
Review: MCMC Idea

Situation:

• Given a target distribution f (x)

• Want to generate samples from f (x)

Idea:

• construct a Markov chain {Xi}∞i=1 so that limi→∞ P(Xi = x) = f (x)

• simulate the Markov chain for many iterations

• for m large enough xm, xm+1, . . . are (essentially) from f (x)



Review: How to construct the Markov chain
How to construct such a Markov chain? (x ∈ Ω discrete)
• Markov chain transition probabilities: P(y |x) = P(Xi+1 = y |Xi = x)

• Need to have

f (y) =
∑
x∈Ω

f (x)P(y |x) for all y ∈ Ω

• Sufficient condition: Detailed balance condition

f (x)P(y |x) = f (y)P(x |y)for allx , y ∈ Ω

Metropolis-Hastings setup for P(y |x):

P(y |x) = Q(y |x)α(y |x) when y 6= x

P(x |x) = 1−
∑
y 6=x

Q(y |x)α(y |x) when y = x

where

α(y |x) = min

{
1,

f (y)

f (x)

Q(x |y)

Q(y |x)

}
ï¿œ
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Review: Common proposal types

• Independent proposals: Q(y |x) = q(y)

I usually not a good alternative (alone)

• Random walk proposals: Q(y |x) = N(y |x , σ2I )
I is used a lot
I includes a tuning parameter: σ

• Gibbs updates: Q(y j |x j , x−j) = f (x j |x−j)
I is used a lot
I the proposal density is the full conditional
I no tuning paramter
I acceptance rate 1
I can be conbined with MH update



Review: Convergence diagnostic

Has the MC converged?

• Formal convergence diagnostics exists
I some based on a single Markov chain run
I some based on several Markov chain runs

• Standard way to assess convergence is to look at the traceplot

• If some properties of the target distribution is known: use it to check

convergence!

• All convergence diagnostics can (and do) fail



Has bivariate this MC converged?
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Has bivariate this MC converged?

This is how the distribution looks like.

Used a RW proposal N (0, 0.32I )



Variance of the MCMC estimator

Recall: We want to estimate µ =
∫
g(x)π(x) dx with µ̂ = 1

n

∑
g(xi )

where xi ∼ π(x).

In standard MC we have

x1, x2, . . . , xn ∼ π(x), i.i.d.

This gives

E(µ̂) = µ and Var(µ̂) =
Var(g(X ))

n

We can estimate the variance Var(µ̂) as

V̂ar(µ̂) =
̂Var(g(X ))

n

̂Var(g(X )) =
1

n − 1

∑
(g(xi ) = µ̂)

MCMC gives dependence samples, what is the variance then??



Autocorrelation

To examine dependencies of successive MCMC samples, the

autocorrelation function can be used. Let x1, . . . , xN , where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation ρ(k) is the correlation between every draw and

its k-th lag. For N reasonably large

ρ(k) ≈
∑N−k

i=1 (xi − x̄)(xi+k − x̄)∑N
i=1(xi − x̄)2

,

where x̄ = 1
N

∑N
i=1 xi is the overall mean.

• With increasing lag k we expect lower autocorrelations.

• If autocorrelation is still relatively high for higher values of k , this

indicates high degree of correlation between our draws and slow

mixing.



Example: Korsbetningen

Autocorrelation function for N (after discarding the burn-in period)
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Effective sample size

A useful measure to compare the performance of different MCMC

samplers is the effective sample size (ESS) Kass et al. (1998) American

Statistician 52, 93–100..

• The ESS is the estimated number of independent samples needed to

obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

ESS =
N

τ
, τ = 1 + 2 ·

∞∑
k=1

ρ(k),

where τ is the autocorrelation time and ρ(k) the autocorrelation at

lag k .



Estimate of ESS

ESS =
N

τ
, τ = 1 + 2 ·

∞∑
k=1

ρ(k),

Estimate τ as

τ = 1 + 2 ·
m∑

k=1

ρ̂(k)

where ρ̂(k) is the sample autocorrelation function at lag k , and m is

choosen to fullfill some criteria.

Different criteria exists.



Example: Korsbetningen - Effective sample size (ESS)

> library(coda)
> nsamples

[1] 8000

> ## single site
> effectiveSize(as.mcmc(res1))

N theta
18.46377 13.65231

> ## block update
> effectiveSize(as.mcmc(res2))

N theta
564.3797 925.7764

>
The precision of the MCMC estimate of the posterior mean of N based on 8000

samples from a single site update is a good as taking 16 independent samples!



Geweke diagnostics

The MCMC chain is divided into two windows

• the first x%, and

• the last y% of the iterates

(coda default: x = 10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke’s test

statistic (z-score) follows an asymptotical standard normal distribution.



Example: Korsbetningen - Geweke plot
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Further reading

There are several convergence diagnostics:

• some are based on a single Markov chain run

• some are based on several Markov chain runs

There are no guarantees!

For further reading see for example

• Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov

Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

• R-package coda. (Plummer et al., 2006)



Summary

• Diagnostics cannot guarantee that chain has converged

• Can indicate that it has not converged

Solutions?

• Run longer and thin output

• Reparametrize model

• "Block" correlated variables together
I Joint update might be more efficient however for some parameter

combination the acceptance rate can be very slow!

• integrate out variables

• ...



Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
I strong dependency between variables

I different scales on different variables
I several modes
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Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
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Typical MCMC problems

• Note: If you knows the solution, it is easy to solve a problem!

• Properties of f (x) that may make MCMC difficult
I strong dependency between variables
I different scales on different variables
I several modes

• In toy examples: this is not a problem
I we know how f (x) looks like

• In real problems: this may be difficult
I we have a formula for f (x)

I we don’t know how f (x) looks like



MCMC

• Since the advent of simulation-based techniques (notably MCMC),

Bayesian computation has enjoyed incredible development

• This has certainly been helped by dedicated software (eg BUGS and

then WinBUGS, OpenBUGS, JAGS, Stan)

• MCMC methods are very general and can effectively be applied to

"any" model

• However:
I Even if in theory, MCMC can provide (nearly) exact inference, given

perfect convergence and MC error → 0, in practice, this has to be

balanced with model complexity and running time
I This is particularly an issue for problems characterised by large data

or very complex structure (eg hierarchical models)
I This is also a problem if one wants to, for example, test the

sensitivity of the model to the prior choice
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What it INLA?

Integrated Nested Laplace Approximation

The short answer:
INLA is a fast method to do Bayesian inference with latent

Gaussian models and R-INLA is an R-package that implements

this method with a flexible and simple interface

A (much) longer answer can be found in:

Rue, Martino, and Chopin (2009) "Approximate Bayesian inference for latent

Gaussian models by using integrated nested Laplace approximations." Journal

of the royal statistical society: Series B. 319-392



Ingredients of INLA

• Latent Gaussian Models
I Class of models where INLA can be applied

• Gaussian Markov Random Fieds
I Sparse matrix computations

• Laplace Approximation
I



Hierarchical Bayesian models

Hierarchical models are an extremely useful tool in Bayesian model

building.

Three parts:

• Observation model y |x ,θ: Encodes information about observed

data.

• The latent model x |θ: The unobserved process.

• Hyperpriors for θ: Models for all of the parameters in the

observation and latent processes.



Latent Gaussian models
A very general way of specifying the problem is by modelling the mean

for the i-th unit by means of an additive linear predictor, defined on a

suitable scale (e.g. logistic for binomial data)

ηi = α +
L∑

l=1

fl(uli ) +
K∑

k=1

βkzki + εi

where

• α is the intercept

• β = (β1, . . . , βK ) quantify the effect of x = (x1, . . . , xK ) on the

response

• f = (f1, . . . , fL) is a set of functions defined in terms of some

covariates z = (z1, . . . , zK )

And assume

x = (α,β, f ) ∼ N (0,Q(θ)−1)



Many commonly used models can be written as LGM:

• Multiple regression

• Generalized linear model (GLM)

• Generalized additive model (GAM)

• Generalized additive mixed model (GAMM, GLMM)



Many commonly used models can be written as LGM:

• Multiple regression

ηi = E (yi ) = α +
K∑

k=1

βkzki

I α: Intercept
I β: Linear effects of covariates z
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Many commonly used models can be written as LGM:
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Many commonly used models can be written as LGM:
• Multiple regression
• Generalized linear model (GLM)
• Generalized additive model (GAM)

ηi = g(µi ) = α +
L∑

l=1

fl(uli )

I g(·): link function
I α: Intercept
I {fl(·)}: Non-linear smooth effects of covariates ul

• Generalized additive mixed model (GAMM, GLMM)

ηi = g(µi ) = α +
L∑

l=1

fl(uli )

I g(·): link function
I α: Intercept
I β: Linear effects of covariates z
I

{fl(·)}

: Non-linear smooth effects of covariates ul



Some more example of LGM

• Disease Mapping

• Geostatistical models

• Survival models

• Stochastic volatility models

• Spatial and spatio-temporal models

• Spline smoothing

• +++



Unified framework

Observations: y

Latent field: x

Hyperparameters: θ = (θ1,θ2)
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Unified framework

Observations: y Assumed conditionally independent given x and θ1

y |x ,θ1 ∼
∏
i

π(yi |xi , ,θ).

Latent field: x Assumed to be a GMRF with sparse precision matrix

Q(θ2)

x |θ1 ∼ N (0,Q(θ2)−1)

The latent field x can be large (101 − 106)

Hyperparameters: θ = (θ1,θ2)



Unified framework

Observations: y Assumed conditionally independent given x and θ1

y |x ,θ1 ∼
∏
i

π(yi |xi , ,θ).

Latent field: x Assumed to be a GMRF with sparse precision matrix

Q(θ2)

x |θ1 ∼ N (0,Q(θ2)−1)

The latent field x can be large (101 − 106)

Hyperparameters: θ = (θ1,θ2) Precision parameters of the Gaussian

field and parameters of the likelihood

θ ∼ π(θ)

The vector θ is usually small (1-10)



Main interest

The posterior distribution is given by

π(x ,θ|y) ∝ π(θ)π(x |θ)
∏
i

π(yi |xi ,θ)

We are mainly interested in the posterior marginals

π(xi |y) =

∫
θ

∫
x−i

π(x ,θ|y)dx−i︸ ︷︷ ︸
π(xi ,θ|y)

dθ =

∫
θ

π(xi ,θ|y)dθ =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

∫
x
π(x ,θ|y)dx︸ ︷︷ ︸
π(θ|y)

dθ−j =

∫
θ−j

π(θ|y)dθ−j
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Example: Disease Mapping in Germany

We observed larynx cancer mortality counts for males in 544 district of

Germany from 1986 to 1990 and want to make a model.
Information available:

yi The count in disctrict

i

Ei An offset, expected

number of cases in

district i

ci A covariate (level of

smoking consumption

in district i)

si Spatial location i

(district)



Level 1: The data

We have to decide on the likelihood of our data y

• The responses are counts

• We choose a Poisson model

yi |ηi ∼ Poisson(Ei exp(ηi ))

• ηi is a linear function of the latent components



Level 2: The Latent Model

The latent field x consists of two parts:

• One fixed effect: the intercept µ

• Three random effects:
I The spatially structured effect fs .
I The unstructured effect u which accounts for non-observed variability
I The unknown effect f (ci ) of the exposure covariate which assumes

value ci for district i .

These are combined for each location to give a linear predictor

ηi = µ+ fs(si ) + f (ci ) + ui

The latent field is x = {µ, (fs(·)), (f (·)), u1, . . . , un}



Level 3: The hyperparameters

The structured and unstructured spatial effect as well as the smooth

covariate effect will be each controlled by one parameter

• τc , τf , τη : The precisions (inverse variances) of the covariate

effect, spatial effect and unstructured effect, respectively.

The hyperparameters are θ = (τc , τf , τη), and must be given a prior

π(τc , τf , τη)



What are we interested in?

Structured spatial effect exp(fs(si )) Covariate effect exp(f (ci ))



INLA computing scheme

We want to approximate:

π(xi |y) =

∫
θ

π(xi |θ, y)π(θ|y)dθ

π(θj |y) =

∫
θ−j

π(θ|y)dθ−j

How INLA does it:

• Approximate π(θj |y) as π̃(θj |y)

• Approximate π(xi |θ, y) as π̃(xi |θ, y)

• Use numerical integration (a finite sum) to compute
I

π̃(xi |y) =
∑
k

π̃(xi |θk , y) π̃(θk |y) ∆k .

I

π̃(θj |y)
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Gaussian Markov Random Fields

A GMRF x = (x1, x2, . . . , xn) is a random vector following a multivariate

Gaussian distribution

x ∼ N (0,Q−1) where Q−1 = Σ

and that is endowed with some Markov properties like

xj ⊥ xi |x−ij

where x−ij indicates "all elements of x other than i and j"

The easiest example is a AR(1) model



Gaussian Markov Random Fields

If Σ is the covariance matrix of a Gaussian vector and Q = Σ−1 is the

precision matrix, we have that

xi ⊥ xj ⇐⇒ Σij = 0

and

xi ⊥ xj ⇐⇒ Qij = 0

GMRF have sparse precision matrices....this means it is "easy" to

compute determinant and invert Q
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The GMRF approximation

Let x denote a GMRF with precision matrix Q and mean µ. Approximate

π(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

log π(yi |xi )

)

by using a second-order Taylor expansion of log π(yi |xi ) around µ0, say.

Recall

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2 = a + bx − 1

2
cx2

with b = f ′(x0)− f ′′(x0)x0 and c = −f ′′(x0).



The GMRF approximation (II)

Thus,

π̃(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

(ai + bixi − 0.5cix2i )

)

∝ exp

(
−1
2
xT (Q + diag(c))x + bTx

)
to get a Gaussian approximation with precision matrix Q + diag(c) and

mean given by the solution of (Q + diag(c))µ = b. The canonical

parameterization is

NC (b,Q + diag(c))

which corresponds to

N ((Q + diag(c))−1b, (Q + diag(c))−1).



The GMFR approximation - One dimensional example

Assume

y |λ ∼ Poisson(λ) Likelihood

λ = exp(x) Likelihood

x ∼ N (0, 1) Latent Model

we have that

π(x |y) ∝ π(y |x)π(x) ∝ exp{−1
2
x2 + xy − exp(x)︸ ︷︷ ︸

non-gaussian part

}

(Show R-code Taylor_expansion.R)



The GMRF approximation
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