
Importance sampling

We are interested in

µ = Ef (h(x)) =

∫
h(x)f (x)dx

• If possible compute it analytically!

• If we can sample from f (x) we can use Monte Carlo integration

• Possible alternative: Importance sampling
I sample from ausiliary distribution g(x) and re-weight
I can be used as variance-reduction technique
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Importance sampling Algorithm

Let x1, . . . , xn ∼ g(x), and let w(xi ) = f (xi )
g(xi )

, i = 1, . . . , n then

µ̂IS =

∑
h(xi )w(xi )

n

• Unbiased

• Consistent

• Need to know the

normalizing constant

µ̃IS =

∑
h(xi )w(xi )∑

w(xi )

• Biased for finite n

• Consistent

• Self-normalizing
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Bayesian concept

. . . The essence of the Bayesian approach is to provide a

mathematical rule explaining how you change your existing

beliefs in the light of new evidence. In other words, it

allows scientists to combine new data with their existing

knowledge or expertise. . . .

The Economist, September 30th 2000
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Bayes Theorem I

Named after the English theologian and

mathematician Thomas Bayes

[1701–1761]

The theorem relies on the asymmetry of the definition of

conditional probabilities:

P(A|B) =
P(A ∩ B)

P(B)
⇒ P(A ∩ B) = P(B)P(A|B) (1)

P(B|A) =
P(A ∩ B)

P(A)
⇒ P(A ∩ B) = P(A)P(B|A) (2)

for any two events A and B under regularity conditions,

i.e. P(B) 6= 0 in ?? and P(A) 6= 0 in ??.
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Bayes Theorem II
Thus, from P(A|B)P(B) = P(B|A)P(A) follows

Bayes Theorem

P(A|B) =
P(B|A)P(A)

P(B)

Law of tot. prob.
=

P(B|A)P(A)

P(B|A)P(A) + P(B|Ā)P(Ā)

More general, let A1, . . . ,An be exclusive and exhaustive events (ie

they are a partition of the sample space), then

P(Ai |B) =
P(B|Ai )P(Ai )∑n
i=1 P(B|Ai )P(Ai )

Interpretation

P(Ai ) prior probabilities

P(Ai |B) posterior probabilities

After observing B the prob. of Ai changes from P(Ai ) to P(Ai |B).
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Towards inference

A more general formulation of Bayes theorem is given by

f (X = x |Y = y) =
f (Y = y |X = x)f (X = x)

f (Y = y)

where X and Y are random variables.

(Note: Switch of notation from P(.) to f (.) to emphasise that we

do not only relate to probabilities of events but to general

probability functions of the random variables X and Y .)

Even more compact version

f (x |y) =
f (y |x)f (x)

f (y)
.
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Bayesian Concepts

Also parameters are stochastic variables!

Example:

X ∼ Binom(x ; n, p)

From basic course in statistics (classical/frequentist statistics):

• X is a stochastic variable with binomial distribution
• n is the numer of trials (known)
• p is a parameter, this is unknown but fixed

In Bayesian statistics:

• p is a parameter, it is also a stochastic variable, it has a

distribution f (p)

• The likelihood of X is seen as a conditional probability

P(X = x |p)
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Posterior distribution
Let:

• X = x be the observed realization of a RV

• Assume X ∼ f (x |θ) [Likelihood model]

• Assume θ ∼ f (θ [Prior Model]

The Bayes theorem allowes us to compute the posterior distribution

f (θ|x) =
f (x |θ)f (θ)

f (x)
=

f (x |θ)f (θ)∫
f (x |θ)f (θ)dθ

.

(For discrete parameter space the integral has to be replaced with a sum.)

The posterior distribution is the most important quantity in

Bayesian inference. It contains all information about the unknown

parameter θ after having observed the data X = x .
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Posterior distribution (II)

Since the denominator in

f (θ|x) =
f (x |θ)f (θ)

f (x)

does not depend on θ, the density of the posterior distribution is

proportional to

f (θ|x)︸ ︷︷ ︸
Posterior

∝ f (x |θ)︸ ︷︷ ︸
Likelihood

× f (θ)︸︷︷︸
Prior

where 1/
∫
f (x |θ)f (θ)dθ is the corresponding normalising constant

to ensure
∫
f (θ|x)dθ = 1.
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Binomial experiment

Let X ∼ Bin(n, p) with n known and unknown p ∈ [0, 1].

Observe x1, . . . , xn ∼ Bin(n, p) and assume iid.

Goal: estimate p given the data we have observed

10 / 1



Binomial experiment - Bayesian view

• Choose a prior for p.

• p ∼ Be(α, β) is a common choice

0
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4

0.0 0.2 0.4 0.6 0.8 1.0

p

y

Group

alpha = 0.5, beta = 0.5

alpha = 1, beta = 1

alpha = 1, beta = 4

alpha = 2, beta = 2
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Binomial experiment (2)

X ∼ Bin(n, p), x = 0, 1, . . . , n, p ∼ Be(α, β), 0 < p < 1

⇓ ⇓

L(p) ∝ px(1− p)n−x f (p) ∝ pα−1(1− p)β−1

Thus, the posterior distribution results as:

f (p|x) ∝ f (x |p)× f (p)

= px(1− p)n−x × pα−1(1− p)β−1

= pα+x−1(1− p)β+n−x−1

This corresponds to the core of a beta distribution, so that

p|x ∼ Be(α + x︸︷︷︸
successes

, β + n − x︸ ︷︷ ︸
failures

)
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Binomial experiment: Simple example
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Bayesian Inference
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Posterior density of p|x for a Be(3, 2) prior and observation x = 8

in a binomial experiment with n = 10 trials.
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Bayesian point estimates
Statistical inference about θ is based solely on the posterior

distribution f (θ|x). Suitable point estimates are location

parameters, such as:

• Posterior mean E(θ|x):

E(θ|x) =

∫
θf (θ|x)dθ.

• Posterior mode Mod(θ|x):

Mod(θ|x) = arg max
θ

f (θ|x)

• Posterior median Med(θ|x) is defined as the value a which

satisfies∫ a

−∞
f (θ|x)dθ = 0.5 and

∫ ∞
a

f (θ|x)dθ = 0.5
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Credible interval

For fixed α ∈ (0, 1), a (1− α) credible interval is defined through

two real numbers tl and tu, so that∫ tu

tl

f (θ|x)dθ = 1− α.

The number 1−α is called the credible level of the credible interval

[tl , tu].

There are infinitely many (1− α)-credible intervals for fixed α.

(At least if θ is continuous.)
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Credible interval (II)

Equi-tailed credible interval

The same amount (α/2) of probability mass is cut from the left

and right tail of the posterior distribution, i.e. choose tl as the

α/2-quantile and tu as the 1− α/2-quantile.

Highest posterior density (HPD) intervals

Feature: The posterior density at any value of θ inside the credible

interval must be larger than anywhere outside the credible interval.

HPD-interval have the smallest width among all (1− α) credible
intervals. For symmetric posterior distributions HPD intervals are

also equi-tailed.
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Binomial Esperiment - Confidence Interval

Let X1, . . . ,Xn ∼ Bin(p, n) and indepedent.

We have that for large n

p̂ =
X

n
≈ N (p,

p(1− p)

n
)

A confidence interval is then

p̂ ± zα

√
p̂(1− p̂)

n

Interpretation: The interval as

probability α of covering the true

value of p
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Bayesian Inference

All inference is based on the

posterior distribution

f (p|x) ∝ f (x |p)f (p)

• Point estimate: mean,

mode, ...

• Interval estimate: choose tl

and tu such that

Pf (p|x)(p ∈ [tl , tu]) = α
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