
Lecture 4: Review

What have we done untill now?

• Simulation from discrete probability models
I General Algorithm
I Some special algorithms for specific distribution

• Simulation from continuous probability models
I Inversion Sampling
I Use known relationships between RV
I Change of variables
I Ratio of uniform methods
I Mixtures
I Multivariate distribution
I Rejection Sampling

1 / 1

Rejection sampling

• We want x ∼ f (x) (target density).

• We know how to generate realisations from a density g(x)

• We know a value c > 1, so that f (x)
g(x) ≤ c for all x where

f (x) > 0.

Algorithm:

finished = 0

while (finished = 0)

generate x ∼ g(x)

compute α = 1
c ·

f (x)
g(x)

generate u ∼ U[0, 1]

if u ≤ α set finished = 1

return x
2 / 1

Rejection sampling

c * g(x)

f(x)f(x)

Alternative c *g(x)

3 / 1

Rejection sampling

• The overall acceptance probability for the algorithm is

P(U ≤ 1
c
· g(X)

f (X)
) =

∫ ∞
−∞

f (x)

c · g(x)
g(x) dx =

∫ ∞
−∞

f (x)

c
dx = c−1.

• The expected number of trials up to the first success is c

• The smaller c the more efficient the algorithm

4 / 1

Rejection sampling

c * g(x)

f(x)

proposed value x

f(x)
cg(x)

u

5 / 1

Example I: Sample from N(0, 1) with rejection sampling

• Target distribution:

f (x) =
1√
2π

exp

(
−x2

2

)
.

• Proposal distribution:

g(x) =
λ

2
exp(−λ|x |), λ > 0

6 / 1

Example I: Sample from N(0, 1) with rejection sampling

• Find bound c :

f (x)

g(x)
=

1√
2π

exp(−1/2x2)

λ
2 exp(−λ|x |)

≤
√

2
π
λ−1 exp

(
1
2
λ2
)
≡ c(λ)

• We choose λ such that c is as small as possible

c(λ)
λ=1
=

√
2
π
exp

(
1
2

)
≈ 1.3

• Then the acceptance probability is:

α(λ)
λ=1
= exp{−1

2
x2 + |x | − 1

2
}

7 / 1

Example II: Standard Cauchy

Remember: Using ratio-of-uniforms method we can simulate from

standard Cauchy as:

• Sample (x1, x2) uniformly from tht semi-unit circle

• Compute y = x2
x1

• y is a sample from the uniform Cauchy

How can we sample from the semi-unit circle?

Rejection sampling also works when x is a vector.

8 / 1

Example II: Standard Cauchy

Remember: Using ratio-of-uniforms method we can simulate from

standard Cauchy as:

• Sample (x1, x2) uniformly from tht semi-unit circle

• Compute y = x2
x1

• y is a sample from the uniform Cauchy

How can we sample from the semi-unit circle?

Rejection sampling also works when x is a vector.

8 / 1

Example II: Standard Cauchy

Remember: Using ratio-of-uniforms method we can simulate from

standard Cauchy as:

• Sample (x1, x2) uniformly from tht semi-unit circle

• Compute y = x2
x1

• y is a sample from the uniform Cauchy

How can we sample from the semi-unit circle?

Rejection sampling also works when x is a vector.

8 / 1

Standard Cauchy: Rejection sampling algorithm

finished = 0

while finished = 0 do

generate (x1, x2) ∼ g(x1, x2)

compute

α = 1
c
f (x1,x2)
g(x1,x2)

=

1
c ·

2
area(Cf)

c= 2
area(Cf)= 1, (x1, x2) ∈ Cf

0, otherwise
generate u ∼ U(0, 1)
if u ≤ α then finished = 1

end if . i.e. If (x1, x2) ∈ Cf finished = 1

end while

return x1, x2

9 / 1

Standard Cauchy: Summary

Note: To do this algorithm we do not need to know the value of

the normalising constant area(Cf).

This is always true in rejection sampling.

10 / 1

Rejection sampling - Acceptance probability

Note: For c to be small, g(x) must be similar to f (x).

The art of rejection sampling is to find a g(x) that is similar to f(x)

and which we know how to sample from.

Issues: c is generally large in high-dimensional spaces, and since the

overall acceptance rate is 1/c , many samples will get rejected.

11 / 1

Sampling uniformly from the unit n-dimensional sphere

● ● ● ● ●
●

●

●

●

2 4 6 8 10

0
10

0
20

0
30

0
40

0

Dimension n

c

12 / 1

Rejection Sampling

Difficulties when implementing rejection sampling:

• Finding the constant c → Weighted resampling

• Finding the proposal density g(x) → Adaptice rejection

sampling

13 / 1

Weighted resampling

A problem when using rejection sampling is to find a legal value

for c . An approximation to rejection sampling is the following:

Let, as before:

• f (x): target distribution

• g(x): proposal distribution

14 / 1

Algorithm

Remember:

• Generate x1, . . . , xn ∼ g(x) iid

• Compute weights

wi =

f (xi)
g(xi)∑n
j=1

f (xj)
g(xj)

• Generate a second sample of size m from the discrete

distribution on {x1, . . . , xn} with probabilities w1, . . . ,wn.

The resulting sample {y1, . . . , ym} has approximate distribution

f (x)

15 / 1

Comments

• The advantage is that we do not need the constant c

• The resulting sample has approximate distribution f

• The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

• The normalising constant is not needed.

• This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.

16 / 1

Comments

• The advantage is that we do not need the constant c

• The resulting sample has approximate distribution f

• The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

• The normalising constant is not needed.

• This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.

16 / 1

Comments

• The advantage is that we do not need the constant c

• The resulting sample has approximate distribution f

• The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

• The normalising constant is not needed.

• This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.

16 / 1

Comments

• The advantage is that we do not need the constant c

• The resulting sample has approximate distribution f

• The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

• The normalising constant is not needed.

• This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.

16 / 1

Comments

• The advantage is that we do not need the constant c

• The resulting sample has approximate distribution f

• The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

• The normalising constant is not needed.

• This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.

16 / 1

Illustration
A bad choice of g will result in a bad representation of f

−15 −10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

* ** *** **** ** * **** * ***** * *** ** * **** *** *** ** ** ** * *** *** *** ** * * * *** ** ** ** * *** *** ** ** ** ***** ** * *** **** * *** *** ** ** * ** *** *** **** ** *** *** * ***** *** * ** *** *** * *** *** ***** **** ** *** *** * ***** ** * ***** * *** *** ** ** ***

*

Target density f
Proposal density g
Weights of the draws
Locations of the 200 draws

17 / 1

Adaptive rejection sampling

Algorithm:

finished = 0

while (finished = 0)

generate x ∼ g(x)

compute α = 1
c ·

f (x)
g(x)

generate u ∼ U[0, 1]

if u ≤ α set finished = 1

return x

• Note that the algorithm is valid even if g(x) is different in

every iteration

• How to find g(x)?

18 / 1

Adaptive rejection sampling

This method works only for log concave densities, i.e.

(ln f)′′(x) ≤ 0, for all x .

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

f(
x)

−4 −2 0 2 4

−8

−6

−4

−2

x
ln

(f
(x

))

Many densities are log-concave, e.g. the normal, the gamma

(a > 1), densities arising in GLMs with canonical link.

19 / 1

Adaptive rejection sampling (2)

Basic idea: Start with a proposal distribution g0(x) (with c = c0).

If we propose a value from g0(x) and reject it, then we use it to

construct an improved proposal g1(x) with c1 ≤ c0.

Continue untill acceptance

20 / 1

Adaptive rejection sampling (2)

• Start with an initial grid of points x1, x2, . . . , xm (with at least

one xi on each side of the maximum of ln(f (x))) and construct

the envelope using the tangents at ln(f (xi)), i = 1, . . . ,m.
• Draw a sample from the envelop function and if accepted the

process is terminated. Otherwise, use it to refine the grid.

0 1 2 3 4

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

x

ln
(f

(x
))

x1 x2 x3 21 / 1

Monte Carlo integration

Assume we are interested in

µ = E[h(X)]; X ∼ f (x)

If X is continuous and scalar we have

µ = E[h(X)] =

∫ ∞
−∞

h(x)f (x) dx

Analytical solution is the best when possible!

22 / 1

Monte Carlo integration

Assumption

It is easy to generate independent samples x1, . . . , xN from a

distribution f (x) of interest.

A Monte Carlo estimate of

µ = E(h(x)) =
∫

h(x)f (x)dx

is then given by

µ̂ =
1
N

N∑
i=1

h(xi).

What is the mean and variance of this estimator?

23 / 1

Monte Carlo integration (II)

m̂u is an unbiased estimate of µ

• E(µ̂) = µ

• V̂ar(µ̂) = 1
N(N−1)

∑N
i=1(h(xi)− µ̂)2

• Then the strong law of large numbers says:

Ê(h(x)) =
1
N

N∑
i=1

h(xi)
a.s→
∫

h(x)f (x)dx = E(h(x))

24 / 1

Monte Carlo integration (III)

Monte carlo integration can be used for anu function h(·)

Examples

• Using h(x) = x2 we obtain an estimate for E(x2).

• An estimate for the variance follows as

V̂ar(x) = Ê(x2)− Ê(x)2

• Setting h(x) = I (x ∈ A) we get:

E [h(x)] = E [I (x ∈ A)] = P(x ∈ A)

25 / 1

Importance sampling

One of the principal reasons for wishing to sample from

complicated probability distributions f (z) is to be able to evaluate

expectations with respect to some function p(z):

E(p) =
∫

p(z)f (z)dz

The technique of importance sampling provides a framework for

approximating expectations directly but does not itself provide a

mechanism for drawing samples from a distribution.

26 / 1

Importance sampling: Idea

[See blackboard]

27 / 1

Importance sampling

Let x1, . . . , nN ∼ g(x) then the importance sampling estimator of

µ = Ef (h(x)) is given by

µ̂IS =
1
N

N∑
i=1

h(xi)f (xi)

g(xi)
=

1
N

N∑
i=1

h(xi)w(xi)

wih

• We need g(x) > 0 where h(x)f (x) > 0

• The quantities w(xi) =
f (xi)
g(xi)

are called importance weights

• E(µ̂IS) = µ

• Var(µ̂IS) =
1
N Varg [

h(x)f (x)
g(x)]

28 / 1

Importance sampling estimators

To compute the importance sampling estimator

µ̂IS =
1
N

N∑
i=1

h(xi)w(xi)

we need to know the normalizing constant of f and g .

When this is not possible an alternative is a "self-normalizing"

importance sampling estimator

µ̃IS =

∑
h(xi)w(xi)∑

w(xi)

where we need that

g(x) > 0 where f (x) > 0

29 / 1

Importance sampling: Example

Assume we want to estimate

P(X ∈ [2, 2.5]) where X ∼ N (0, 1)

• Can use MC estimate →
small efficiency

• Importance sampling can

help "focus" the sampler in

the correct area
−4 −2 0 2 4

P(X ∈ A)

30 / 1

Importance sampling: Example

µ = P(X ∈ [2, 2.5]) =
∫
R I (x ∈ [2, 2.5])f (x)dx with f (x) = N (0, 1)

Three estimation schemes:

1. MC estimate

2. IS with proposal g1(x) = N (2.75, 1)

3. IS with proposal g2(x) = N (2.75, 1) −4 −2 0 2 4

f(x)
g_1(x)

g_2(x)

Note: in case 3) we cannot use the self-normalizing version of the IS

algorithm

31 / 1

Importance sampling: Example

Nsamples = 1000

0.000 0.005 0.010 0.015 0.020 0.025 0.030

| |

| |

| |

Monte Carlo Est

N(2.25 ,1) proposal

Unif(2.5 , 2) proposal

P(X ∈ [2,2.5])

32 / 1

Importance sampling: Summary

As with rejection sampling, the success of importance sampling

depends crucially on how well the proposal distribution g(x)

matches the target distribution f (x).

33 / 1

34 / 1

35 / 1

