Lecture 4:

Review

What have we done untill now?

e Simulation from discrete probability models

| 4
>

General Algorithm

Some special algorithms for specific distribution

® Simulation from continuous probability models

>
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Inversion Sampling

Use known relationships between RV
Change of variables

Ratio of uniform methods

Mixtures

Multivariate distribution

Rejection Sampling
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Rejection sampling

e We want x ~ f(x) (target density).

® We know how to generate realisations from a density g(x)

® \We know a value ¢ > 1, so that % < ¢ for all x where
f(x) > 0.
Algorithm:
finished = 0

while (finished = 0)

generate x ~ g(x)
compute o = % . %

generate u ~ U[0, 1]
if u < « set finished = 1

return x
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Rejection sampling

Alternative ¢ *g(x)

c*g(x)

/

f(x)
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Rejection sampling

® The overall acceptance probability for the algorithm is

Log(X), [T ) [T
w55 = | capEwa= [T

® The expected number of trials up to the first success is ¢

® The smaller ¢ the more efficient the algorithm
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Rejection sampling

propose
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Example I: Sample from N(0, 1) with rejection sampling

® Target distribution:

1 X2
f(x) = Wiz exp < 5 ) :
® Proposal distribution:

A
g(x) = Eexp(—)\|x|), A>0
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Example I: Sample from N(0, 1) with rejection sampling

® Find bound c:

) _ Aropl 12 oy
20) " dexp(—Ax]) S\/;A p<2A>‘C(A)

3

® We choose A such that ¢ is as small as possible

= 2 1
c(N) A \/;exp <2> ~ 1.3

® Then the acceptance probability is:

A=1 1 1
a() = expf— 5 +1x| - 3}
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Example II: Standard Cauchy

Remember: Using ratio-of-uniforms method we can simulate from

standard Cauchy as:
e Sample (x1, x2) uniformly from tht semi-unit circle
e Compute y = %

® y is a sample from the uniform Cauchy
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Example II: Standard Cauchy

Remember: Using ratio-of-uniforms method we can simulate from

standard Cauchy as:
e Sample (x1, x2) uniformly from tht semi-unit circle
e Compute y = %
® y is a sample from the uniform Cauchy

How can we sample from the semi-unit circle?
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Example II: Standard Cauchy

Remember: Using ratio-of-uniforms method we can simulate from

standard Cauchy as:
e Sample (x1, x2) uniformly from tht semi-unit circle
e Compute y = %
® y is a sample from the uniform Cauchy

How can we sample from the semi-unit circle?

Rejection sampling also works when x is a vector.
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Standard Cauchy: Rejection sampling algorithm

finished = 0
while finished = 0 do

generate (x1,x2) ~ g(x1,x2)

compute
2

area(Cy)

1 2 -
a=1 flxi,x2) ) ¢ " area(Cy)
c g(x1,x2)

1, (x1,x) € Cr
0, otherwise
generate u ~ U(0,1)
if u < « then finished =1
end if >ie. If (x1,x2) € Cr finished =1
end while

return xi, xo
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Standard Cauchy: Summary

Note: To do this algorithm we do not need to know the value of

the normalising constant area(Cs).

This is always true in rejection sampling.
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Rejection sampling - Acceptance probability

Note: For ¢ to be small, g(x) must be similar to f(x).
The art of rejection sampling is to find a g(x) that is similar to f(x)

and which we know how to sample from.

Issues: c is generally large in high-dimensional spaces, and since the

overall acceptance rate is 1/c, many samples will get rejected.
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Sampling uniformly from the unit n-dimensional sphere
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Rejection Sampling

Difficulties when implementing rejection sampling:
® Finding the constant ¢ — Weighted resampling

® Finding the proposal density g(x) — Adaptice rejection

sampling
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Weighted resampling

A problem when using rejection sampling is to find a legal value

for c. An approximation to rejection sampling is the following:

Let, as before:
® f(x): target distribution

® g(x): proposal distribution
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Algorithm

Remember:
® Generate xi,...,x, ~ g(x) iid
e Compute weights
f(xi)
g(xi)

w; =

7 f(x;)

i=1 g(x;)

® Generate a second sample of size m from the discrete
distribution on {xi, ..., x,} with probabilities w, ..., w,.

The resulting sample {y1,...,ym} has approximate distribution
f(x)
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Comments

® The advantage is that we do not need the constant ¢
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Comments

® The advantage is that we do not need the constant ¢

® The resulting sample has approximate distribution 1

16/1



Comments

® The advantage is that we do not need the constant ¢
® The resulting sample has approximate distribution 1

® The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.
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Comments

The advantage is that we do not need the constant ¢

The resulting sample has approximate distribution

The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.

The normalising constant is not needed.

16/1



Comments

® The advantage is that we do not need the constant ¢
® The resulting sample has approximate distribution 1

® The resample can be drawn with or without replacement

provided that n >> m, a suggestion is n/m = 20.
® The normalising constant is not needed.

® This approximate algorithm is sometimes called sampling

importance resampling (SIR) algorithm.
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[[lustration

A bad choice

of g will result in a bad representation of f
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Adaptive rejection sampling

Algorithm:
finished = 0
while (finished = 0)
generate x ~ g(x)
compute o = % . %
generate u ~ U[0, 1]
if u < « set finished = 1

return x

® Note that the algorithm is valid even if g(x) is different in

every iteration

® How to find g(x)?
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Adaptive rejection sampling

This method works only for log concave densities, i.e.

(Inf)’(x) <0, forall x.

Many densities are log-concave, e.g. the normal, the gamma

(a > 1), densities arising in GLMs with canonical link.
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Adaptive rejection sampling (2)

Basic idea: Start with a proposal distribution go(x) (with ¢ = ¢p).
If we propose a value from gp(x) and reject it, then we use it to
construct an improved proposal gi(x) with ¢; < .

Continue untill acceptance

20/1



Adaptive rejection sampling (2)

e Start with an initial grid of points x1, x2, ..., X, ( with at least
one x; on each side of the maximum of In(f(x))) and construct
the envelope using the tangents at In(f(x;)), i=1,..., m.

® Draw a sample from the envelop function and if accepted the

process is terminated. Otherwise, use it to refine the grid.

0.0
|

In(f(x))

-30 -25 -20 -15 -10 -05
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Monte Carlo integration

Assume we are interested in
n=E[R(X)]; X ~ f(x)

If X is continuous and scalar we have

1o = E[h(X)] = / T h(X)F(x) dx

—0o0

Analytical solution is the best when possible!
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Monte Carlo integration

Assumption

It is easy to generate independent samples xi,...,xy from a

distribution f(x) of interest.
A Monte Carlo estimate of
w=E(h(x)) = /h(x)f(x)dx
is then given by
1N
= ; h(x;).
What is the mean and variance of this estimator?
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Monte Carlo integration (I1)

mu is an unbiased estimate of u
* E(4) =p
— N R
* Var(p) = m > i1 (h(xi) — p)?

® Then the strong law of large numbers says:

E(h(x)) = 5 D h00) 25 [ G (x)a = E(h()

i=1

=2+
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Monte Carlo integration (II1)

Monte carlo integration can be used for anu function h(+)

Examples

e Using h(x) = x? we obtain an estimate for E(x?).
® An estimate for the variance follows as

Var(x) = E(x?) — E(x)?
e Setting h(x) = I(x € A) we get:

E[h(x)] = E[I(x € A)] = P(x € A)
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Importance sampling

One of the principal reasons for wishing to sample from
complicated probability distributions f(z) is to be able to evaluate

expectations with respect to some function p(z):

The technique of importance sampling provides a framework for
approximating expectations directly but does not itself provide a

mechanism for drawing samples from a distribution.
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Importance sampling: |dea

[See blackboard]
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Importance sampling

Let x1,...,ny ~ g(x) then the importance sampling estimator of
= Ef(h(x)) is given by

fus =

wih

® We need g(x) > 0 where h(x)f(x) >

® The quantities w(x;) = (();’)) are called importance weights
® E(fus) = n

® Var(jis) = 7 Varg["CH)]
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Importance sampling estimators

To compute the importance sampling estimator
1N
fus = 4 Z} h(xi)w(xi)
=

we need to know the normalizing constant of f and g.
When this is not possible an alternative is a "self-normalizing"

importance sampling estimator

- D> h(xi)w(x)
Hris = —Z W(x,-)

where we need that

g(x) > 0 where f(x) >0
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Importance sampling: Example

Assume we want to estimate

P(X € [2,2.5]) where X ~ A/(0,1)

® Can use MC estimate —

small efficiency

® Importance sampling can

)

help "focus" the sampler in

the correct area
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Importance sampling: Example

p=P(X €[2,25]) = [ I(x € [2,2.5])f(x)dx with f(x) = N(0,1)
Three estimation schemes:

1. MC estimate

2. IS with proposal g1(x) = N(2.75,1)

3. IS with proposal g»(x) = N(2.75,1) i

Note: in case 3) we cannot use the self-normalizing version of the IS

algorithm
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Importance sampling: Example
Nsamples = 1000

P(X 0[2,2.5])

Unif( 2.5, 2 ) proposal !
H

N(2.25,1) proposal

fonte Carlo Est
I

[ I I I I I 1
0.000 0.005 0.010 0.015 0.020 0.025 0.030
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Importance sampling: Summary

As with rejection sampling, the success of importance sampling
depends crucially on how well the proposal distribution g(x)

matches the target distribution f(x).
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