Review: MCMC ldea

Situation:
® Given a target distribution f(x)
® Want to generate samples from f(x)
Idea:
® construct a Markov chain {X;}$2; so that lim;_. P(Xi = x) = f(x)
® simulate the Markov chain for many iterations

® for m large enough Xp, Xm+1, ... are (essentially) from f(x)



Review: How to construct the Markov chain
How to construct such a Markov chain? (x € Q discrete)
® Markov chain transition probabilities: P(y|x) = P(Xiy1 = y|Xi = x)

® Need to have

= f(x)P(y|x) forall y € Q
xEQ

e Sufficient condition: Detailed balance condition

f(x)P(y|x) = f(y)P(x|y)for allx,y € Q



Review: How to construct the Markov chain

How to construct such a Markov chain? (x € Q discrete)
® Markov chain transition probabilities: P(y|x) = P(Xiy1 = y|Xi = x)

® Need to have

= f(x)P(y|x) forall y € Q
xEQ

e Sufficient condition: Detailed balance condition
f(x)P(y|x) = f(y)P(x|y)for allx,y € Q
Metropolis-Hastings setup for P(y|x):
P(ylx) = Q(y|x)a(y|x) when y # x

P(xIx) =1- 3" Q(y[x)a(y|x) when y = x
y#X

[, f0) @)
alyb) = {1’ f(x)@(y|x)}

where

Tjoe



Review: Common proposal types

® Independent proposals: Q(y|x) = q(y)
» usually not a good alternative (alone)

® Random walk proposals: Q(y|x) = N(y|x,c?)
» is used a lot

» includes a tuning parameter: o
® Gibbs updates: Q(y/|x/,x™/) = f(x/|x /)
» is used a lot

the proposal density is the full conditional

| 4

» no tuning paramter
» acceptance rate 1
>

can be conbined with MH update



Review: Convergence diagnostic

Has the MC converged?
® Formal convergence diagnostics exists

» some based on a single Markov chain run

» some based on several Markov chain runs
e Standard way to assess convergence is to look at the traceplot

® |f some properties of the target distribution is known: use it to check

convergence!

® All convergence diagnostics can (and do) fail



Has bivariate this MC converged?

©
<«
~ 4
T T T T T
0 200 400 600 800 1000
N iterati

<«
o
o

T T T T T T

0 200 400 600 800 1000



Has bivariate this MC converged?

o
<«
o
o
T T T T T T
0 2000 4000 6000 8000 10000
N iteration
<«
o
T T T T T T
0 2000 4000 6000 8000 10000

N iteration



Has bivariate this MC converged?
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Has bivariate this MC converged?

This is how the distribution looks like.
Used a RW proposal N(0,0.32/)



Variance of the MCMC estimator

Recall: We want to estimate 1 = [ g(x)m(x) dx with o = 13" g(x;)
where x; ~ 7(x).

In standard MC we have

X1y, X2, .« oy Xp ~ w(X), i.i.d.
This gives
N N Var(g(X
E(7) = and Var() = Y (EX)
We can estimate the variance Var({1) as
— Var/\X
i) - V)
— 1 )
Var(g(X)) = —= > (a(x) = )

MCMC gives dependence samples, what is the variance then??



Autocorrelation

To examine dependencies of successive MCMC samples, the
autocorrelation function can be used. Let xg,...,xy, where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation p(k) is the correlation between every draw and

its k-th lag. For N reasonably large

SN K (xi = %) (xiak — X)

SN (% — %)

-_ 1 N s
where X = 5 >"._; X; is the overall mean.

p(k) ~

)

e With increasing lag k we expect lower autocorrelations.

® |f autocorrelation is still relatively high for higher values of k, this
indicates high degree of correlation between our draws and slow

mixing.



Example: Korsbetningen

Autocorrelation function for N (after discarding the burn-in period)
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Effective sample size

A useful measure to compare the performance of different MCMC
samplers is the effective sample size (ESS) Kass et al. (1998) American
Statistician 52, 93-100..

® The ESS is the estimated number of independent samples needed to

obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

ESS = —N, 7':1—1—2-5 p(k),
/7—
k=1

where 7 is the autocorrelation time and p(k) the autocorrelation at

lag k.



Estimate of ESS

N
ESS=—, 7=1+2-> p(k)
T k=1
Estimate 7 as
m
T=1+2-Y pk)
k=1

where p(k) is the sample autocorrelation function at lag k, and m is
choosen to fullfill some criteria.

Different criteria exists.



Example: Korsbetningen - Effective sample size (ESS)

> library(coda)

> nsamples
[1]1 8000

> ## single site

> effectiveSize(as.mcmc(resl))

N theta
18.46377 13.65231

> ## block update

> effectiveSize(as.mcmc(res2))
N theta
564.3797 925.7764
>
The precision of the MCMC estimate of the posterior mean of N based on 8000

samples from a single site update is a good as taking 16 independent samples!



Geweke diagnostics

The MCMC chain is divided into two windows
® the first x%, and
® the last y% of the iterates
(coda default: x =10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke's test

statistic (z-score) follows an asymptotical standard normal distribution.



Example: Korsbetningen - Geweke plot

Single Site Block Update
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Further reading

There are several convergence diagnostics:
® some are based on a single Markov chain run

® some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

® Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov
Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

® R-package coda. (Plummer et al., 2006)



Summary

® Diagnostics cannot guarantee that chain has converged
® Can indicate that it has not converged

Solutions?
® Run longer and thin output

® Reparametrize model

"Block" correlated variables together

» Joint update might be more efficient however for some parameter

combination the acceptance rate can be very slow!

® integrate out variables



Typical MCMC problems

® Note: If you knows the solution, it is easy to solve a problem!
® Properties of f(x) that may make MCMC difficult

» strong dependency between variables
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Typical MCMC problems

Note: If you knows the solution, it is easy to solve a problem!
® Properties of f(x) that may make MCMC difficult

» strong dependency between variables
» different scales on different variables

» several modes
® |n toy examples: this is not a problem

> we know how f(x) looks like

In real problems: this may be difficult

> we have a formula for f(x)

» we don't know how f(x) looks like



MCMC

® Since the advent of simulation-based techniques (notably MCMC),

Bayesian computation has enjoyed incredible development

® This has certainly been helped by dedicated software (eg BUGS and
then WinBUGS, OpenBUGS, JAGS, Stan)

® MCMC methods are very general and can effectively be applied to

"any" model



MCMC

® Since the advent of simulation-based techniques (notably MCMC),

Bayesian computation has enjoyed incredible development

® This has certainly been helped by dedicated software (eg BUGS and
then WinBUGS, OpenBUGS, JAGS, Stan)

® MCMC methods are very general and can effectively be applied to
"any" model
® However:

» Even if in theory, MCMC can provide (nearly) exact inference, given
perfect convergence and MC error — 0, in practice, this has to be
balanced with model complexity and running time

» This is particularly an issue for problems characterised by large data
or very complex structure (eg hierarchical models)

» This is also a problem if one wants to, for example, test the

sensitivity of the model to the prior choice



What it INLA?

Integrated Nested Laplace Approximation

The short answer:
INLA is a fast method to do Bayesian inference with latent

Gaussian models and R-INLA is an R-package that implements

this method with a flexible and simple interface

A (much) longer answer can be found in:
Rue, Martino, and Chopin (2009) "Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations." Journal

of the royal statistical society: Series B. 319-392



Ingredients of INLA

® [atent Gaussian Models

» Class of models where INLA can be applied
® Gaussian Markov Random Fieds

» Sparse matrix computations

® |aplace Approximation
>



Hierarchical Bayesian models

Hierarchical models are an extremely useful tool in Bayesian model

building.
Three parts:

® Observation model y|x, 8: Encodes information about observed

data.
® The latent model x|@: The unobserved process.

e Hyperpriors for 8: Models for all of the parameters in the

observation and latent processes.



Latent Gaussian models

A very general way of specifying the problem is by modelling the mean
for the i-th unit by means of an additive linear predictor, defined on a

suitable scale (e.g. logistic for binomial data)

L K
ni=a+ Y filu)+ Y Bz +ei
=1 k=1

where
® « is the intercept

® 8= (f1,...,0k) quantify the effect of x = (x1,...,xk) on the

response
® f=(f,...,f) is a set of functions defined in terms of some
covariates z = (z1, ..., zk)
And assume

x = (o, .F) ~ N(0,Q(0)™)



Many commonly used models can be written as LGM:

Multiple regression

Generalized linear model (GLM)

Generalized additive model (GAM)

Generalized additive mixed model (GAMM, GLMM)



Many commonly used models can be written as LGM:

Multiple regression

K
ni=E(yi) =a+) Brz

k=1

> «: Intercept

> 3: Linear effects of covariates z
Generalized linear model (GLM)
Generalized additive model (GAM)
Generalized additive mixed model (GAMM, GLMM)



Many commonly used models can be written as LGM:

® Multiple regression

® Generalized linear model (GLM)

K
i =g(wi) =+ Brzi
k=1

» g(-): link function
> «: Intercept

» [3: Linear effects of covariates z
® Generalized additive model (GAM)
® Generalized additive mixed model (GAMM, GLMM)



Many commonly used models can be written as LGM:

® Multiple regression
® Generalized linear model (GLM)
® Generalized additive model (GAM)

L
i = g(w) = a+ Y fi(up)
I=1

» g(-): link function
> «: Intercept

» {fi(-)}: Non-linear smooth effects of covariates u;

® Generalized additive mixed model (GAMM, GLMM)

L
ni = g(wi) =a+ Z fi(uii)
=1

» g(-): link function
> «: Intercept

» (3: Linear effects of covariates z



Some more example of LGM

® Disease Mapping

Geostatistical models

Survival models

Stochastic volatility models

Spatial and spatio-temporal models

Spline smoothing

° +++



Unified framework

Observations: y
Latent field: x

Hyperparameters: 6 = (61, 6-)
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Unified framework

Observations: y Assumed conditionally independent given x and 6,
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i

Latent field: x Assumed to be a GMRF with sparse precision matrix
Q(62)
x|01 ~ N(0,Q(62)71)

The latent field x can be large (10! — 10°)

Hyperparameters: 6 = (61, 6-)



Unified framework

Observations: y Assumed conditionally independent given x and 6

y|X701 ~ Hﬂ-(}/i|Xi770)'

1

Latent field: x Assumed to be a GMRF with sparse precision matrix
Q(62)
x|01 ~ N(0,Q(62)71)

The latent field x can be large (10! — 10°)

Hyperparameters: 6 = (01,0,) Precision parameters of the Gaussian

field and parameters of the likelihood
6~ 7(0)

The vector 6 is usually small (1-10)



Main interest

The posterior distribution is given by

7(x, 0ly) o 7(8)7(x|6) H?T(inXi, 0)



Main interest

The posterior distribution is given by
m(x,6]y) o w(8)m(x|0) [ [ w(yilx:, 6)

We are mainly interested in the posterior marginals

= [ [  lx, Bly)dx; d = | s.0ly)d0 = [ =(x10.y)m(01y)do

(xi,0ly)

w(6ily) = / / x,0|y)dx do_; _/ '71'(9|y)d0_j

—j
B\y)




Example: Disease Mapping in Germany

We observed larynx cancer mortality counts for males in 544 district of

Germany from 1986 to 1990 and want to make a model.
Information available:

yi The count in disctrict
i

E; An offset, expected

number of cases in

district /

ot

¢ A covariate (level of
smoking consumption
in district 1)

s; Spatial location i
(district)



Level 1: The data

We have to decide on the likelihood of our data y
® The responses are counts
® We choose a Poisson model
yi|ni ~ Poisson(E; exp(n;))

® p; is a linear function of the latent components



Level 2: The Latent Model

The latent field x consists of two parts:

® One fixed effect: the intercept i
® Three random effects:

» The spatially structured effect f;.
» The unstructured effect u which accounts for non-observed variability
» The unknown effect f(c¢;) of the exposure covariate which assumes

value ¢; for district i.

These are combined for each location to give a linear predictor
ni = p+ f(si) + f(c) + ui

The latent field is x = {u, (£()), (f(-)), u1, ..., us}



Level 3: The hyperparameters

The structured and unstructured spatial effect as well as the smooth

covariate effect will be each controlled by one parameter
® 7., 7r, Ty : The precisions (inverse variances) of the covariate
effect, spatial effect and unstructured effect, respectively.
The hyperparameters are 6 = (7., 7¢,7,), and must be given a prior

(Te, T, T)



What are we interested in?

Structured spatial effect exp(f(s;)) Covariate effect exp(f(c;))




INLA computing scheme

We want to approximate:
~(aly) = /.9 (x|, y)(6]y)do
w(6ly)= [ w(oly)de.

—J

How INLA does it:
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INLA computing scheme

We want to approximate:
(xly) = /.9 (x10, y)r(6]y)do

w(6ly)= [ w(oly)de.
How INLA does it:
® Approximate 7(6;]y) as 7(6;|y)

® Approximate 7(x;|0,y) as 7(x;|0, y)



INLA computing scheme

We want to approximate:
(xly) = /H (18, y)(6ly)d6
w(6ly)= [ w(oly)de.
How INLA does it:
® Approximate 7(6;]y) as 7(6;|y)
® Approximate 7(x;|0,y) as 7(x;|0, y)

® Use numerical integration (a finite sum) to compute
>

7(xily) = > 7(xi|0k, ) T(Okly) A

7(6;ly)



Gaussian Markov Random Fields

A GMRF x = (x1, %2, ...,X,) is a random vector following a multivariate

Gaussian distribution
x~N(0,Q ') where Q7' =X
and that is endowed with some Markov properties like
Xj L xilxjj

where x_;; indicates "all elements of x other than j and j"

The easiest example is a AR(1) model



Gaussian Markov Random Fields

If ¥ is the covariance matrix of a Gaussian vector and Q = ! is the

precision matrix, we have that
xilxp &= ¥Y;=0

and

xiLxj <= Q=0



Gaussian Markov Random Fields

If ¥ is the covariance matrix of a Gaussian vector and Q = 71 is the

precision matrix, we have that
xilxp &= ¥Y;=0

and
xiLxj <= Q=0

GMRF have sparse precision matrices....this means it is "easy" to

compute determinant and invert Q



The GMRF approximation

Let x denote a GMRF with precision matrix @ and mean p. Approximate

7(x/6,y) x exp (—}FOX - Iogw(y,wx,-))

i=1
by using a second-order Taylor expansion of log w(y;|x;) around pg, say.

Recall

f(x) =~ f(x0) + ' (x0)(x — x0) + %f”(xo)(x —x0)® =a+ bx — %cx2

with b= f'(x0) — " (x0)x0 and ¢ = —f"(xo).



The GMRF approximation (II)

Thus,

1 n
(x|0,y) x exp <2xT Qx + Z(a; + bix; — O.5c,-x,-2)>

i=1
X exp (—;xT(Q + diag(c))x + bTx>

to get a Gaussian approximation with precision matrix Q + diag(c) and

mean given by the solution of (Q + diag(c))u = b. The canonical
parameterization is

Nc(b, Q + diag(c))

which corresponds to

N((Q + diag(c)) b, (Q + diag(c))™1).



The GMFR approximation - One dimensional example

Assume

y|A ~ Poisson(\) Likelihood
A = exp(x) Likelihood
x ~ N(0,1) Latent Model

we have that

r(xly) o< wylx)(x) o expl -2 + xy — exp(x) }

non-gaussian part

(Show R-code Taylor_expansion.R)



The GMRF approximation
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