
Lecture 7: Brief reminder

• Problem: Sample from π(x), x ∈ S .

• MCMC idea:
I Construct Markov chain with π(x) as limiting distribution.
I Simulate the Markov chain for a long time so that it has time to

converge.
I Most MCMC samplers are based on reversible Markov chains ⇒

Their convergence is proved by checking the detailed balance

equation.



Review: Metropolis-Hastings construction

•

P(y | x) =

Q(y | x)α(y | x), y 6= x

1−
∑

z 6=x Q(z | x)α(z | x), y = x

•
α(y | x) = min

{
1,
π(y)

π(x)
· Q(x | y)

Q(y | x)

}



Review: Metropolis-Hastings algorithm

1: Init x0 ∼ g(x0)

2: for i = 1, 2, . . . do
3: Generate a proposal y ∼ Q(y |xi−1)

4: u ∼ U(0, 1)

5: if u < min

1,
π(y)

π(xi−1)
× Q(xi−1|y)

Q(y |xi−1)︸ ︷︷ ︸
Proposal ratio


︸ ︷︷ ︸

Acceptance probability α

then

6: xi ← y

7: else
8: xi ← xi−1

9: end if
10: end for



What about

• Irreducible: Must be checked in each case. Must choose Q(y | x) so

that this is ok.

• Aperiodic: Sufficient that P(x | x) > 0 for one x ∈ S , so sufficient

that α(y | x) < 1 for one pair y , x ∈ S .

• Positive recurrent: for finite S , irreducibility is sufficient. More

difficult in general, but if Markov chain is not recurrent we will see

this as drift in the simulations. (In practice usually no problem).
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Metropolis-Hastings algorithm

Elements of the problem:

• Target distribution π(x): Given by the problem

• Proposal distribution Q(y |x): Chosen by the user

• Acceptance probability α(y |x): Derived in order to fullfill the

detailed balance condition.



Remarks on the Metropolis-Hastings algorithm

• Under some regularity conditions it can be shown that the

Metropolis-Hasting algorithm converges to the target distribution

regardless of the specific choice of Q(y |x).

• However, the speed of convergence and the dependence between the

successive samples depends strongly on the proposal distribution.

• Since we only need to compute the ratio π(y)/π(x), the

proportionality constant is irrelevant.

• Similarly, we only care about Q(.) up to a constant.

• Often it is advantageous to calculate the acceptance probability on

log-scale, which makes the computations more stable.

For more comments and details see: Chib, S. and Greenberg, E. (1995),

Understanding the Metropolis-Hastings algorithm, The American Statistician,

49: 327–335
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Special cases of the Metropolis-Hastings algorithm

Depending on the choice of Q(y |xi−1) different special cases result. In

particular, two classes are important

• The independence proposal

• The Metropolis algorithm
I Random walk proposals



Independence proposal

• The proposal distribution does not depend on the current value xi−1

Q(x |xi−1) = Q(x).

• Q(x) is an approximation to π(x)

⇒ Acceptance rate should be close to 1.

• The sampler is closer to rejection sampler. However, here if we

reject, then we retain the sample.

Experience:

• Performance is either very good or very bad, usually very bad.

• The tails of the proposal distribution should be at least as heavy as

the tails of the target distribution.



The Metropolis algorithm
The proposal density is symmetric around the current value, that means

Q(xi−1|y) = Q(y |xi−1).

Hence,

α = min

(
1,

π(y)

π(xi−1)
× Q(xi−1|y)

Q(y |xi−1)

)
= min

(
1,

π(y)

π(xi−1)

)
A particular case is the random walk proposal, defined as the current

value xi−1 plus a random variate of a 0-centred symmetric distribution.

−1 0 1 2 3 4 5 6
x

● ●

● ●

xi−1 x*

Q(xi−1|x*) = = Q(x*|xi−1)0.235

N(µ=xi−1,σ
2= 1)

N(µ=x*,σ2= 1)



Examples for random walks proposal

Assume x is scalar.

Then all proposal kernels, which add a random variable generated from a

zero-symmetrical distribution to the current value xi−1, are random walk

proposals. For example:

y ∼ N (xi−1, σ
2)

y ∼ tν(xi−1, σ
2)

y ∼ U(xi−1 − d , xi−1 + d)

See R-code demo_mcmcRW_2D.R.



Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm

depends crucially on the relative frequency of acceptance.

An acceptance rate of one is not always good. Consider the random walk

proposal:

• Too large acceptance rate ⇒ Slow exploration of the target density.

• Too small acceptance rate ⇒ Large moves are proposed, but rarely

accepted.

Tuning the acceptance rate:

• For random walk proposals, acceptance rates between 20% and 50%

are typically recommended. They can be achieved by changing the

variance of the proposal distribution.

• For independence proposals a high acceptance rate is desired, which

means that the proposal density is close to the target density.
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Example: Random walk proposal

Exploration of a standard Gaussian distribution (N (0, 1)) using a random

walk Metropolis algorithm. As proposal assume a Gaussian distribution

with variance σ2, where.

• σ = 0.24

• σ = 2.4

• σ = 24

See R-code demo_mcmcRW.R.



Example of Rao (1973)

The vector y = (y1, y2, y3, y4) = (125, 18, 20, 34) is multinomial

distributed with probabilities{
1
2

+
θ

4
,
1− θ
4

,
1− θ
4

,
θ

4

}
We would like to simulate from the posterior distribution (assuming a

uniform prior)

f (θ|y) ∝ (2 + θ)y1(1− θ)y2+y3θy4 .

using MCMC and compare two proposal kernels:

1. independence proposal

2. random walk proposal

See R-code demo_mcmcRao.R.



Rao: Independence proposal

θ? ∼ N (Mod(θ|y),F 2 × I−1
p ), (1)

where Mod(θ|data) denotes the posterior mode, Ip the negative curvature

of the log posterior at the mode, and F a factor to blow up the standard

deviation.



Rao: Random walk proposal

θ? ∼ U(θ(k) − d , θ(k) + d),

where θ(k) denotes the current state of the Markov chain and

d =
√
12/2 · 0.1.



Comments on the Metropolis-Hasting algorithm

• A trivial special case results when

Q(x?|xi−1) = π(x?),

That means, we propose realisations from the target distribution.

Then α = 1 and all proposals are accepted.

• The advantage of the MH-algorithm is that arbitrary proposal

kernels can be used. The algorithm will always converge to the

target distribution.

• However, the speed of convergence and the dependence between the

successive samples depends strongly on the proposal distribution.



Numerical Note

How to compute

α(y |x) = min

{
1,
π(y)

π(x)

Q(x |y)

Q(y |x)

}
Naive strategy: Compute π(y), π(x), Q(y |x), Q(x |y). Then compute

the ratio.

Solution:

• Simplify the expression as much as possible

• Compute everything in log-scale
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Remarks on Gibbs sampling

• High dimensional updates of x can be boiled down to scalar updates.

• Visiting schedule: Various approaches exist (and can be justified) to

ordering the variables in the sampling loop. One approach is random

sweeps: variables are chosen at random to resample.

• Gibbs sampling assumes that it is easy to sample from the

full-conditional distribution. This is sometimes not so easy.

Alternatively, a Metropolis-Hastings proposal can be used for the j-th

component, i.e. Metropolis-within-Gibbs ⇒ Hybrid Gibbs sampler.



Remarks on Gibbs sampling

• Blocking or grouping is possible, that means not all elements of x
are treated individually. Might be useful when elements of x are

correlated.

• Care must be taken when improper prior are used, which may lead to

an improper posterior distribution. Impropriety implies that there

does not exist a joint density to which the full-conditional

distributions correspond.



Example : Conjugate gamma-Poisson hierarchical model

Example from George et al. (1993) regarding the analysis of 10 power

plants.

• yi number of failures of pump i

• ti length of operation time of pump i (in kilo hours)

Model:

yi | λi ∼ Po(λi ti )

Conjugate prior for λi :

λi | α, β ∼ G(α, β)

Hyper-prior on α and β:

α ∼ Exp(1.0) β ∼ G(0.1, 10.0)



Conjugate gamma-Poisson hierarchical model (II)

The posterior of the 12 parameters (α, β, λ1, . . . , λ10) given y1, . . . , y10 is

proportional to

π(α, β, λ1, . . . , λ10 | y1, . . . , y10) ∝ π(α)π(β)
10∏
i=1

[π(λi | α, β)π(yi | λi )]

∝ e−αβ0.1−1e−10β

{
10∏
i=1

exp(−λi ti )λyii

}{
10∏
i=1

exp(−βλi )λα−1
i

}[
βα

Γ(α)

]10

.

This posterior is not of closed form.

What are the full conditional distributions?
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