Summary of TMA4300

What did we do?
We had three blocks:

- Simulation
- Markov chain Monte Carlo and INLA
- Bootstrap and EM-algorithm

Block 1

What else ...?

- Variable transformation
- Univariate (e.g. location and scale transformation)
- Bivariate (e.g. the Box-Muller algorithm)
- Ratio-of-uniforms method
- Methods based on mixtures

Rejection Sampling: Do you remember this figure?

Refinements: Make the envelope adaptive (different approaches)

Rejection Sampling: When do we accept?

Let $x \sim g(x)$ and $u \sim \operatorname{Unif}(0,1)$ the

$$
\begin{cases}u \leq \frac{1}{c} \frac{f(x)}{g(x)} & \text { keep } \\ u>\frac{1}{c} \frac{f(x)}{g(x)} & \text { reject }\end{cases}
$$

- What is the overall acceptance probability?
- Do we need to know the normalizing constant of $f(\cdot)$?

Rejection sampling

Why do we want samples?

Often we would like to approximate a statistic that is difficult to compute directly.
Keywords:

- Monte Carlo integration
- Importance sampling
- What is it?
- When is it particularly usefull?

Importance sampling

We are interested in

$$
\mu=E_{f}(h(x))=\int h(x) f(x) d x
$$

- If possible compute it analytically!
- If we can sample from $f(x)$ we can use Monte Carlo integration
- Possible alternative: Importance sampling
- sample from ausiliary distribution $g(x)$ and re-weight
- can be used as variance-reduction technique

Importance sampling Algorithm

Let $x_{1}, \ldots, x_{n} \sim g(x)$, and let $w\left(x_{i}\right)=\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}, i=1, \ldots, n$ then

$$
\hat{\mu}_{I S}=\frac{\sum h\left(x_{i}\right) w\left(x_{i}\right)}{n}
$$

$$
\tilde{\mu}_{I S}=\frac{\sum h\left(x_{i}\right) w\left(x_{i}\right)}{\sum w\left(x_{i}\right)}
$$

- Unbiased
- Consistent
- Need to know the normalizing constant
- Biased for finite n
- Consistent
- Self-normalizing

Bayesian inference

Basics:

- Posterior \propto Likelihood \times Prior
- Prior Choice
- Bayesian hierarchical models:
- Observation $\pi(\boldsymbol{y} \mid \boldsymbol{x})$
- Latent process $\pi(x \mid \theta)$
- Hyperpriors $\pi(\boldsymbol{\theta})$
- Full-conditional distributions

Block 2: Two big topics

- Markov chain Monte Carlo
- Integrated Nested Laplace Approximarion (INLA)

Markov chain Monte Carlo:

- What is the idea? Can we generate any Markov chain?
- Construct a Markov chain that converges to the distribution of interest.
- Why do we not use an approach from block 1 ?
- What kind of different MCMC techniques have we seen?
- Is the algorithm working at all?

Elements of a MCMC algorithm

- Target distribution $\pi(x)$: Given by the problem
- Proposal distribution $Q(y \mid x)$: Chosen by the user
- Acceptance probability $\alpha(y \mid x)$: Derived in order to fullfill the detailed balance condition

Some keywords

detailed balance condition, Metropolis-within-Gibbs, random-walk proposal, burn-in, convergence diagnostics, mixing, effective sample size,

Integrated nested Laplace approximations

- What is the idea?
- For which models does it work?
- Latent Gaussian Models (with Markov dependence structure)
- Deterministic approximation instead of simulations
- Focus on marginal posterior instead of joint posterior
- What are the main "ingredients"
- Conditional probability

$$
\pi(x \mid z)=\frac{\pi(x, z)}{\pi(z)} \Rightarrow \pi(z)=\frac{\pi(x, z)}{\pi(x \mid z)}
$$

- Laplace Approximation
- 2 order Taylor approximarion of $\log g(x) \rightarrow g(x) \approx \mathcal{N}\left(\hat{x}, \sigma^{2}\right)$
- Potential advantages over MCMC

Bootstrap

Bootstrap

Some keywords:

- Empirical distribution function
- Plug-in principle
- Bootstrap sample
- Non-parametric
- Parametric
- Bootstrap Regression
- Bootstrap residuals
- Paired-Bootstrap
- Bootstrap time series
- Model based bootstrap
- BLock-bootstrap

EM-algorithm

- Goal? Basic idea? What are the steps?
- Field of applications: mixture models, censored data, missing data, hidden models, ...

The exam - 05.06.2016-15:00

Permitted aids:

- Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College, Casio fx-82ES PLUS with empty memory.
- Tabeller og formler i statistikk, Tapir forlag.
- K. Rottman: Matematisk formelsamling.
- A dictionary in any language.
- One yellow, stamped A5 sheet with your own handwritten formulas and notes (on both sides).

