
Plan for today

• (very) short summary of Part1

• More on Bayesian statistics
I Conjugate priors
I Hierarchical Models



What have we done in Part 1 - Simulation

• Given a distribution f (x)

I x may be a discrete or continuous stochastic variable
I x may be a scalar or a vector

• Want to generate a sample x ∼ f (x),or iid x1, x2, ..., xn ∼ f (x)

• We have discussed several simulation techniques:
I probability integral transform (inversion method)
I bivariate transformation (Box-Muller)
I ratio-of-uniforms method
I method based on mixtures
I rejection sampling
I (Importance sampling)
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Why do we want to sample?
For a given function g(x) we want to find:

µ = E[g(x)] =

∫
g(x)f (x)dx

• if we can find the integral analytically, we should do so

• if we can’t solve the integral analytically we can estimate µ
I generate iid x1, x2, . . . , xn ∼ f (x)

I estimate µ by

µ̂ =
1
2

n∑
i=1

g(xi )

I then

E(µ) = µ and Var(µ) =
Var(g(x))

n
I so by choosing n large enough we may estimate µ with the precision

we want

Can we sample from any f (x) now??
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What have we done in Part 1 -Bayesian Statistics
• Bayesian modelling: consider parameters as stochastic variables also

when their value is not the result of a stochastic experiment
• A (toy) example:

I I have a dice, let p: probability of getting a six
I Consider p as a stochastic variable, you don’t know it is a proper dice
I what distribution would you assign to p?
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• We roll the dice n times, let x be the number of six

P(X = x |p) =

(
n

x

)
px(1− p)n−x
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What have we done in Part 1 -Bayesian Statistics

• Likelihood Model:

f (x |p) = P(X = x |p) =

(
n

x

)
px(1− p)n−x

• Prior Model:

f (p) =
1

B(α, β)
pα−1(1− p)β−1

• Posterior Model:

f (p|x) =
f (x |p)f (p)∫
f (x |p)f (p) dp

∝ f (x |p)f (p)

I In this case:

f (p|x) ∝ pα+x−1(1− p)β+n−x−1 = B(α+ x , β + n − x)



What have we done in Part 1 -Bayesian Statistics

• Before we observe x
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What have we done in Part 1 -Bayesian Statistics

• After observing n = 30 and x = 10
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What have we done in Part 1 -Bayesian Statistics

• After observing n = 300 and x = 100
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Interpretation of probability

• Frequentist (objective): Probability of event A is

P(A) = lim
n→∞

m

n

where m:number of times A occurres in n identical and independent

trials.

• Bayesian (subjective): Probability of event A, P(A), is a measure of
someone’s degree of belief in the occurrence of A.
I different persons may have different P(A)



Prior and Posterior Distribution

• Prior distribution: f (θ)

I a measure of our belief about the value of θ before we have observed

the data
I based on prior information/experience

• Observation and Likelihood: f (x |θ)

I observed value x , and its probability distribution given θ

• Posterior distribution: f (θ|x)

I a measure of our belief about the of value of θ after we have

observed the data x

I based on prior information/experience and the observed data x

• Bayes theorem

f (θ|x) =
f (x |θ)f (θ)

f (x)
∝ f (x |θ)f (θ)
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Choice of prior distributions

• Under a uniform prior the posterior mode equals the MLE, as

f (θ|x) ∝ f (x |θ)

• The prior distribution has to be chosen appropriately, which often

causes concerns to practitioners.

• It should reflect the knowledge about the parameter of interest

(e.g. a relative risk parameter in an epidemiological study).

• Ideally it should be elicited from experts.

• In the absence of expert opinions, simple informative prior

distributions may still be a reasonable choice.

There have been various attempts to specify “non-informative” or

“reference” priors to lessen the influence of the prior distribution.



Conjugate prior

Conjugate priors makes analytical evaluations easier...

Conjugate prior distribution
Let Lx(θ) = f (x |θ) denote a likelihood function based on the observation

X = x . A class G of distributions is called conjugate with respect to

Lx(θ) if the posterior distribution p(θ|x) is in G for all x whenever the

prior distribution p(θ) is in G.



Conjugate prior - Example

• Binomial conjugate prior
I x |p ∼ Binom(n, p)

I p ∼ Beta(α, β)
I p|x ∼ Beta(α+ x , β + n − x)

• Normal (mean) conjugate prior
I x1, . . . , xn|p ∼ N (µ, σ2

0)

I µ ∼ N (µ0, τ
2)

I µ|x1, . . . , xn ∼ N (·, ·)

• Normal (variance) conjugate prior
I x1, . . . , xn|p ∼ N (µ0, σ

2)

I σ2 ∼ (IG)(α, β)

I σ2|x1, . . . , xn ∼ (IG)(·, ·)
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List of conjugate prior distributions

Likelihood Conjugate prior Posterior distribution

X |p ∼ Bin(n, p) p ∼ Be(α, β) p|x ∼ Be(α+ x , β + n − x)

X |p ∼ Geom(p) p ∼ Be(α, β) p|x ∼ Be(α+ 1, β + x − 1)

X |λ ∼ Po(e · λ) λ ∼ G(α, β) λ|x ∼ G(α+ x , β + e)

X |λ ∼ Exp(λ) λ ∼ G(α, β) λ|x ∼ G(α+ 1, β + x)

X |µ ∼ N (µ, σ2
?) µ ∼ N (ν, τ2) µ|x ∼ N

[
(A)−1 ( x

σ2 + ν
τ2

)
, (A)−1]

X |σ2 ∼ N (µ?, σ
2) σ2 ∼ IG(α, β) σ2|x ∼ IG(α+ 1

2 , β + 1
2 (x − µ)

2)

?: known.

A = 1
σ2 + 1

τ2



Conditional Conjugacy

The use of conjugate priors become difficult when the models gets more

complex....



Hierarchical Bayesian models

Hierarchical models are an extremely useful tool in Bayesian model

building.

Three parts:

• Observation model y |x : Encodes information about observed data.

• The latent model x |θ: The unobserved process.

• Hyperpriors for θ: Models for all of the parameters in the

observation and latent processes.

Note: here we indicate the observed data by y while x and θ are

parameters



Hierarchical Bayesian models - A simple example
Example from George et al. (1993) regarding the analysis of 10 power

plants.

• yi number of observed failures of pump i = 1, . . . , 10

• ti length of operation time of pump i = 1, . . . , 10 (in 1000 hours)

Model:

yi | λi ∼ Po(λi ti )

Conjugate prior for λi :

λi | α, β ∼ G(α, β)

Hyper-prior on α and β:

α ∼ Exp(1.0) β ∼ G(0.1, 1)

Posterior of interest:

f (α, β, λ1, . . . , λ10|y1, . . . , y10)
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Hierarchical Bayesian models - A simple example

Posterior of Interest

f (α, β, λ1, . . . , λ10|y1, . . . , y10) ∝[
10∏
i=1

(λi ti )
yi e−λi ti

]
×

[
10∏
i=1

βα

Γ(β)
λα−1
i e−βλi

]
× αe−α × β−0.9e−β

Can we sample from this distribution?
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Markov chain Monte Carlo

• Goal: Generation of samples or approximation of an expected value

for a (possibly high-dimensional) density π(x).

• Application of ordinary Monte Carlo methods is difficult.

• Idea: Use Markov chain theory to build a process that converges to

our target distribution!



Idea of Markov chain Monte Carlo

• Contruct a Markov chain {Xi}∞i=0 such that

lim
i→∞

P(Xi = xi ) = f (x)

• Simulate the Markov chain for many iterations

• For large enough m the samples xm+1, xm+2, . . . are (essentially)

samples from f (x)

• Estimate µ = Ef [g(x)] =
∫
g(x)f (x)dx as

µ̂ =
1
n

m+n∑
i=m

g(xi )

we have that E [µ̂] = µ and Var µ̂ =?
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Idea of Markov chain Monte Carlo

• Contruct a Markov chain {Xi}∞i=0 such that

lim
i→∞

P(Xi = xi ) = f (x)

• Simulate the Markov chain for many iterations

• For large enough m the samples xm+1, xm+2, . . . are (essentially)
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• Estimate µ = Ef [g(x)] =
∫
g(x)f (x)dx as

µ̂ =
1
n

m+n∑
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g(xi )

How do we know m is large enough?

we have that E [µ̂] = µ and Var µ̂ =?



Review: Discrete-time Markov chains

A Markov chain is a discrete-time stochastic process {Xi}∞i=0, Xi ∈ S ,

where given the present state, past and future states are independent

(Markov assumption):

P(Xi+1 = xi+1 | X0 = x0,X1 = x1, . . . ,Xi = xi ) = P(Xi+1 = xi+1 | Xi = xi )



Review: Markov chains

A Markov chain with stationary transition probabilities can be specified

by:

• the initial distribution P(X0 = x0) = g(x0)

• the transition matrix

P(y | x) = P(Xi+1 = y | Xi = x) [= Pxy ]



Review: Markov chains

Theorem: A Markov chain has a unique limiting distribution π(x) if the

chain is irreducible, aperiodic, and positive recurrent.

If so, the limiting distribution π(x) = limi→∞ P(Xi = x) is given by

π(y) =
∑
x∈S

π(x)P(y | x) for all y ∈ S

∑
x∈S

π(x) = 1
(1)



Detailed Balance

A sufficient condition for (1) is the detailed balance condition:

π(x)P(y | x) = π(y)P(x | y) for all x , y ∈ S (2)

Proof: on blackboard

This gives a time-reversible Markov chain.

• In a reversible MC we cannot distinguish the direction of simulation

from inspecting a realisation of the chain (even if we know the

transition matrix).

• Most MCMC algorithms are based on reversible Markov chains.
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Problem statement

In stochastic processes course: The Markov chain is given, i.e. P(y | x) is

given, find π(x).

Now: π(x), x ∈ S is given, want to find P(y | x), x , y ∈ S so that

π(y) =
∑
x∈S

π(x)P(y | x) for all y ∈ S

∑
x∈S

π(x) = 1

However, # unknowns: |S | · (|S | − 1); # equations: |S |.

⇒ many solutions exist – we want one!

(Note: |S | can be huge, so solving this as a matrix equation is not

possible.)
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Idea

Focus on (2) the detailed balance condition instead. We want to find

P(y | x) that solves

π(x)P(y | x) = π(y)P(x | y) for all x , y ∈ S

Here, we still have many solutions. However, we do not need a general

solution, one (good) solution is enough.

We show how to generate an irreducible, aperiodic and pos. recurrent

Markov chain with arbitrary limiting distribution π(x). (never as good as

iid samples but much wider applicability)



A possible solution

Let’s see if this work:

P(y |x) =

{
Q(y |x) α(y |x) if y 6= x

1−
∑

y 6=x Q(y |x) α(y |x) if y = x

where :

• Q(y |x) is a proposal density

• α(y |x) is the probability of accepting the move



Metropolis-Hastings algorithm
Setting: We want to sample from some distribution

π(x) =
π̃(x)

c

where c is the normalising constant. How about this?

1: Draw initial state X0 ∼ g(x0)

2: for i = 0, 1, . . . do
3: Propose a potential new state y from Q(y |xi−1)

4: Compute the acceptance probability α(y |xi−1)

5: Draw u ∼ Unif(0, 1)

6: if u < α(y |xi−1) then
7: Set xi = y (ie accept y)

8: else
9: Set xi = xi−1 (ie reject y)

10: end if
11: end for



How to choose α so that the detailed balance condition

hold?

• Assume we have a proposal Q(y |x)

• What should α(y |x) be for the detailed balance condition to hold?

See Blackboard!



Acceptance step

• In the acceptance step the proposal y is accepted with probability α

as new value of the Markov chain.

• This is similar to rejection sampling. However, here no constant c

needs to be determined.

• Further, if we reject, then we retain the sample.



History of Metropolis-Hastings

• The algorithm was presented 1953 by Metropolis, Rosenbluth,

Rosenbluth, Teller and Teller from the Los Alamos group. It is

named after the first author Nicholas Metropolis.

• W. Keith Hastings extended it to the more general case in 1970.

• It was then ignored for a long time.

• Since 1990 it has been used more intensively.



Toy example

We consider the Poisson distribution

π(x) =
10x

x!
e−10, x = 0, 1, 2, . . .

Choose proposal kernel

• If x = 0

Q(y |0) =

 1
2 for y ∈ {0, 1}

0 otherwise

• For x > 0

Q(y |x) =

 1
2 for y ∈ {x − 1, x + 1}

0 otherwise



Toy example

• If x = 0

α(0|0) = min {1, 1} = 1

α(1|0) = min {1, 10} = 1

• If x > 0

α(x − 1|x) = min

1,
10x−1

(x−1)!e
−10

10x

(x)!e
−10

·
1
2
1
2

 = min
{
1,

x

10

}
(3)

α(x + 1|x) = min

1,
10x+1

(x+1)!e
−10

10x

(x)!e
−10

·
1
2
1
2

 = min

{
1,

10
x + 1

}
(4)

From (3) we see that α = 1 if x > 9 and x/10 else.

From (4) we see that α = 1 if x ≤ 9 and 10/(x + 1) else.



Toy example

Note this gives for x > 0:

P(x − 1|x) =
1
2

min
{
1,

x

10

}
=

 x
20 for x ≤ 9
1
2 for x > 9

P(x + 1|x) =
1
2

min

{
1,

10
x + 1

}
=

 1
2 for x ≤ 9
5

x+1 for x > 9

P(x |x) follows directly.

(For x = 0 we have P(0|0) = 1/2 and P(1|0) = 1/2).

However, we do not have to compute these values! (Show R-code

demo_toyMCMC2.R)



What about

• Irreducible: Must be checked in each case. Must choose Q(y | x) so

that this is ok.

• Aperiodic: Sufficient that P(x | x) > 0 for one x ∈ S , so sufficient

that α(y | x) < 1 for one pair y , x ∈ S .

• Positive recurrent: for finite S , irreducibility is sufficient. More

difficult in general, but if Markov chain is not recurrent we will see

this as drift in the simulations. (In practice usually no problem).
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Remarks on the Metropolis-Hastings algorithm

• Under some regularity conditions it can be shown that the

Metropolis-Hasting algorithm converges to the target distribution

regardless of the specific choice of Q(y |x).

• However, the speed of convergence and the dependence between the

successive samples depends strongly on the proposal distribution.

• Since we only need to compute the ratio π(y)/π(x), the

proportionality constant is irrelevant.

• Similarly, we only care about Q(.) up to a constant.

• Often it is advantageous to calculate the acceptance probability on

log-scale, which makes the computations more stable.
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