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Problem 1

a) Based on an ordinary multiple regression model, explain what we understand
by “bootstrapping the residuals” and how it is used. Contrast it to “paired
bootstrap”.

Problem 2

Assume you are only able to sample from a uniform distribution Unif(0,1).

a) Assume we would like to generate samples from a continuous distribution
with density f(x) and cumulative distribution function F (X). Explain how
the inverse transform technique works and why it generates samples from
f(x).

b) Use the inverse transform technique to sample from a standard double ex-
ponential distribution:

f(x) = 1
2 exp(−|x|), x ∈ R

Problem 3

Assume we have conditionally independent Poisson count data yi, i = 1, . . . , n,
with mean θi:

yi | θi ∼ Poisson(θi)

where means θi are gamma distributed

θi | α, β ∼ Gamma(α, β).

Assume priors α ∼ Exp(a) and β ∼ Gamma(b, c), where a, b and c are treated as
fixed constants.

The gamma distribution Gamma(α, β) has density function:

p(x) = βα

Γ(α)x
α−1 exp(−βx), with x ≥ 0 and α, β > 0,

and the exponential distribution Exp(a) has density function:

p(x) = a exp(−ax), with x ≥ 0 and a > 0.
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a) Derive the full conditional distributions of the individual components of the
parameter vector (α, β, θ1, . . . , θn). If possible define the parametric distri-
bution and its parameters.

b) Use pseudo code to outline how you would obtain samples from the posterior
distribution using Markov chain Monte Carlo (MCMC).

Problem 4

a) For each of the two models below, explain whether the INLA methodology
could be used to get parameter estimates. Give reasons if you think it cannot
be used.

• Model 1: Assume we have conditionally independent binomial dis-
tributed data yi, i = 1, . . . , I, with fixed sample sizes ni and success
probability pi,

yi | pi ∼ Binomial(ni, pi).
Using a logit link function we assume that

log
(

pi
1− pi

)
= β0 + β1xi + ui.

Here xi, i = 1, . . . , I, are given covariate values. The prior distributions
for the second stage of this hierarchical model are

β0 ∼ N (0, 0.001−1)
β1 ∼ N (0, 0.001−1)

ui | τ ∼ N (0, τ−1)

There is one hyperparameter to which we assign a gamma prior distri-
bution:

τ ∼ Gamma(1, 0.05)

• Model 2: Assume we have observations yij, i = 1, . . . , n, j = 1, . . . ,m,
that are conditionally independent normal distributed

yij | µij, τ ∼ N (µij, τ−1).

The mean is modelled as

µij = β0 + ui + vij.
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The prior distributions for the second stage of this hierarchical model
are

β0 ∼ N (0, 0.001−1)
ui | κ ∼ N (0, κ−1)
vij ∼ Bernoulli(0.3)

There are two precision parameters (inverse variance parameters), τ
and κ, in the model to which we assign gamma priors,

τ ∼ Gamma(1, 0.05)
κ ∼ Gamma(1, 0.05).

Problem 5

Cole et al. (2012) propose a rejection sampling approach to sample from a poste-
rior distribution as a simple and sometimes efficient alternative to MCMC. They
summarise their approach as follows:

1. Define a model with likelihood f(y | θ) and prior distribution f(θ).

2. Compute the maximum likelihood estimator θ̂ML.

3. To obtain a sample from the posterior distribution:

(a) Draw θ? from the prior distribution.
(Note, this must cover the range of the posterior distribution).

(b) Compute the ratio p = f(y | θ?)/f(y | θ̂ML)
(c) Draw u from a uniform distribution Unif(0,1).
(d) If u ≤ p then accept θ?. Otherwise, reject θ? and repeat from step a).

a) Using Bayes’ rule write out the posterior density f(θ | y). What are the tar-
get distribution h(θ) and the proposal distribution g(θ) used in the rejection
sampler?

b) For which value of a is the acceptance probability

p = h(θ?)
a · g(θ?)

used in the rejection sampler equal to f(y | θ?)/f(y | θ̂ML). Explain why
the inequality h(θ) ≤ a · g(θ) is guaranteed by the approach of Cole et al.
(2012). Could the choice of a be improved in order to get a more efficient
algorithm? If so, describe how, if not explain why.
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Problem 6

Assume we are interested to sample from a target density h(x), but we are only
able to sample from a proposal distribution g(x). Suppose that a ≥ 1 is a known
constant, but that h(x) is not less or equal than a·g(x) for all x; that is a·g(x) does
not dominate h(x) over the whole range. We define the set C where domination
occurs as

C = {x : h(x) ≤ a · g(x)}
and Cc as the set where a · g(x) does not dominate. Figure 1 shows an illustration
of a nondominating density and the C region. Assume we apply the rejection

h(x)
a g(x)

C Cc C  

Figure 1: Rejection sampling when a · g(x) is not dominating h(x) over the whole
support range.

sampling approach as if a · g(x) would be dominating over the whole range.

a) Derive the density of the random variable Y that comes out of this algorithm
and show that it is equal to:

q(y) = h(y)
a · d

, if y ∈ C

= g(y)
d
, if y 6= C,

with d = P [U ≤ h(Z)/(a · g(Z))] where Z is distributed according to g and
U ∼ Unif(0, 1).

b) Derive an expression for d and show that it reduces to 1/a if a · g(x) would
be a dominating density.


