
Review: MCMC Idea

Situation:

• Given a target distribution f (x)

• Want to generate samples from f (x)

Idea:

• construct a Markov chain {Xi}∞i=1 so that limi→∞ P(Xi = x) = f (x)

• simulate the Markov chain for many iterations

• for m large enough xm, xm+1, . . . are (essentially) from f (x)

Review: How to construct the Markov chain
How to construct such a Markov chain? (x ∈ Ω discrete)
• Markov chain transition probabilities: P(y |x) = P(Xi+1 = y |Xi = x)

• Need to have

f (y) =
∑
x∈Ω

f (x)P(y |x) for all y ∈ Ω

• Sufficient condition: Detailed balance condition

f (x)P(y |x) = f (y)P(x |y)for allx , y ∈ Ω

Metropolis-Hastings setup for P(y |x):

P(y |x) = Q(y |x)α(y |x) when y 6= x

P(x |x) = 1−
∑
y 6=x

Q(y |x)α(y |x) when y = x

where

α(y |x) = min

{
1,

f (y)

f (x)

Q(x |y)

Q(y |x)

}
ï¿œ

Review: How to construct the Markov chain
How to construct such a Markov chain? (x ∈ Ω discrete)
• Markov chain transition probabilities: P(y |x) = P(Xi+1 = y |Xi = x)

• Need to have

f (y) =
∑
x∈Ω

f (x)P(y |x) for all y ∈ Ω

• Sufficient condition: Detailed balance condition

f (x)P(y |x) = f (y)P(x |y)for allx , y ∈ Ω

Metropolis-Hastings setup for P(y |x):

P(y |x) = Q(y |x)α(y |x) when y 6= x

P(x |x) = 1−
∑
y 6=x

Q(y |x)α(y |x) when y = x

where

α(y |x) = min

{
1,

f (y)

f (x)

Q(x |y)

Q(y |x)

}
ï¿œ

Review: Common proposal types

• Independent proposals: Q(y |x) = q(y)

I usually not a good alternative (alone)

• Random walk proposals: Q(y |x) = N(y |x , σ2I)
I is used a lot
I includes a tuning parameter: σ

• Gibbs updates: Q(y j |x j , x−j) = f (x j |x−j)
I is used a lot
I the proposal density is the full conditional
I no tuning paramter
I acceptance rate 1
I can be conbined with MH update

Review: Convergence diagnostic

Has the MC converged?

• Formal convergence diagnostics exists
I some based on a single Markov chain run
I some based on several Markov chain runs

• Standard way to assess convergence is to look at the traceplot

• If some properties of the target distribution is known: use it to check

convergence!

• All convergence diagnostics can (and do) fail

Has bivariate this MC converged?

Has bivariate this MC converged?

Has bivariate this MC converged?

Has bivariate this MC converged?

This is how the distribution looks like.

Used a RW proposal N (0, 0.32I)

Variance of the MCMC estimator

Recall: We want to estimate µ =
∫
g(x)π(x) dx with µ̂ = 1

n

∑
g(xi)

where xi ∼ π(x).

In standard MC we have

x1, x2, . . . , xn ∼ π(x), i.i.d.

This gives

E(µ̂) = µ and Var(µ̂) =
Var(g(X))

n

We can estimate the variance Var(µ̂) as

V̂ar(µ̂) =
̂Var(g(X))

n

̂Var(g(X)) =
1

n − 1

∑
(g(xi) = µ̂)

MCMC gives dependence samples, what is the variance then??

Autocorrelation

To examine dependencies of successive MCMC samples, the

autocorrelation function can be used. Let x1, . . . , xN , where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation ρ(k) is the correlation between every draw and

its k-th lag. For N reasonably large

ρ(k) ≈
∑N−k

i=1 (xi − x̄)(xi+k − x̄)∑N
i=1(xi − x̄)2

,

where x̄ = 1
N

∑N
i=1 xi is the overall mean.

• With increasing lag k we expect lower autocorrelations.

• If autocorrelation is still relatively high for higher values of k , this

indicates high degree of correlation between our draws and slow

mixing.

Example: Korsbetningen

Autocorrelation function for N (after discarding the burn-in period)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

single site update

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

block update

Effective sample size

A useful measure to compare the performance of different MCMC

samplers is the effective sample size (ESS) Kass et al. (1998) American

Statistician 52, 93–100..

• The ESS is the estimated number of independent samples needed to

obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

ESS =
N

τ
, τ = 1 + 2 ·

∞∑
k=1

ρ(k),

where τ is the autocorrelation time and ρ(k) the autocorrelation at

lag k .

Estimate of ESS

ESS =
N

τ
, τ = 1 + 2 ·

∞∑
k=1

ρ(k),

Estimate τ as

τ = 1 + 2 ·
m∑

k=1

ρ̂(k)

where ρ̂(k) is the sample autocorrelation function at lag k , and m is

choosen to fullfill some criteria.

Different criteria exists.

Example: Korsbetningen - Effective sample size (ESS)

> library(coda)
> nsamples

[1] 8000

> ## single site
> effectiveSize(as.mcmc(res1))

N theta
18.46377 13.65231

> ## block update
> effectiveSize(as.mcmc(res2))

N theta
564.3797 925.7764

>
The precision of the MCMC estimate of the posterior mean of N based on 8000

samples from a single site update is a good as taking 16 independent samples!

Geweke diagnostics

The MCMC chain is divided into two windows

• the first x%, and

• the last y% of the iterates

(coda default: x = 10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke’s test

statistic (z-score) follows an asymptotical standard normal distribution.

Example: Korsbetningen - Geweke plot

Single Site

0 1000 2000 3000 4000

−
2

−
1

0
1

2

First iteration in segment

Z
−

sc
or

e

N

0 1000 2000 3000 4000

−
3

−
2

−
1

0
1

2
3

First iteration in segment

Z
−

sc
or

e

theta

Block Update

0 1000 2000 3000 4000

−
2

−
1

0
1

2

First iteration in segment

Z
−

sc
or

e

N

0 1000 2000 3000 4000

−
2

−
1

0
1

2

First iteration in segment

Z
−

sc
or

e

theta

Further reading

There are several convergence diagnostics:

• some are based on a single Markov chain run

• some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

• Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov

Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

• R-package coda. (Plummer et al., 2006)

Summary

• Diagnostics cannot guarantee that chain has converged

• Can indicate that it has not converged

Solutions?

• Run longer and thin output

• Reparametrize model

• "Block" correlated variables together
I Joint update might be more efficient however for some parameter

combination the acceptance rate can be very slow!

• integrate out variables

• ...

Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
I strong dependency between variables

I different scales on different variables
I several modes

−2

0

2

−2 0 2

a

b

Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
I strong dependency between variables
I different scales on different variables

I several modes

−2

0

2

−20 0 20

a

b

Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
I strong dependency between variables
I different scales on different variables
I several modes

−6

−3

0

3

−2 0 2 4

a

b

Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
I strong dependency between variables
I different scales on different variables
I several modes

• In toy examples: this is not a problem
I we know how f (x) looks like

• In real problems: this may be difficult
I we have a formula for f (x)

I we don’t know how f (x) looks like

MCMC

• Since the advent of simulation-based techniques (notably MCMC),

Bayesian computation has enjoyed incredible development

• This has certainly been helped by dedicated software (eg BUGS and

then WinBUGS, OpenBUGS, JAGS, Stan)

• MCMC methods are very general and can effectively be applied to

"any" model

• However:
I Even if in theory, MCMC can provide (nearly) exact inference, given

perfect convergence and MC error → 0, in practice, this has to be

balanced with model complexity and running time
I This is particularly an issue for problems characterised by large data

or very complex structure (eg hierarchical models)
I This is also a problem if one wants to, for example, test the

sensitivity of the model to the prior choice

MCMC

• Since the advent of simulation-based techniques (notably MCMC),

Bayesian computation has enjoyed incredible development

• This has certainly been helped by dedicated software (eg BUGS and

then WinBUGS, OpenBUGS, JAGS, Stan)

• MCMC methods are very general and can effectively be applied to

"any" model

• However:
I Even if in theory, MCMC can provide (nearly) exact inference, given

perfect convergence and MC error → 0, in practice, this has to be

balanced with model complexity and running time
I This is particularly an issue for problems characterised by large data

or very complex structure (eg hierarchical models)
I This is also a problem if one wants to, for example, test the

sensitivity of the model to the prior choice

What it INLA?

Integrated Nested Laplace Approximation

The short answer:
INLA is a fast method to do Bayesian inference with latent

Gaussian models and R-INLA is an R-package that implements

this method with a flexible and simple interface

A (much) longer answer can be found in:

Rue, Martino, and Chopin (2009) "Approximate Bayesian inference for latent

Gaussian models by using integrated nested Laplace approximations." Journal

of the royal statistical society: Series B. 319-392

Ingredients of INLA

• Latent Gaussian Models
I Class of models where INLA can be applied

• Gaussian Markov Random Fieds
I Sparse matrix computations

• Laplace Approximation
I

Hierarchical Bayesian models

Hierarchical models are an extremely useful tool in Bayesian model

building.

Three parts:

• Observation model y |x ,θ: Encodes information about observed

data.

• The latent model x |θ: The unobserved process.

• Hyperpriors for θ: Models for all of the parameters in the

observation and latent processes.

Latent Gaussian models
A very general way of specifying the problem is by modelling the mean

for the i-th unit by means of an additive linear predictor, defined on a

suitable scale (e.g. logistic for binomial data)

ηi = α +
L∑

l=1

fl(uli) +
K∑

k=1

βkzki + εi

where

• α is the intercept

• β = (β1, . . . , βK) quantify the effect of x = (x1, . . . , xK) on the

response

• f = (f1, . . . , fL) is a set of functions defined in terms of some

covariates z = (z1, . . . , zK)

And assume

x = (α,β, f) ∼ N (0,Q(θ)−1)

Many commonly used models can be written as LGM:

• Multiple regression

• Generalized linear model (GLM)

• Generalized additive model (GAM)

• Generalized additive mixed model (GAMM, GLMM)

Many commonly used models can be written as LGM:

• Multiple regression

ηi = E (yi) = α +
K∑

k=1

βkzki

I α: Intercept
I β: Linear effects of covariates z

• Generalized linear model (GLM)

• Generalized additive model (GAM)

• Generalized additive mixed model (GAMM, GLMM)

Many commonly used models can be written as LGM:

• Multiple regression

• Generalized linear model (GLM)

ηi = g(µi) = α +
K∑

k=1

βkzki

I g(·): link function
I α: Intercept
I β: Linear effects of covariates z

• Generalized additive model (GAM)

• Generalized additive mixed model (GAMM, GLMM)

Many commonly used models can be written as LGM:
• Multiple regression
• Generalized linear model (GLM)
• Generalized additive model (GAM)

ηi = g(µi) = α +
L∑

l=1

fl(uli)

I g(·): link function
I α: Intercept
I {fl(·)}: Non-linear smooth effects of covariates ul

• Generalized additive mixed model (GAMM, GLMM)

ηi = g(µi) = α +
L∑

l=1

fl(uli)

I g(·): link function
I α: Intercept
I β: Linear effects of covariates z
I

{fl(·)}

: Non-linear smooth effects of covariates ul

Some more example of LGM

• Disease Mapping

• Geostatistical models

• Survival models

• Stochastic volatility models

• Spatial and spatio-temporal models

• Spline smoothing

• +++

Unified framework

Observations: y

Latent field: x

Hyperparameters: θ = (θ1,θ2)

Unified framework

Observations: y Assumed conditionally independent given x and θ1

y |x ,θ1 ∼
∏
i

π(yi |xi , ,θ).

Latent field: x

Hyperparameters: θ = (θ1,θ2)

Unified framework

Observations: y Assumed conditionally independent given x and θ1

y |x ,θ1 ∼
∏
i

π(yi |xi , ,θ).

Latent field: x Assumed to be a GMRF with sparse precision matrix

Q(θ2)

x |θ1 ∼ N (0,Q(θ2)−1)

The latent field x can be large (101 − 106)

Hyperparameters: θ = (θ1,θ2)

Unified framework

Observations: y Assumed conditionally independent given x and θ1

y |x ,θ1 ∼
∏
i

π(yi |xi , ,θ).

Latent field: x Assumed to be a GMRF with sparse precision matrix

Q(θ2)

x |θ1 ∼ N (0,Q(θ2)−1)

The latent field x can be large (101 − 106)

Hyperparameters: θ = (θ1,θ2) Precision parameters of the Gaussian

field and parameters of the likelihood

θ ∼ π(θ)

The vector θ is usually small (1-10)

Main interest

The posterior distribution is given by

π(x ,θ|y) ∝ π(θ)π(x |θ)
∏
i

π(yi |xi ,θ)

We are mainly interested in the posterior marginals

π(xi |y) =

∫
θ

∫
x−i

π(x ,θ|y)dx−i︸ ︷︷ ︸
π(xi ,θ|y)

dθ =

∫
θ

π(xi ,θ|y)dθ =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

∫
x
π(x ,θ|y)dx︸ ︷︷ ︸
π(θ|y)

dθ−j =

∫
θ−j

π(θ|y)dθ−j

Main interest

The posterior distribution is given by

π(x ,θ|y) ∝ π(θ)π(x |θ)
∏
i

π(yi |xi ,θ)

We are mainly interested in the posterior marginals

π(xi |y) =

∫
θ

∫
x−i

π(x ,θ|y)dx−i︸ ︷︷ ︸
π(xi ,θ|y)

dθ =

∫
θ

π(xi ,θ|y)dθ =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

∫
x
π(x ,θ|y)dx︸ ︷︷ ︸
π(θ|y)

dθ−j =

∫
θ−j

π(θ|y)dθ−j

Example: Disease Mapping in Germany

We observed larynx cancer mortality counts for males in 544 district of

Germany from 1986 to 1990 and want to make a model.
Information available:

yi The count in disctrict

i

Ei An offset, expected

number of cases in

district i

ci A covariate (level of

smoking consumption

in district i)

si Spatial location i

(district)

Level 1: The data

We have to decide on the likelihood of our data y

• The responses are counts

• We choose a Poisson model

yi |ηi ∼ Poisson(Ei exp(ηi))

• ηi is a linear function of the latent components

Level 2: The Latent Model

The latent field x consists of two parts:

• One fixed effect: the intercept µ

• Three random effects:
I The spatially structured effect fs .
I The unstructured effect u which accounts for non-observed variability
I The unknown effect f (ci) of the exposure covariate which assumes

value ci for district i .

These are combined for each location to give a linear predictor

ηi = µ+ fs(si) + f (ci) + ui

The latent field is x = {µ, (fs(·)), (f (·)), u1, . . . , un}

Level 3: The hyperparameters

The structured and unstructured spatial effect as well as the smooth

covariate effect will be each controlled by one parameter

• τc , τf , τη : The precisions (inverse variances) of the covariate

effect, spatial effect and unstructured effect, respectively.

The hyperparameters are θ = (τc , τf , τη), and must be given a prior

π(τc , τf , τη)

What are we interested in?

Structured spatial effect exp(fs(si)) Covariate effect exp(f (ci))

INLA computing scheme

We want to approximate:

π(xi |y) =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

π(θ|y)dθ−j

How INLA does it:

• Approximate π(θj |y) as π̃(θj |y)

• Approximate π(xi |θ, y) as π̃(xi |θ, y)

• Use numerical integration (a finite sum) to compute
I

π̃(xi |y) =
∑
k

π̃(xi |θk , y) π̃(θk |y) ∆k .

I

π̃(θj |y)

INLA computing scheme

We want to approximate:

π(xi |y) =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

π(θ|y)dθ−j

How INLA does it:

• Approximate π(θj |y) as π̃(θj |y)

• Approximate π(xi |θ, y) as π̃(xi |θ, y)

• Use numerical integration (a finite sum) to compute
I

π̃(xi |y) =
∑
k

π̃(xi |θk , y) π̃(θk |y) ∆k .

I

π̃(θj |y)

INLA computing scheme

We want to approximate:

π(xi |y) =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

π(θ|y)dθ−j

How INLA does it:

• Approximate π(θj |y) as π̃(θj |y)

• Approximate π(xi |θ, y) as π̃(xi |θ, y)

• Use numerical integration (a finite sum) to compute
I

π̃(xi |y) =
∑
k

π̃(xi |θk , y) π̃(θk |y) ∆k .

I

π̃(θj |y)

INLA computing scheme

We want to approximate:

π(xi |y) =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

π(θ|y)dθ−j

How INLA does it:

• Approximate π(θj |y) as π̃(θj |y)

• Approximate π(xi |θ, y) as π̃(xi |θ, y)

• Use numerical integration (a finite sum) to compute
I

π̃(xi |y) =
∑
k

π̃(xi |θk , y) π̃(θk |y) ∆k .

I

π̃(θj |y)

Gaussian Markov Random Fields

A GMRF x = (x1, x2, . . . , xn) is a random vector following a multivariate

Gaussian distribution

x ∼ N (0,Q−1) where Q−1 = Σ

and that is endowed with some Markov properties like

xj ⊥ xi |x−ij

where x−ij indicates "all elements of x other than i and j"

The easiest example is a AR(1) model

Gaussian Markov Random Fields

If Σ is the covariance matrix of a Gaussian vector and Q = Σ−1 is the

precision matrix, we have that

xi ⊥ xj ⇐⇒ Σij = 0

and

xi ⊥ xj ⇐⇒ Qij = 0

GMRF have sparse precision matrices....this means it is "easy" to

compute determinant and invert Q

Gaussian Markov Random Fields

If Σ is the covariance matrix of a Gaussian vector and Q = Σ−1 is the

precision matrix, we have that

xi ⊥ xj ⇐⇒ Σij = 0

and

xi ⊥ xj ⇐⇒ Qij = 0

GMRF have sparse precision matrices....this means it is "easy" to

compute determinant and invert Q

The GMRF approximation

Let x denote a GMRF with precision matrix Q and mean µ. Approximate

π(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

log π(yi |xi)

)

by using a second-order Taylor expansion of log π(yi |xi) around µ0, say.

Recall

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2 = a + bx − 1

2
cx2

with b = f ′(x0)− f ′′(x0)x0 and c = −f ′′(x0).

The GMRF approximation (II)

Thus,

π̃(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

(ai + bixi − 0.5cix2i)

)

∝ exp

(
−1
2
xT (Q + diag(c))x + bTx

)
to get a Gaussian approximation with precision matrix Q + diag(c) and

mean given by the solution of (Q + diag(c))µ = b. The canonical

parameterization is

NC (b,Q + diag(c))

which corresponds to

N ((Q + diag(c))−1b, (Q + diag(c))−1).

The GMFR approximation - One dimensional example

Assume

y |λ ∼ Poisson(λ) Likelihood

λ = exp(x) Likelihood

x ∼ N (0, 1) Latent Model

we have that

π(x |y) ∝ π(y |x)π(x) ∝ exp{−1
2
x2 + xy − exp(x)︸ ︷︷ ︸

non-gaussian part

}

(Show R-code Taylor_expansion.R)

The GMRF approximation

−1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Expansion around 0

●

●

full conditional
normal approximation

mode
expansion point

−1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Expansion around 0.5

●

−1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Expansion around 1

●

−1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Expansion around 1.5

●

