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Problem 1

Assume we are only able to sample from the standard uniform distribution Unif(0,1).

a) We want to generate samples from a continuous distribution with density

g(x) =
{

1
2 cos(x) for x ∈

(
−π

2 ,
π
2

]
,

0 otherwise.

Describe how you can simulate from this distribution by one of the simulation
methods we have discussed in Part 1 of this course. In particular, specify
what method you choose to use, develop mathematical expressions necessary
to implement the simulation method and write pseudo-code for generating
one sample from the distribution.

In the following you can assume that in addition to the standard uniform distri-
bution, you are also able to sample from the distribution considered in a).

b) We want to generate samples from a continuous distribution with density

f(x) =
{
k|x|α cos(x) for x ∈

(
−π

2 ,
π
2

]
,

0 otherwise,
where k is a normalising constant and α ∈ (0,∞) is a parameter.
Describe how you can simulate from this distribution by rejection sampling,
using g(x) specified in a) as proposal distribution. In particular, develop
mathematical expressions necessary to implement the rejection sampling al-
gorithm in this case and write pseudo-code for generating one sample from
the distribution.

Problem 2

In this problem we will consider Markov chain Monte Carlo for a toy problem. Let
x ∈ {1, 2, 3, 4} be a stochastic variable with distribution f(x) = x/10, x = 1, 2, 3, 4.
Of course it is easy to sample from this distribution directly, but in this problem
we will pretend we do not know how to do this.

To sample realisations from f(x) we will use the Metropolis–Hastings scheme with
proposal distribution

q(y|x) =
{

1
3 for y 6= x,
0 otherwise

for x, y ∈ {1, 2, 3, 4}, where x and y are the current state and the potential new
state, respectively.

What is the transition matrix of the Markov chain we are simulating from when
using this Metropolis–Hastings algorithm?

Is the Markov chain aperiodic and irreducible? (Remember to give reasons for
your answer.)
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Problem 3

In this problem we will consider the so called Michaelis-Menten model for enzyme
kinetics. In the presence of a catalyst, the model specifies how the chemical reac-
tion rate depends on substrate concentration. Let y denote the chemical reaction
rate and let x be the substance concentration. Including an additive error term ε,
for x > 0 the model specifies

y = αx

β + x
+ ε, (1)

where α, β > 0 are model parameters. Assume we have done n measurements of
reaction rate for different substance concentrations. Let x1, . . . , xn denote the sub-
stance concentrations for which the measurements are performed and let y1, . . . , yn
denote the corresponding measured reaction rates. In the following we will adopt a
Bayesian model to analyse the data and the main goal is to estimate the parameters
α and β and to predict a new measurement y0 when the substance concentration
is x0.

We assume the additive error term ε in (1) to have a normal distribution with
zero mean and some variance θ, and assume error terms associated to different
measurements to be independent. The model has three parameters, θ, α and β,
and apriori we assume these to be independent. For the variance θ we assume the
improper prior

f(θ) ∝ 1
θ

for θ > 0,

and to each of α and β we assign (improper) uniform distributions on (0,∞).

a) Write an expression for the resulting posterior distribution. It is sufficient
to find an expression that is proportional to the posterior distribution.
Derive the full conditional distributions for each of θ, α and β. If possible,
specify what parametric family each full conditional belongs to and specify
the parameter values.

To explore the posterior distribution we want to define a single-site Metropolis–
Hastings algorithm that can simulate from this distribution.

b) For each of θ, α and β specify what proposal distribution you want to use
and develop formulas for the corresponding acceptance probabilities. Note
that the expressions for the acceptance probabilities should be simplified as
much as possible. If your proposal distributions may generate a negative
value for θ, α or β your formulas for the acceptance probabilities should take
this into account.
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Assume you have run your Metropolis–Hastings algorithm for the posterior distri-
bution for M iterations

c) Specify how you would use the Metropolis–Hastings output to estimate the
posterior mean values for α and β. Define necessary notation to make your
answer precise.
Specify also how you would use the Metropolis–Hastings output to estimate
a 90% prediction interval for a new measurement of reaction rate y0 for
substance concentration x0. Again define necessary notation to make your
answer precise.

Problem 4

Let x1, . . . , xn be an observed random sample from a distribution F and let µ =
EF [x] and σ2 = VarF [x] be the mean value and variance, respectively, in the
distribution F .

a) How is the empirical distribution defined in this situation? In general, how
is the plug-in estimator for a parameter θ defined? Introduce necessary
notation to make your answers precise.
Find the plug-in estimators for µ and σ2. Simplify the expressions as much
as possible.

In the following we use µ̂ = s(x) = x̄ = 1
n

∑n
i=1 xi as an estimator for µ. Of course

we know that µ̂ is an unbiased estimator for µ, but in the following we should
ignore that we know this fact and use bootstrapping to estimate the bias of µ̂.

b) Define the ideal bootstrap estimate for the bias of µ̂. Introduce necessary
notation to make your answer precise.
Develop a simple to compute analytical formula for the ideal bootstrap esti-
mator for the bias of µ̂.
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Problem 5

Let x1, . . . , xn be a random sample from a normal distribution with mean value µ
and standard deviation σ. Assume, however, that we do not observe the values of
x1, . . . , xn, we only observe the values rounded down to the nearest integer. Thus,
we observe z1, . . . , zn where zi = k when xi ∈ [k, k + 1) for k = 0,±1,±2, . . ..

Using observed values z1, . . . , zn we now want to use the EM algorithm to find
the maximum likelihood estimates for the parameters µ and σ. When developing
formulas for doing this in the problems below you can assume that you have
available a function that evaluates the cumulative distribution function Φ(x) of a
standard normal distribution for any value of x, and that you also have available
functions that for any values of µ, σ, a and b evaluate the two integrals

A(µ, σ, a, b) =
∫ b

a
xϕ

(
x− µ
σ

)
dx and B(µ, σ, a, b) =

∫ b

a
x2ϕ

(
x− µ
σ

)
dx

where ϕ(x) is the density function of a standard normal distribution. Comment:
It is analytically possible to express A(µ, σ, a, b) and B(µ, σ, a, b) in terms of ϕ(x)
and Φ(x), but you do not need to do this.

a) Setting x = (x1, . . . , xn) and z = (z1, . . . , zn), and letting f(x;µ, σ) denote
the joint density of x1, . . . , xn, show that E

[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
can be

expressed as

E
[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
= −n2 ln(2π)− n ln σ

− 1
2σ2

(
nµ2 − 2µα(z, µ(t), σ(t)) + β(z, µ(t), σ(t))

)
,

and thereby find expressions for α(z, µ(t), σ(t)) and β(z, µ(t), σ(t)).

b) Use the EM algorithm setup to develop recursive formulas that can be used
to compute the maximum likelihood estimates for µ and σ.
Write also pseudo-code for how we can use bootstrapping to estimate the
standard deviations of the maximum likelihood estimators for µ and σ.


