda=0.5$.

