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Problem 1

a) Based on an ordinary multiple regression model, explain what we understand
by “bootstrapping the residuals” and how it is used. Contrast it to “paired
bootstrap”.

Problem 2
Assume you are only able to sample from a uniform distribution Unif(0,1).

a) Assume we would like to generate samples from a continuous distribution
with density f(x) and cumulative distribution function F'(X). Explain how
the inverse transform technique works and why it generates samples from

f ().

b) Use the inverse transform technique to sample from a standard double ex-
ponential distribution:

fle) = gexp(-lal), =€

Problem 3

Assume we have conditionally independent Poisson count data y;, ¢ = 1,...,n,
with mean 6;:
y; | 6; ~ Poisson(6;)

where means 6; are gamma distributed
b, | a, f ~ Gamma(a, f3).

Assume priors o ~ Exp(a) and  ~ Gamma(b, ¢), where a, b and ¢ are treated as
fixed constants.

The gamma distribution Gamma(«, ) has density function:

(o)

and the exponential distribution Exp(a) has density function:

7 Vexp(—Bx), withx >0anda,s >0,

p(x) =

p(z) = aexp(—az), with 2> 0anda > 0.



Page 2 of 4 TMA4300 Computer Intensive Statistical Methods—June 1st, 2016

a) Derive the full conditional distributions of the individual components of the
parameter vector (a, 3,01,...,0,). If possible define the parametric distri-
bution and its parameters.

b) Use pseudo code to outline how you would obtain samples from the posterior
distribution using Markov chain Monte Carlo (MCMC).

Problem 4

a) For each of the two models below, explain whether the INLA methodology
could be used to get parameter estimates. Give reasons if you think it cannot
be used.

e Model 1: Assume we have conditionally independent binomial dis-
tributed data y;, ¢ = 1,..., I, with fixed sample sizes n; and success
probability p;,

Y; | pi ~ Binomial(n;, p;).

Using a logit link function we assume that

log< bi )zﬁo%—ﬁlxﬁ—ui.
l—p

— i

Here z;, 1 =1,..., I, are given covariate values. The prior distributions
for the second stage of this hierarchical model are

Bo ~ N(0,0.00171)
B ~ N(0,0.00171)
w; | T~ N, 771

There is one hyperparameter to which we assign a gamma prior distri-
bution:

7 ~ Gamma(1,0.05)

e Model 2: Assume we have observations y;;, 1 = 1,...,n, j =1,...,m,
that are conditionally independent normal distributed

Yis | pijs T~ N (i, 7).
The mean is modelled as

pij = Bo + ui + vij.
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The prior distributions for the second stage of this hierarchical model
are

By ~ N(0,0.00171)
u; | K~ N0, 57
v;; ~ Bernoulli(0.3)

There are two precision parameters (inverse variance parameters), 7
and k, in the model to which we assign gamma priors,

7 ~ Gamma(1,0.05)
Kk ~ Gamma(1,0.05).

Problem 5

Cole et al. (2012) propose a rejection sampling approach to sample from a poste-
rior distribution as a simple and sometimes efficient alternative to MCMC. They
summarise their approach as follows:

1.
2.

b)

Define a model with likelihood f(y | #) and prior distribution f(6).

Compute the maximum likelihood estimator éML.

. To obtain a sample from the posterior distribution:

(a) Draw 0* from the prior distribution.
(Note, this must cover the range of the posterior distribution).

(b) Compute the ratio p = f(y | 6*)/f(y | fw)
(¢) Draw u from a uniform distribution Unif(0,1).

(d) If u < p then accept 0*. Otherwise, reject 0* and repeat from step a).

Using Bayes’ rule write out the posterior density f(6 | y). What are the tar-
get distribution h(6) and the proposal distribution g() used in the rejection
sampler?

For which value of a is the acceptance probability

_ )

a-g(6”)
used in the rejection sampler equal to f(y | 6%)/f(y | Ouw). Explain why
the inequality h(f) < a - g(0) is guaranteed by the approach of Cole et al.

(2012). Could the choice of a be improved in order to get a more efficient
algorithm? If so, describe how, if not explain why.
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Problem 6

Assume we are interested to sample from a target density h(x), but we are only
able to sample from a proposal distribution g(z). Suppose that a > 1 is a known
constant, but that h(z) is not less or equal than a-g(x) for all x; that is a-g(z) does
not dominate h(z) over the whole range. We define the set C' where domination
occurs as
C=A{z:h(z) <a-g(x)}

and C° as the set where a - g(x) does not dominate. Figure 1 shows an illustration
of a nondominating density and the C region. Assume we apply the rejection

— h)
-- agK

Figure 1: Rejection sampling when a - g(z) is not dominating h(x) over the whole
support range.
sampling approach as if a - g(x) would be dominating over the whole range.

a) Derive the density of the random variable Y that comes out of this algorithm
and show that it is equal to:

~ h(y) .
q(y) = a-d itye C
~W e

with d = P[U < h(Z)/(a- g(Z))] where Z is distributed according to g and
U ~ Unif(0, 1).

b) Derive an expression for d and show that it reduces to 1/a if a - g(z) would
be a dominating density.



