Lecture 7: Brief reminder

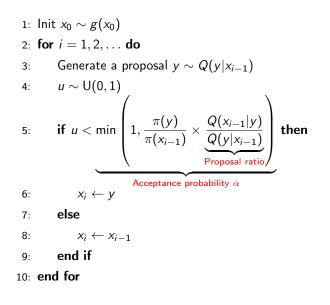
- Problem: Sample from $\pi(x)$, $x \in S$.
- MCMC idea:
 - Construct Markov chain with $\pi(x)$ as limiting distribution.
 - Simulate the Markov chain for a long time so that it has time to converge.
 - ► Most MCMC samplers are based on reversible Markov chains ⇒ Their convergence is proved by checking the detailed balance equation.

Review: Metropolis-Hastings construction

$$P(y \mid x) = egin{cases} Q(y \mid x)lpha(y \mid x), & y
eq x \ 1 - \sum_{z
eq x} Q(z \mid x) lpha(z \mid x), & y = x \end{cases}$$

$$\alpha(y \mid x) = \min\left\{1, \frac{\pi(y)}{\pi(x)} \cdot \frac{Q(x \mid y)}{Q(y \mid x)}\right\}$$

Review: Metropolis-Hastings algorithm



What about

• Irreducible: Must be checked in each case. Must choose $Q(y \mid x)$ so that this is ok.

What about

- Irreducible: Must be checked in each case. Must choose Q(y | x) so that this is ok.
- Aperiodic: Sufficient that P(x | x) > 0 for one x ∈ S, so sufficient that α(y | x) < 1 for one pair y, x ∈ S.

What about

- Irreducible: Must be checked in each case. Must choose Q(y | x) so that this is ok.
- Aperiodic: Sufficient that P(x | x) > 0 for one x ∈ S, so sufficient that α(y | x) < 1 for one pair y, x ∈ S.
- Positive recurrent: for finite *S*, irreducibility is sufficient. More difficult in general, but if Markov chain is not recurrent we will see this as drift in the simulations. (In practice usually no problem).

Metropolis-Hastings algorithm

Elements of the problem:

- Target distribution $\pi(x)$: Given by the problem
- Proposal distribution Q(y|x): Chosen by the user
- Acceptance probability α(y|x): Derived in order to fullfill the detailed balance condition.

 Under some regularity conditions it can be shown that the Metropolis-Hasting algorithm converges to the target distribution regardless of the specific choice of Q(y|x).

- Under some regularity conditions it can be shown that the Metropolis-Hasting algorithm converges to the target distribution regardless of the specific choice of Q(y|x).
- However, the speed of convergence and the dependence between the successive samples depends strongly on the proposal distribution.

- Under some regularity conditions it can be shown that the Metropolis-Hasting algorithm converges to the target distribution regardless of the specific choice of Q(y|x).
- However, the speed of convergence and the dependence between the successive samples depends strongly on the proposal distribution.
- Since we only need to compute the ratio π(y)/π(x), the proportionality constant is irrelevant.

- Under some regularity conditions it can be shown that the Metropolis-Hasting algorithm converges to the target distribution regardless of the specific choice of Q(y|x).
- However, the speed of convergence and the dependence between the successive samples depends strongly on the proposal distribution.
- Since we only need to compute the ratio π(y)/π(x), the proportionality constant is irrelevant.
- Similarly, we only care about Q(.) up to a constant.

- Under some regularity conditions it can be shown that the Metropolis-Hasting algorithm converges to the target distribution regardless of the specific choice of Q(y|x).
- However, the speed of convergence and the dependence between the successive samples depends strongly on the proposal distribution.
- Since we only need to compute the ratio π(y)/π(x), the proportionality constant is irrelevant.
- Similarly, we only care about Q(.) up to a constant.
- Often it is advantageous to calculate the acceptance probability on log-scale, which makes the computations more stable.

Special cases of the Metropolis-Hastings algorithm

Depending on the choice of $Q(y|x_{i-1})$ different special cases result. In particular, two classes are important

- The independence proposal
- The Metropolis algorithm
 - Random walk proposals

Independence proposal

• The proposal distribution does not depend on the current value x_{i-1}

 $Q(x|x_{i-1})=Q(x).$

• Q(x) is an approximation to $\pi(x)$

 \Rightarrow Acceptance rate should be close to 1.

• The sampler is closer to rejection sampler. However, here if we reject, then we retain the sample.

Experience:

- Performance is either very good or very bad, usually very bad.
- The tails of the proposal distribution should be at least as heavy as the tails of the target distribution.

The Metropolis algorithm

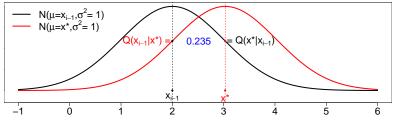
The proposal density is symmetric around the current value, that means

$$Q(x_{i-1}|y)=Q(y|x_{i-1}).$$

Hence,

$$\alpha = \min\left(1, \frac{\pi(y)}{\pi(x_{i-1})} \times \frac{Q(x_{i-1}|y)}{Q(y|x_{i-1})}\right) = \min\left(1, \frac{\pi(y)}{\pi(x_{i-1})}\right)$$

A particular case is the random walk proposal, defined as the current value x_{i-1} plus a random variate of a 0-centred symmetric distribution.



Examples for random walks proposal

Assume x is scalar.

Then all proposal kernels, which add a random variable generated from a zero-symmetrical distribution to the current value x_{i-1} , are random walk proposals. For example:

$$egin{aligned} y &\sim \mathcal{N}(x_{i-1},\sigma^2) \ y &\sim t_
u(x_{i-1},\sigma^2) \ y &\sim \mathcal{U}(x_{i-1}-d,x_{i-1}+d) \end{aligned}$$

d)

See R-code demo_mcmcRW_2D.R.

Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm depends crucially on the relative frequency of acceptance.

Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm depends crucially on the relative frequency of acceptance.

An acceptance rate of one is not always good. Consider the random walk proposal:

- Too large acceptance rate \Rightarrow Slow exploration of the target density.
- Too small acceptance rate \Rightarrow Large moves are proposed, but rarely accepted.

Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm depends crucially on the relative frequency of acceptance.

An acceptance rate of one is not always good. Consider the random walk proposal:

- Too large acceptance rate \Rightarrow Slow exploration of the target density.
- Too small acceptance rate \Rightarrow Large moves are proposed, but rarely accepted.

Tuning the acceptance rate:

- For random walk proposals, acceptance rates between 20% and 50% are typically recommended. They can be achieved by changing the variance of the proposal distribution.
- For independence proposals a high acceptance rate is desired, which means that the proposal density is close to the target density.

Exploration of a standard Gaussian distribution $(\mathcal{N}(0,1))$ using a random walk Metropolis algorithm. As proposal assume a Gaussian distribution with variance σ^2 , where.

- *σ* = 0.24
- *σ* = 2.4
- *σ* = 24

See R-code demo_mcmcRW.R.

Example of Rao (1973)

The vector $\mathbf{y} = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34)$ is multinomial distributed with probabilities

$$\left\{\frac{1}{2}+\frac{\theta}{4},\frac{1-\theta}{4},\frac{1-\theta}{4},\frac{\theta}{4}\right\}$$

We would like to simulate from the posterior distribution (assuming a uniform prior)

$$f(heta|oldsymbol{y}) \propto (2+ heta)^{y_{oldsymbol{1}}} (1- heta)^{y_{oldsymbol{2}}+y_{oldsymbol{3}}} heta^{y_{oldsymbol{4}}}$$

using MCMC and compare two proposal kernels:

- 1. independence proposal
- 2. random walk proposal

See R-code demo_mcmcRao.R.

Rao: Independence proposal

$$\theta^{\star} \sim \mathcal{N}(\mathsf{Mod}(\theta|\mathbf{y}), F^2 \times I_p^{-1}),$$
 (1)

where $Mod(\theta|data)$ denotes the posterior mode, I_p the negative curvature of the log posterior at the mode, and F a factor to blow up the standard deviation.

Rao: Random walk proposal

$$\theta^{\star} \sim \mathsf{U}(\theta^{(k)} - d, \theta^{(k)} + d),$$

where $\theta^{(k)}$ denotes the current state of the Markov chain and $d = \sqrt{12}/2 \cdot 0.1.$

Comments on the Metropolis-Hasting algorithm

• A trivial special case results when

 $Q(x^{\star}|x_{i-1})=\pi(x^{\star}),$

That means, we propose realisations from the target distribution. Then $\alpha = 1$ and all proposals are accepted.

- The advantage of the MH-algorithm is that arbitrary proposal kernels can be used. The algorithm will always converge to the target distribution.
- However, the speed of convergence and the dependence between the successive samples depends strongly on the proposal distribution.

Numerical Note

How to compute

$$\alpha(y|x) = \min\left\{1, \frac{\pi(y)}{\pi(x)} \frac{Q(x|y)}{Q(y|x)}\right\}$$

Naive strategy: Compute $\pi(y)$, $\pi(x)$, Q(y|x), Q(x|y). Then compute the ratio.

Numerical Note

How to compute

$$\alpha(y|x) = \min\left\{1, \frac{\pi(y)}{\pi(x)} \frac{Q(x|y)}{Q(y|x)}\right\}$$

Naive strategy: Compute $\pi(y)$, $\pi(x)$, Q(y|x), Q(x|y). Then compute the ratio.

Solution:

- Simplify the expression as much as possible
- Compute everything in log-scale

Remarks on Gibbs sampling

- High dimensional updates of *x* can be boiled down to scalar updates.
- Visiting schedule: Various approaches exist (and can be justified) to ordering the variables in the sampling loop. One approach is random sweeps: variables are chosen at random to resample.
- Gibbs sampling assumes that it is easy to sample from the full-conditional distribution. This is sometimes not so easy.
 Alternatively, a Metropolis-Hastings proposal can be used for the *j*-th component, i.e. Metropolis-within-Gibbs ⇒ Hybrid Gibbs sampler.

Remarks on Gibbs sampling

- Blocking or grouping is possible, that means not all elements of *x* are treated individually. Might be useful when elements of *x* are correlated.
- Care must be taken when improper prior are used, which may lead to an improper posterior distribution. Impropriety implies that there does not exist a joint density to which the full-conditional distributions correspond.

Example : Conjugate gamma-Poisson hierarchical model

Example from George et al. (1993) regarding the analysis of 10 power plants.

- y_i number of failures of pump i
- t_i length of operation time of pump i (in kilo hours)

Model:

$$y_i \mid \lambda_i \sim \mathsf{Po}(\lambda_i t_i)$$

Conjugate prior for λ_i :

$$\lambda_i \mid \alpha, \beta \sim \mathsf{G}(\alpha, \beta)$$

Hyper-prior on α and β :

$$lpha \sim \mathsf{Exp}(1.0)$$
 $eta \sim \mathsf{G}(0.1, 10.0)$

Conjugate gamma-Poisson hierarchical model (II)

The posterior of the 12 parameters $(\alpha, \beta, \lambda_1, \dots, \lambda_{10})$ given y_1, \dots, y_{10} is proportional to

$$\pi(\alpha,\beta,\lambda_{1},\ldots,\lambda_{10} \mid y_{1},\ldots,y_{10}) \propto \pi(\alpha)\pi(\beta)\prod_{i=1}^{10}[\pi(\lambda_{i} \mid \alpha,\beta)\pi(y_{i} \mid \lambda_{i})]$$
$$\propto e^{-\alpha}\beta^{0.1-1}e^{-10\beta}\left\{\prod_{i=1}^{10}\exp(-\lambda_{i}t_{i})\lambda_{i}^{y_{i}}\right\}\left\{\prod_{i=1}^{10}\exp(-\beta\lambda_{i})\lambda_{i}^{\alpha-1}\right\}\left[\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right]^{10}$$

This posterior is not of closed form.

Conjugate gamma-Poisson hierarchical model (II)

The posterior of the 12 parameters $(\alpha, \beta, \lambda_1, \dots, \lambda_{10})$ given y_1, \dots, y_{10} is proportional to

$$\pi(\alpha,\beta,\lambda_{1},\ldots,\lambda_{10} \mid y_{1},\ldots,y_{10}) \propto \pi(\alpha)\pi(\beta)\prod_{i=1}^{10}[\pi(\lambda_{i} \mid \alpha,\beta)\pi(y_{i} \mid \lambda_{i})]$$
$$\propto e^{-\alpha}\beta^{0.1-1}e^{-10\beta}\left\{\prod_{i=1}^{10}\exp(-\lambda_{i}t_{i})\lambda_{i}^{y_{i}}\right\}\left\{\prod_{i=1}^{10}\exp(-\beta\lambda_{i})\lambda_{i}^{\alpha-1}\right\}\left[\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right]^{10}$$

This posterior is not of closed form.

What are the full conditional distributions?