Situation:

- Given a target distribution f(x)
- Want to generate samples from f(x)

Idea:

- construct a Markov chain $\{X_i\}_{i=1}^{\infty}$ so that $\lim_{i\to\infty} P(X_i = x) = f(x)$
- simulate the Markov chain for many iterations
- for m large enough x_m, x_{m+1}, \ldots are (essentially) from f(x)

Review: How to construct the Markov chain

How to construct such a Markov chain? ($x \in \Omega$ discrete)

- Markov chain transition probabilities: $P(y|x) = P(X_{i+1} = y|X_i = x)$
- Need to have

$$f(y) = \sum_{x \in \Omega} f(x)P(y|x)$$
 for all $y \in \Omega$

• Sufficient condition: Detailed balance condition

$$f(x)P(y|x) = f(y)P(x|y)$$
 for all $x, y \in \Omega$

Review: How to construct the Markov chain

How to construct such a Markov chain? ($x \in \Omega$ discrete)

- Markov chain transition probabilities: $P(y|x) = P(X_{i+1} = y|X_i = x)$
- Need to have

$$f(y) = \sum_{x \in \Omega} f(x) P(y|x)$$
 for all $y \in \Omega$

• Sufficient condition: Detailed balance condition

$$f(x)P(y|x) = f(y)P(x|y)$$
for all $x, y \in \Omega$

Metropolis-Hastings setup for P(y|x):

$$P(y|x) = Q(y|x)\alpha(y|x)$$
 when $y \neq x$
 $P(x|x) = 1 - \sum_{y \neq x} Q(y|x)\alpha(y|x)$ when $y = x$

where

$$\alpha(y|x) = \min\left\{1, \frac{f(y)}{f(x)} \frac{Q(x|y)}{Q(y|x)}\right\}$$

ïįœ

Review: Common proposal types

- Independent proposals: Q(y|x) = q(y)
 - usually not a good alternative (alone)
- Random walk proposals: $Q(y|x) = N(y|x, \sigma^2 I)$
 - is used a lot
 - includes a tuning parameter: σ
- Gibbs updates: $Q(y^j|x^j, \mathbf{x}^{-j}) = f(x^j|\mathbf{x}^{-j})$
 - is used a lot
 - the proposal density is the full conditional
 - no tuning paramter
 - acceptance rate 1
 - can be conbined with MH update

Review: Convergence diagnostic

Has the MC converged?

- Formal convergence diagnostics exists
 - some based on a single Markov chain run
 - some based on several Markov chain runs
- Standard way to assess convergence is to look at the traceplot
- If some properties of the target distribution is known: use it to check convergence!
- All convergence diagnostics can (and do) fail

N iteration

N iteration

N iteration

Variance of the MCMC estimator

Recall: We want to estimate $\mu = \int g(x)\pi(x) dx$ with $\hat{\mu} = \frac{1}{n} \sum g(x_i)$ where $x_i \sim \pi(x)$. In standard MC we have

$$x_1, x_2, \ldots, x_n \sim \pi(x)$$
, i.i.d.

This gives

$$\mathsf{E}(\hat{\mu}) = \mu ext{ and } \mathsf{Var}(\hat{\mu}) = rac{\mathsf{Var}(g(X))}{n}$$

We can estimate the variance $Var(\hat{\mu})$ as

$$\widehat{\operatorname{Var}(\hat{\mu})} = \frac{\widehat{\operatorname{Var}(g(X))}}{n}$$
$$\widehat{\operatorname{Var}(g(X))} = \frac{1}{n-1} \sum (g(x_i) = \hat{\mu})$$

MCMC gives dependence samples, what is the variance then??

Autocorrelation

To examine dependencies of successive MCMC samples, the autocorrelation function can be used. Let x_1, \ldots, x_N , where N denotes the number of samples, denote our MCMC chain.

The lag k autocorrelation $\rho(k)$ is the correlation between every draw and its k-th lag. For N reasonably large

$$\rho(k) \approx rac{\sum_{i=1}^{N-k} (x_i - \bar{x}) (x_{i+k} - \bar{x})}{\sum_{i=1}^{N} (x_i - \bar{x})^2},$$

where $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ is the overall mean.

- With increasing lag k we expect lower autocorrelations.
- If autocorrelation is still relatively high for higher values of *k*, this indicates high degree of correlation between our draws and slow mixing.

Example: Korsbetningen

Autocorrelation function for N (after discarding the burn-in period)

Effective sample size

A useful measure to compare the performance of different MCMC samplers is the effective sample size (ESS) Kass et al. (1998) American Statistician 52, 93–100.

• The ESS is the estimated number of independent samples needed to obtain a parameter estimate with the same precision as the MCMC estimate based on *N* dependent samples.

$$\mathsf{ESS} = rac{N}{ au}, \quad au = 1 + 2 \cdot \sum_{k=1}^\infty
ho(k),$$

where τ is the autocorrelation time and $\rho(k)$ the autocorrelation at lag k.

Estimate of ESS

$$\mathsf{ESS} = \frac{N}{\tau}, \quad \tau = 1 + 2 \cdot \sum_{k=1}^{\infty} \rho(k),$$

Estimate τ as

$$\tau = 1 + 2 \cdot \sum_{k=1}^{m} \hat{\rho}(k)$$

where $\hat{\rho}(k)$ is the sample autocorrelation function at lag k, and m is choosen to fullfill some criteria. Different criteria exists.

Example: Korsbetningen - Effective sample size (ESS)

```
> library(coda)
```

```
> nsamples
```

```
[1] 8000
```

```
> ## single site
```

```
> effectiveSize(as.mcmc(res1))
```

```
N theta
18.46377 13.65231
```

```
> ## block update
```

```
> effectiveSize(as.mcmc(res2))
```

```
N theta 564.3797 925.7764
```

The precision of the MCMC estimate of the posterior mean of N based on 8000 samples from a single site update is a good as taking 16 independent samples!

Geweke diagnostics

The MCMC chain is divided into two windows

- the first x%, and
- the last y% of the iterates

(coda default: x = 10, y = 50). For both windows the mean is calculated.

If the chain is stationary both values should be equal and Geweke's test statistic (z-score) follows an asymptotical standard normal distribution.

Example: Korsbetningen - Geweke plot

Further reading

There are several convergence diagnostics:

- some are based on a single Markov chain run
- some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

• Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

• R-package coda.

(Plummer et al., 2006)

- Diagnostics cannot guarantee that chain has converged
- Can indicate that it has not converged

Solutions?

- Run longer and thin output
- Reparametrize model
- "Block" correlated variables together
 - Joint update might be more efficient however for some parameter combination the acceptance rate can be very slow!
- integrate out variables

- Note: If you knows the solution, it is easy to solve a problem!
- Properties of f(x) that may make MCMC difficult
 - strong dependency between variables

- Note: If you knows the solution, it is easy to solve a problem!
- Properties of f(x) that may make MCMC difficult
 - strong dependency between variables
 - different scales on different variables

- Note: If you knows the solution, it is easy to solve a problem!
- Properties of f(x) that may make MCMC difficult
 - strong dependency between variables
 - different scales on different variables
 - several modes

- Note: If you knows the solution, it is easy to solve a problem!
- Properties of f(x) that may make MCMC difficult
 - strong dependency between variables
 - different scales on different variables
 - several modes
- In toy examples: this is not a problem
 - we know how f(x) looks like
- In real problems: this may be difficult
 - we have a formula for f(x)
 - we don't know how f(x) looks like

MCMC

- Since the advent of simulation-based techniques (notably MCMC), Bayesian computation has enjoyed incredible development
- This has certainly been helped by dedicated software (eg BUGS and then WinBUGS, OpenBUGS, JAGS, Stan)
- MCMC methods are very general and can effectively be applied to "any" model

MCMC

- Since the advent of simulation-based techniques (notably MCMC), Bayesian computation has enjoyed incredible development
- This has certainly been helped by dedicated software (eg BUGS and then WinBUGS, OpenBUGS, JAGS, Stan)
- MCMC methods are very general and can effectively be applied to "any" model
- However:
 - ► Even if in theory, MCMC can provide (nearly) exact inference, given perfect convergence and MC error → 0, in practice, this has to be balanced with model complexity and running time
 - This is particularly an issue for problems characterised by large data or very complex structure (eg hierarchical models)
 - This is also a problem if one wants to, for example, test the sensitivity of the model to the prior choice

What it INLA?

Integrated Nested Laplace Approximation

The short answer:

INLA is a fast method to do Bayesian inference with latent Gaussian models and R-INLA is an R-package that implements this method with a flexible and simple interface

A (much) longer answer can be found in:

Rue, Martino, and Chopin (2009) "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." *Journal of the royal statistical society:* Series B. 319-392

Ingredients of INLA

- Latent Gaussian Models
 - Class of models where INLA can be applied
- Gaussian Markov Random Fieds
 - Sparse matrix computations
- Laplace Approximation

Hierarchical Bayesian models

Hierarchical models are an extremely useful tool in Bayesian model building.

Three parts:

- Observation model y | x, θ: Encodes information about observed data.
- The latent model $x|\theta$: The unobserved process.
- Hyperpriors for θ: Models for all of the parameters in the observation and latent processes.

Latent Gaussian models

A very general way of specifying the problem is by modelling the mean for the *i*-th unit by means of an additive linear predictor, defined on a suitable scale (e.g. logistic for binomial data)

$$\eta_i = \alpha + \sum_{l=1}^{L} f_l(u_{li}) + \sum_{k=1}^{K} \beta_k z_{ki} + \epsilon_i$$

where

- α is the intercept
- $\beta = (\beta_1, \dots, \beta_K)$ quantify the effect of $\mathbf{x} = (x_1, \dots, x_K)$ on the response
- f = (f₁,..., f_L) is a set of functions defined in terms of some covariates z = (z₁,..., z_K)

And assume

$$\boldsymbol{x} = (\alpha, \boldsymbol{\beta}, \boldsymbol{f}) \sim \mathcal{N}(0, \boldsymbol{Q}(\theta)^{-1})$$

- Multiple regression
- Generalized linear model (GLM)
- Generalized additive model (GAM)
- Generalized additive mixed model (GAMM, GLMM)

• Multiple regression

$$\eta_i = E(y_i) = \alpha + \sum_{k=1}^{K} \beta_k z_{ki}$$

 \triangleright α : Intercept

β: Linear effects of covariates z

- Generalized linear model (GLM)
- Generalized additive model (GAM)
- Generalized additive mixed model (GAMM, GLMM)

- Multiple regression
- Generalized linear model (GLM)

$$\eta_i = g(\mu_i) = \alpha + \sum_{k=1}^{K} \beta_k z_{ki}$$

- ▶ $g(\cdot)$: link function
- \triangleright α : Intercept
- β: Linear effects of covariates z
- Generalized additive model (GAM)
- Generalized additive mixed model (GAMM, GLMM)

- Multiple regression
- Generalized linear model (GLM)
- Generalized additive model (GAM)

$$\eta_i = g(\mu_i) = \alpha + \sum_{l=1}^{L} f_l(u_{li})$$

- ▶ $g(\cdot)$: link function
- \triangleright α : Intercept
- $\{f_l(\cdot)\}$: Non-linear smooth effects of covariates u_l
- Generalized additive mixed model (GAMM, GLMM)

$$\eta_i = g(\mu_i) = \alpha + \sum_{l=1}^{L} f_l(u_{li})$$

- ▶ $g(\cdot)$: link function
- α: Intercept
- \triangleright β : Linear effects of covariates z

Some more example of LGM

- Disease Mapping
- Geostatistical models
- Survival models
- Stochastic volatility models
- Spatial and spatio-temporal models
- Spline smoothing
- +++

Unified framework

Observations: **y**

Latent field: x

Hyperparameters: $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$

Unified framework

Observations: **y** Assumed conditionally independent given **x** and θ_1

$$oldsymbol{y}|oldsymbol{x},oldsymbol{ heta}_1\sim\prod_i\pi(y_i|x_i,,oldsymbol{ heta}).$$

Latent field: x

Hyperparameters: $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$

Observations: **y** Assumed conditionally independent given **x** and θ_1

$$oldsymbol{y}|oldsymbol{x},oldsymbol{ heta}_1\sim\prod_i\pi(y_i|x_i,,oldsymbol{ heta}).$$

Latent field: \pmb{x} Assumed to be a GMRF with sparse precision matrix $\pmb{Q}(\pmb{ heta}_2)$

$$oldsymbol{x}|oldsymbol{ heta}_1 \sim \mathcal{N}(0,oldsymbol{Q}(oldsymbol{ heta}_2)^{-1})$$

The latent field \boldsymbol{x} can be large $(10^1 - 10^6)$

Hyperparameters: $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$

Unified framework

Observations: **y** Assumed conditionally independent given **x** and θ_1

$$oldsymbol{y}|oldsymbol{x},oldsymbol{ heta}_1\sim\prod_i\pi(y_i|x_i,,oldsymbol{ heta}).$$

Latent field: **x** Assumed to be a GMRF with sparse precision matrix $oldsymbol{Q}(heta_2)$

$$oldsymbol{x}|oldsymbol{ heta}_1 \sim \mathcal{N}(0,oldsymbol{Q}(oldsymbol{ heta}_2)^{-1})$$

The latent field **x** can be large $(10^1 - 10^6)$

Hyperparameters: $\theta = (\theta_1, \theta_2)$ Precision parameters of the Gaussian field and parameters of the likelihood

$$oldsymbol{ heta} \sim \pi(oldsymbol{ heta})$$

The vector θ is usually small (1-10)

Main interest

The posterior distribution is given by

$$\pi(oldsymbol{x},oldsymbol{ heta}|oldsymbol{y})\propto\pi(oldsymbol{ heta})\pi(oldsymbol{x}|oldsymbol{ heta})\prod_i\pi(y_i|x_i,oldsymbol{ heta})$$

Main interest

The posterior distribution is given by

$$\pi(\mathbf{x}, \boldsymbol{\theta} | \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \pi(\mathbf{x} | \boldsymbol{\theta}) \prod_{i} \pi(y_i | x_i, \boldsymbol{\theta})$$

We are mainly interested in the posterior marginals

$$\pi(x_i|\mathbf{y}) = \int_{\boldsymbol{\theta}} \underbrace{\int_{\mathbf{x}_{-i}} \pi(\mathbf{x}, \boldsymbol{\theta}|\mathbf{y}) d\mathbf{x}_{-i}}_{\pi(x_i, \boldsymbol{\theta}|\mathbf{y})} d\boldsymbol{\theta} = \int_{\boldsymbol{\theta}} \pi(x_i, \boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} = \int_{\boldsymbol{\theta}} \pi(x_i|\boldsymbol{\theta}, \mathbf{y}) \pi(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}$$
$$\pi(\theta_j|\mathbf{y}) = \int_{\boldsymbol{\theta}_{-j}} \underbrace{\int_{\mathbf{x}} \pi(\mathbf{x}, \boldsymbol{\theta}|\mathbf{y}) d\mathbf{x}}_{\pi(\boldsymbol{\theta}|\mathbf{y})} d\boldsymbol{\theta}_{-j} = \int_{\boldsymbol{\theta}_{-j}} \pi(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}_{-j}$$

Example: Disease Mapping in Germany

We observed larynx cancer mortality counts for males in 544 district of

Germany from 1986 to 1990 and want to make a model. Information available:

y_i The count in disctrict i

- *E_i* An offset, expected number of cases in district *i*
- c_i A covariate (level of smoking consumption in district i)
- s_i Spatial location i (district)

We have to decide on the likelihood of our data \boldsymbol{y}

- The responses are counts
- We choose a Poisson model

 $y_i | \eta_i \sim \mathsf{Poisson}(E_i \exp(\eta_i))$

• η_i is a linear function of the latent components

Level 2: The Latent Model

The latent field \boldsymbol{x} consists of two parts:

- One fixed effect: the intercept μ
- Three random effects:
 - The spatially structured effect f_s .
 - ▶ The unstructured effect *u* which accounts for non-observed variability
 - The unknown effect f(c_i) of the exposure covariate which assumes value c_i for district i.

These are combined for each location to give a linear predictor

$$\eta_i = \mu + f_s(s_i) + f(c_i) + u_i$$

The latent field is $\mathbf{x} = \{\mu, (f_s(\cdot)), (f(\cdot)), u_1, \dots, u_n\}$

The structured and unstructured spatial effect as well as the smooth covariate effect will be each controlled by one parameter

• τ_c , τ_f , τ_η : The precisions (inverse variances) of the covariate effect, spatial effect and unstructured effect, respectively.

The hyperparameters are $\theta = (\tau_c, \tau_f, \tau_\eta)$, and must be given a prior $\pi(\tau_c, \tau_f, \tau_\eta)$

What are we interested in?

Structured spatial effect $\exp(f_s(s_i))$

Covariate effect $\exp(f(c_i))$

We want to approximate:

$$egin{aligned} \pi(x_i|oldsymbol{y}) &= \int_{oldsymbol{ heta}} \pi(x_i|oldsymbol{ heta},oldsymbol{y}) \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta} \ \pi(heta_j|oldsymbol{y}) &= \int_{oldsymbol{ heta}_{-j}} \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta}_{-j} \end{aligned}$$

How INLA does it:

We want to approximate:

$$egin{aligned} \pi(x_i|oldsymbol{y}) &= \int_{oldsymbol{ heta}} \pi(x_i|oldsymbol{ heta},oldsymbol{y}) \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta} \ \pi(heta_j|oldsymbol{y}) &= \int_{oldsymbol{ heta}_{-j}} \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta}_{-j} \end{aligned}$$

How INLA does it:

• Approximate $\pi(\theta_j | \boldsymbol{y})$ as $\widetilde{\pi}(\theta_j | \boldsymbol{y})$

We want to approximate:

$$egin{aligned} \pi(x_i|oldsymbol{y}) &= \int_{oldsymbol{ heta}} \pi(x_i|oldsymbol{ heta},oldsymbol{y}) \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta} \ \pi(heta_j|oldsymbol{y}) &= \int_{oldsymbol{ heta}_{-j}} \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta}_{-j} \end{aligned}$$

How INLA does it:

- Approximate $\pi(\theta_j | \boldsymbol{y})$ as $\widetilde{\pi}(\theta_j | \boldsymbol{y})$
- Approximate $\pi(x_i|\boldsymbol{\theta}, \boldsymbol{y})$ as $\widetilde{\pi}(x_i|\boldsymbol{\theta}, \boldsymbol{y})$

We want to approximate:

$$egin{aligned} \pi(x_i|oldsymbol{y}) &= \int_{oldsymbol{ heta}} \pi(x_i|oldsymbol{ heta},oldsymbol{y}) \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta} \ \pi(heta_j|oldsymbol{y}) &= \int_{oldsymbol{ heta}_{-j}} \pi(oldsymbol{ heta}|oldsymbol{y}) doldsymbol{ heta}_{-j} \end{aligned}$$

How INLA does it:

- Approximate $\pi(\theta_j | \boldsymbol{y})$ as $\widetilde{\pi}(\theta_j | \boldsymbol{y})$
- Approximate $\pi(x_i|\boldsymbol{\theta}, \boldsymbol{y})$ as $\widetilde{\pi}(x_i|\boldsymbol{\theta}, \boldsymbol{y})$
- Use numerical integration (a finite sum) to compute

$$\widetilde{\pi}(x_i|oldsymbol{y}) = \sum_k \widetilde{\pi}(x_i|oldsymbol{ heta}_k,oldsymbol{y}) \ \widetilde{\pi}(oldsymbol{ heta}_k|oldsymbol{y}) \ \Delta_k.$$

 $\widetilde{\pi}(\boldsymbol{\theta}_j | \boldsymbol{y})$

Gaussian Markov Random Fields

A GMRF $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is a random vector following a multivariate Gaussian distribution

$$oldsymbol{x} \sim \mathcal{N}(oldsymbol{0},oldsymbol{Q}^{-1})$$
 where $oldsymbol{Q}^{-1} = oldsymbol{\Sigma}$

and that is endowed with some Markov properties like

$$x_j \perp x_i | \mathbf{x}_{-ij}$$

where \mathbf{x}_{-ij} indicates "all elements of \mathbf{x} other than i and j"

The easiest example is a AR(1) model

If Σ is the covariance matrix of a Gaussian vector and $oldsymbol{Q}=\Sigma^{-1}$ is the precision matrix, we have that

$$x_i \perp x_j \iff \Sigma_{ij} = 0$$

and

$$x_i \perp x_j \iff Q_{ij} = 0$$

If Σ is the covariance matrix of a Gaussian vector and $Q = \Sigma^{-1}$ is the precision matrix, we have that

$$x_i \perp x_j \iff \Sigma_{ij} = 0$$

and

$$x_i \perp x_j \iff Q_{ij} = 0$$

GMRF have sparse precision matrices....this means it is "easy" to compute determinant and invert ${\pmb Q}$

The GMRF approximation

Let \boldsymbol{x} denote a GMRF with precision matrix \boldsymbol{Q} and mean μ . Approximate

$$\pi(\boldsymbol{x}|\boldsymbol{ heta}, \boldsymbol{y}) \propto \exp\left(-rac{1}{2} \boldsymbol{x}^{ op} \boldsymbol{Q} \boldsymbol{x} + \sum_{i=1}^{n} \log \pi(y_i|x_i)
ight)$$

by using a second-order Taylor expansion of log $\pi(y_i|x_i)$ around μ_0 , say. Recall

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 = a + bx - \frac{1}{2}cx^2$$

with $b = f'(x_0) - f''(x_0)x_0$ and $c = -f''(x_0)$.

The GMRF approximation (II)

Thus,

$$egin{split} & ilde{\pi}(m{x}|m{ heta},m{y}) \propto \exp\left(-rac{1}{2}m{x}^{ op}m{Q}m{x} + \sum_{i=1}^n(m{a}_i+b_ix_i-0.5c_ix_i^2)
ight) \ &\propto \exp\left(-rac{1}{2}m{x}^{ op}(m{Q}+ ext{diag}(m{c}))m{x}+m{b}^{ op}m{x}
ight) \end{split}$$

to get a Gaussian approximation with precision matrix Q + diag(c) and mean given by the solution of $(Q + \text{diag}(c))\mu = b$. The canonical parameterization is

 $\mathcal{N}_{C}(\mathbf{b}, \mathbf{Q} + \operatorname{diag}(\mathbf{c}))$

which corresponds to

$$\mathcal{N}((\boldsymbol{Q} + \operatorname{diag}(\boldsymbol{c}))^{-1}\mathbf{b}, (\boldsymbol{Q} + \operatorname{diag}(\boldsymbol{c}))^{-1}).$$

The GMFR approximation - One dimensional example

Assume

 $y|\lambda \sim \mathsf{Poisson}(\lambda)$ Likelihood $\lambda = \exp(x)$ Likelihood $x \sim \mathcal{N}(0,1)$ Latent Model

we have that

$$\pi(x|y) \propto \pi(y|x)\pi(x) \propto \exp\{-\frac{1}{2}x^2 + \underbrace{xy - exp(x)}_{xy = xy}\}$$

non-gaussian part

(Show R-code Taylor_expansion.R)

The GMRF approximation

