
Lecture 8: Brief Reminder

We are learning about the MCMC algorithm:

• What it is and why does it work

• Elements of the algorithm:
I Target distribution π(x) - Problem determined
I Proposal distribution Q(y |x) - Choosen by us
I Acceptance probability α(y |x) - Computed s.t. the detailed balance

holds

• Mild conditions guarantee the convergence of the algorithm but no

the convergence rate!

• We have looked at two special proposal densities:
I The independence proposal Q(y |x) = Q(y)

I The RW proposal Q(y |x) = Q(x |y)

• Importance of the tuning parameter



Review: Special cases Metropolis-Hastings

• Metropolis algorithm: The proposal density is symmetric around the

current value, that means

Q(xi−1|y) = Q(y |xi−1).

Hence,

α = min

(
1,

π(y)

π(xi−1)
× Q(xi−1|y)

Q(y |xi−1)

)
= min

(
1,

π(y)

π(xi−1)

)
• Independence sampler: The proposal distribution does not depend

on the current value xi−1

Q(x |xi−1) = Q(x).

Q(x) is an approximation to π(x) ⇒ acceptance rate should be high.



MCMC and iterative conditioning

The use of the MH-algorithms gains on importance when it is applied

iteratively on components of x .

Let x be decomposed by several (for simplicity scalar) components.

x = (x1, . . . , xp)

Now the MH-algorithm is applied iteratively on the components x j ,

conditioning on the current values of x−j with

x−j = (x1, . . . , x j−1, x j+1, . . . , xp)



MCMC and iterative conditioning

To be concrete, one uses

• a proposal kernel Q(y j |x ji−1, x
−j
i−1), j = 1, . . . , p.

• with acceptance probability

α = min

(
1,

π(y j |x−ji−1)

π(x ji−1|x
−j
i−1)

×
Q(x ji−1|y j , x−ji−1)

Q(y j |x ji−1, x
−j
i−1)

)

This algorithm converges to the stationary distribution with density π(x),

as long as all components are arbitrary often updated.



Conditional densities

Of note, the acceptance probability α only uses the full conditional

densities π(x j |x−j), j = 1, . . . , p, and not the joint density π(x).

Both are related as follows

π(x j |x−j) =
π(x)

π(x−j)
∝ π(x)

Thus, the (non-normalised) conditional densities of x j |x−j can be directly

derived from π(x) by omitting all multiplicative factors, that do not

depend on x j .



Gibbs sampling

Are all conditional densities π(x j |x−j), j = 1, . . . , p standard it seems

natural to use those as proposal kernel, i.e.

Q(y j |x ji−1, x
−j
i−1) = π(x j |x−ji−1)

In this case, we get α = 1 which leads to the well known Gibbs sampler,

which updates parameters iteratively by sampling from the corresponding

full conditional distributions.



Gibbs sampling

Let x = (x1, . . . , xn), x ∼ π(x), N proposal distribution are defined by:

• propose y i ∼ π(y i |x−i )

• keep yk = xk for k 6= i

Notation:

• x = (x1, . . . , xn)

• x−i = (x1, . . . , x i−1, x i+1, . . . , xn)

• y = (y1, . . . , yn) = (x1, . . . , x i−1, y i , x i+1, . . . , xn)

Why is the acceptance probability always 1?



Gibbs-Sampling algorithm
Idea: Sequentially sampling from univariate conditional distributions

(which are often available in closed form).

1. Select starting values x0 and set i = 0.

2. Repeatedly:

Sample x1i+1|· ∼ π(x1|x2i , . . . , x
p
i )

Sample x2i+1|· ∼ π(x2|x1i+1, x
3
i , . . . , x

p
i )

...

Sample xp−1i+1 |· ∼ π(xp−1|x1i+1, x
2
i+1, . . . , x

p−2
i+1 , x

p
i )

Sample xpi+1|· ∼ π(xp|x1i+1, . . . , x
p−1
i+1 )

where |· denotes conditioning on the most recent updates of all

other elements of x .

3. Increment i and go to step 2.



Example: Simple linear regression

Let

Yi = a + bxi + ei , ei ∼ N (0, 1/τ), i = 1, . . . , n

and

a ∼ N (0, 1/τa)

b ∼ N (0, 1/τb)

τ ∼ Gamma(α, β)

we are interested in

π(a, b, τ |y)

(Show R-code demo_linear_reg_Gibbs.R)



Remarks on Gibbs sampling

• High dimensional updates of x can be boiled down to scalar updates.

• Visiting schedule: Various approaches exist (and can be justified) to

ordering the variables in the sampling loop. One approach is random

sweeps: variables are chosen at random to resample.

• Gibbs sampling assumes that it is easy to sample from the

full-conditional distribution. This is sometimes not so easy.

Alternatively, a Metropolis-Hastings proposal can be used for the j-th

component, i.e. Metropolis-within-Gibbs ⇒ Hybrid Gibbs sampler.



Remarks on Gibbs sampling

• Blocking or grouping is possible, that means not all elements of x
are treated individually. Might be useful when elements of x are

correlated.

• Care must be taken when improper prior are used, which may lead to

an improper posterior distribution. Impropriety implies that there

does not exist a joint density to which the full-conditional

distributions correspond.

Hobert, J. P. and Casella, G. (1996), JASA, 91: 1461–1473.



Example : Conjugate gamma-Poisson hierarchical model

Example from George et al. (1993) regarding the analysis of 10 power

plants.

• yi number of failures of pump i

• ti length of operation time of pump i (in kilo hours)

Model:

yi | λi ∼ Po(λi ti )

Conjugate prior for λi :

λi | α, β ∼ G(α, β)

Hyper-prior on α and β:

α ∼ Exp(1.0) β ∼ G(0.1, 10.0)



Conjugate gamma-Poisson hierarchical model (II)

The posterior of the 12 parameters (α, β, λ1, . . . , λ10) given y1, . . . , y10 is

proportional to

π(α, β, λ1, . . . , λ10 | y1, . . . , y10) ∝ π(α)π(β)
10∏
i=1

[π(λi | α, β)π(yi | λi )]

∝ e−αβ0.1−1e−10β

{
10∏
i=1

exp(−λi ti )λyii

}{
10∏
i=1

exp(−βλi )λα−1i

}[
βα

Γ(α)

]10
.

This posterior is not of closed form.

What are the full conditional distributions?



Update scheme for gamma-Poisson hierarchical model

For each iteration i

• For k = 1, . . . , 10
I Simulate new value λk ∼ Gamma(yi + α, ti + β) Gibbs step

• Simulate new value β ∼ Gamma(10α + 0.1,
∑
λk + 1) Gibbs step

• Propose new value αnew ∼ N (αi−1, τ) MH step

• Compute acceptance probability

a = min

{
1,
π(αnew | . . . )
π(αold | . . . )

}
• if u < a

I set αi = αnew

• else
I set αi = αold



Blocking Strategies

Blocking (ie simulating some variables together) might improve the

algorithm especially when variables are correlated.

Example: Korsbetningen

In the year of our Lord 1361, on the third day after S:t Jacob, the

Goth fell outside the gates of Visby at the hands of the Danish.

They are buried here. Pray for them.

• Archeoloical excavation found 493 femurs, 256 right and 237 left

• At least 256 person were buried here....but how many more??



A simple model

Let x1 and x2 be the number of left and right femurs found.

Assume x1 and x2 to be two independent observations from a Bin(N, φ)

distribution.

With

• N total number of people buried

• φ probability of finding a femur, left or right

The unkown parameter vector is θ = (N, φ). Assume a Beta(a, b) prior

for φ, and a Unif(256, 2500) prior for N.



Updating schemes

Single site update

• Simulate new φ ∼ Beta(·, ·)
(Gibbs step)

• Propose

Nnew ∼ Unif(Nold − d ,Nold + d)

• Compute

α = min

{
1,
π(Nnew | . . . )
π(Nold | . . . )

}
• Accept or reject the new value

for N

Block update

• Propose a new value Nnew for

N from Unif(Nold − d ,Nold + d)

• Propose a new value φnew for φ

from

Beta(α+x1+x+2, β+2Nnew−x1−x2)

• Compute α

• Accept or reject Nnew and φnew
simultaneously

(Show R-code Vikings.R)



Implementation and convergence diagnostics

Source: http://i.telegraph.co.uk/multimedia/archive/02365/coding_alamy_2365972b.jpg



Convergence

• If well constructed, the Markov chain is guaranteed to have the

posterior as limiting distribution.

• However, this does not tell you how long you have to run the
MCMC algorithm til convergence.
I The initial position may have a big influence.
I The proposal distribution may lead to low acceptance rates.
I The chain may get caught in a local maximum of the likelihood

surface.

• We say the Markov chain mixes well if it can
I reach the posterior quickly, and
I moves quickly around the posterior modes.



Convergence diagnostics

Valid inferences from sequences of MCMC outputs are based on the

assumption that the outputs are from the desired target distribution.

• There is no overall minimum number of samples to ensure

approximation.

• Consequently methods for testing convergence, known as

convergence diagnostics, have to be applied.

• However it has to emphasised that these diagnostics do not

guarantee convergence.



Trace plots

An initial possibility for deciding if a MCMC output does not converge to

the desired posterior distributions is to look at the sample trace for each

variable.

• If our chain is taking a long time to move around the parameter

space, then it will take longer to converge.

• If the samples form a homogene band (no wave movements or other

rare fluctuations), convergence might be indicated.

• Vastly different values at the beginning of the trace indicate burn-in

iterations, which should be discarded.



Output analysis

Standard starting point to evaluate convergence:

• Look at the trace plot for each variable

• consider different scalar function of x

• may run different Markov chain with different (extreme) starting

values



Example: Korsbetningen

Single site update, two chains with different starting values
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Example: Korsbetningen

Block update, two chains with different starting values
N
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Example: Korsbetningen

Single site update, two chains with different starting values.

Estiamte of the mean
N
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Example: Korsbetningen

Block update, two chains with different starting values.

Estiamte of the mean
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Convergence Diagnostic

With a fixed cpu-time shoud we:

• use all time in one long Markov chain, or

• run several shorter Markov chains?

• One long chain:
I only one bunr-in period to discard
I more likely that you really have converged

• Several shorter runs:
I easier to evaluate convergence
I easier to estimate the variance of the estimator (the chains are

independent)

In practice one often use a combination of the two strategies



Variance of the MCMC estimator

Recall: We want to estimate µ =
∫
g(x)π(x) dx with µ̂ = 1

n

∑
g(xi )

where xi ∼ π(x).

In standard MC we have

x1, x2, . . . , xn ∼ π(x), i.i.d.

This gives

E(µ̂) = µ and Var(µ̂) =
Var(g(X ))

n

We can estimate the variance Var(µ̂) as

V̂ar(µ̂) =
̂Var(g(X ))

n

̂Var(g(X )) =
1

n − 1

∑
(g(xi ) = µ̂)

MCMC gives dependence samples, what is the variance then??



Autocorrelation

To examine dependencies of successive MCMC samples, the

autocorrelation function can be used. Let x1, . . . , xN , where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation ρ(k) is the correlation between every draw and

its k-th lag. For N reasonably large

ρ(k) ≈
∑N−k

i=1 (xi − x̄)(xi+k − x̄)∑N
i=1(xi − x̄)2

,

where x̄ = 1
N

∑N
i=1 xi is the overall mean.

• With increasing lag k we expect lower autocorrelations.

• If autocorrelation is still relatively high for higher values of k , this

indicates high degree of correlation between our draws and slow

mixing.



Example: Korsbetningen

Autocorrelation function for N (after discarding the burn-in period)
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Effective sample size

A useful measure to compare the performance of different MCMC

samplers is the effective sample size (ESS) Kass et al. (1998) American

Statistician 52, 93–100..

• The ESS is the estimated number of independent samples needed to

obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

ESS =
N

τ
, τ = 1 + 2 ·

∞∑
k=1

ρ(k),

where τ is the autocorrelation time and ρ(k) the autocorrelation at

lag k .



Estimate of ESS

ESS =
N

τ
, τ = 1 + 2 ·

∞∑
k=1

ρ(k),

Estimate τ as

τ = 1 + 2 ·
m∑

k=1

ρ̂(k)

where ρ̂(k) is the sample autocorrelation function at lag k , and m is

choosen to fullfill some criteria.

Different criteria exists.



Example: Korsbetningen - Effective sample size (ESS)

> library(coda)
> nsamples

[1] 8000

> ## single site
> effectiveSize(as.mcmc(res1))

N theta
26.39381 23.24576

> ## block update
> effectiveSize(as.mcmc(res2))

N theta
624.4336 872.2591

>
The precision of the MCMC estimate of the posterior mean of N based on 8000

samples from a single site update is a good as taking 16 independent samples!



Geweke diagnostics

The MCMC chain is divided into two windows

• the first x%, and

• the last y% of the iterates

(coda default: x = 10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke’s test

statistic (z-score) follows an asymptotical standard normal distribution.



Example: Korsbetningen - Geweke plot
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Further reading

There are several convergence diagnostics:

• some are based on a single Markov chain run

• some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

• Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov

Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

• R-package coda. (Plummer et al., 2006)



Summary

• Diagnostics cannot guarantee that chain has converged

• Can indicate that it has not converged

Solutions?

• Run longer and thin output

• Reparametrize model

• "Block" correlated variables together
I Joint update might be more efficient however for some parameter

combination the acceptance rate can be very slow!

• integrate out variables

• ...


