
Department of Mathematical Sciences

Examination paper for Solution sketch: TMA4300

Academic contact during examination: Håkon Tjelmeland

Phone: 4822 1896

Examination date: June 6th 2018

Examination time (from–to): 09:00–13:00

Permitted examination support material: C:

• Calculator HP30S, CITIZEN SR-270X, CITIZEN SR-270X College or Casio fx-82ES PLUS
with empty memory.

• Statistiske tabeller og formler, Akademika.

• One yellow, stamped A5 sheet with own handwritten formulas and notes.

Other information:

• All answers should be justified!

• All sub-problems in the exam count the same.

• In your solution you can use English and/or Norwegian.

Language: English

Number of pages: 9

Number of pages enclosed: 0

Checked by:

Date Signature

Informasjon om trykking av eksamensoppgave

Originalen er:

1-sidig � 2-sidig �

sort/hvit � farger �

skal ha flervalgskjema �





TMA4300 Solution sketch, June 2018 Page 1 of 9

Problem 1

a) To sample from this distribution the most natural alternative is to use the
probability integral transform method. We start by finding the cumulative
distribution function G(x). For x ∈ (−π/2, π/2] we get

G(x) =
∫ x

−∞
g(u)du =

∫ x

−π2

1
2 cos(u)du =

[1
2 sin(u)

]x
−π2

= 1
2 sin(x)− 1

2 sin
(
−π2

)
= 1

2 sin(x)− 1
2 · (−1)

= 1
2 (1 + sin(x)) .

Sampling a u ∼ Unif(0, 1) we get a sample from g(x) by solving u = G(x)
with respect to x. This gives

u = G(x)

u = 1
2 (1 + sin(x))

2u− 1 = sin(x)
x = sin−1(2u− 1).

Pseudo-code for generating one sample is then simply:

Generate u ∼ Unif(0, 1).
Compute x = sin−1(2u− 1).
Return x.

Note: An alternative is to use rejection sampling with for example a uniform
distribution on (−π/2, π/2] as proposal distribution. However, one then also
needs to discuss how to sample from this uniform distribution.

b) To sample from f(x) by rejection sampling and using g(x) as proposal dis-
tribution we first need to find a constant c so that

f(x)
g(x) ≤ c for all x where g(x) > 0.

We have that g(x) > 0 for x ∈
(
−π

2 ,
π
2

]
, for which we have

f(x)
g(x) = k|x|α cos(x)

1
2 cos(x) = 2k|x|α ≤ 2k

(
π

2

)α
.
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We can thereby choose c = 2k
(
π
2

)α
. The acceptance probability in the

rejection sampling thus becomes

p = 1
c
· f(x)
g(x) = 1

2k
(
π
2

)α · 2k|x|α =
( 2
π
· |x|

)α
.

Pseudo-code for generating one sample from f(x) is then:

finished := 0
while finished = 0 do

Generate x ∼ g(x)
Generate u ∼ Unif(0, 1)
Compute p :=

(
2
π
· |x|

)α
if u < p then finished := 1

return x

Problem 2

The acceptance probability for the specified Metropolis–Hastings algorithm be-
comes, for y 6= x,

α(y|x) = min
{

1, f(y)
f(x) ·

q(x|y)
q(y|x)

}
= min

{
1, f(y)
f(x) ·

1
3
1
3

}

= min
{

1, f(y)
f(x)

}
=
{

1 if y > x,
y/10
x/10 = y

x
otherwise.

The off-diagonal elements of the transition matrix is thereby

P (y|x) = q(y|x)α(y|x) = 1
3α(y|x) =

{
1
3 if y > x,
y

3x otherwise.

Using this and that the elements in each row must sum to one we get the transition
matrix P ,

P =


0 1

3
1
3

1
3

1
6

1
6

1
3

1
3

1
9

2
9

1
3

1
3

1
12

1
6

1
4

1
2

 .

A Markov chain is irreducible if it is possible to come from any state to any other
state in a finite number of steps. For the Markov chain in question it is possible
to come from any state to any other state in one step. The Markov chain is thus
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irreducible. A sufficient condition for an irreducible Markov chain to be aperiodic
is that at least one diagonal element of the transition matrix is strictly larger than
zero. This condition is fulfilled for the above transition matrix so the Markov chain
is aperiodic.

Problem 3

a) Up to proportionality, for θ, α, β > 0 the posterior distribution becomes

f(θ, α, β|y1, . . . , yn) ∝ f(θ, α, β) · f(y1, . . . , yn|θ, α, β)

= f(θ)f(α)f(β)
n∏
i=1

f(yi|θ, α, β)

∝ 1
θ

n∏
i=1

1√
θ

exp

− 1
2θ

(
yi −

αxi
β + xi

)2


∝ 1
θ
n
2 +1 exp

− 1
2θ

n∑
i=1

(
yi −

αxi
β + xi

)2
 (1)

The full conditional for θ becomes

f(θ|α, β, y1, . . . , yn) ∝ 1
θ
n
2 +1 exp

− 1
2θ

n∑
i=1

(
yi −

αxi
β + xi

)2
 ,

which we can recognise as an inverse gamma distribution. Different param-
eterisations are in use for the inverse gamma distribution. Adopting the
parameterisation

f(z; a, b) = 1
baΓ(a)

exp
{
− 1
zb

}
za+1 ,

the parameters in the full conditional for θ becomes

a = n

2 and b = 2∑n
i=1

(
yi − αxi

β+xi

)2 .

The full conditional for α becomes

f(α|θ, β, y1, . . . , yn) ∝ exp

− 1
2θ

n∑
i=1

(
yi −

αxi
β + xi

)2
 when α > 0

and f(α|θ, β, y1, . . . , yn) = 0 otherwise, where we can observe that the expo-
nent is a second order function in α. The full conditional distribution for α
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is therefore a truncated normal distribution. To find the mean and variance
of this normal distribution we study the exponent in more detail. We get

1
θ

n∑
i=1

(
yi −

αxi
β + xi

)2

= constant + 1
θ

n∑
i=1

−2α xiyi
β + xi

+ α2
(

xi
β + xi

)2


= constant + α2 1
θ

n∑
i=1

(
xi

β + xi

)2

− 2α1
θ

n∑
i=1

xiyi
β + xi

.

Letting µ and σ2 denote the mean and variance, respectively, in the full
conditional for α we must have

constant + α2 1
θ

n∑
i=1

(
xi

β + xi

)2

− 2α1
θ

n∑
i=1

xiyi
β + xi

= 1
σ2 (α− µ)2

= constant− 2α · µ
σ2 + α2

σ2 .

Thus, we have

1
θ

n∑
i=1

(
xi

β + xi

)2

= 1
σ2 ⇒ σ2 = θ∑n

i=1

(
xi

β+xi

)2

and
1
θ

n∑
i=1

xiyi
β + xi

= µ

σ2 ⇒ µ =
∑n
i=1

xiyi
β+xi∑n

i=1

(
xi

β+xi

)2 .

Thus,

f(α|θ, β, y1, . . . , yn) ∝ N

α
∣∣∣∣∣∣∣
∑n
i=1

xiyi
β+xi∑n

i=1

(
xi

β+xi

)2 ,
θ∑n

i=1

(
xi

β+xi

)2

 · I(α > 0),

where N(α|µ, σ2) is the density function of a normal distribution with mean
µ and variance σ2. Finally, the full conditional for β becomes

f(β|θ, α, y1, . . . , yn) ∝ exp

− 1
2θ

n∑
i=1

(
yi −

αxi
β + xi

)2
 ,

which does not belong to a known parametric family.

b) Since the full conditional for θ and α belongs to known parametric families
which we know how to sample from, we can use Gibbs updates for these two.
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We can sample from the truncated normal distribution by rejection sam-
pling with the (un-truncated) normal distribution as proposal distribution.
If the proposed value α is larger than zero it should be accepted with prob-
ability one (i.e. always accepted) and otherwise it should be accepted with
probability zero (i.e. always rejected). The Metropolis–Hastings acceptance
probabilities for Gibbs steps are always identical to one.
For β we can for example propose a new value from a normal distribution
centered at the current value, i.e. for a tuning parameter τ 2 > 0 we propose

β̃ ∼ N(β, τ 2).

Using the expression in (1) when β > 0 and f(θ, α, β|y1, . . . , yn) = 0 when-
ever β ≤ 0 the associated Metropolis–Hastings acceptance probability be-
comes

a(β̃|β) = min
{

1, f(θ, α, β̃|y1, . . . , yn)
f(θ, α, β|y1, . . . , yn) ·

N(β|β̃, τ 2)
N(β̃|β, τ 2)

}

=


min

1,
exp
{
− 1

2θ
∑n

i=1

(
yi−

αxi

β̃+xi

)2
}

exp
{
− 1

2θ
∑n

i=1

(
yi−

αxi
β+xi

)2
}
 if β̃ > 0,

0 otherwise,

(2)

where we have used N(β|β̃, τ 2) = N(β̃|β, τ 2).

c) Let {θm, αm, βm}Mm=1 denote the values simulated by the Metropolis–Hastings
algorithm. To estimate properties of the posterior distribution we first need
to identify the burn-in period. We typically do this by studying trace plots
of the simulated values and see when the traces seem to have stabilised
statistically. In the following we assume the burn-in period to end at m = T ,
so we use {θm, αm, βm}Mm=T to estimate the posterior properties. We estimate
the posterior mean values simply by

Ê[α|y1, . . . , yn] = 1
M − T + 1

M∑
m=T

αm

and
Ê[β|y1, . . . , yn] = 1

M − T + 1

M∑
m=T

βm.

A simple way to estimate a 90% prediction interval for a new observation y0
is first to simulate

ym0 ∼ N
(

αmx0

βm + x0
, θm

)
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for m = T, . . . ,M and thereafter estimate the prediction interval limits by
the 5% and 95% quantiles of the simulated ym0 values. Thus, we should sort
yT0 , . . . , y

M
0 from smallest to largest, denoted as

y
(1)
0 , . . . , y

(M−T+1)
0 .

Assuming M is chosen so that (M − T + 1) · 0.05 is an integer, the estimate
of the prediction interval is[

y
((M−T+1)·0.05)
0 , y

((M−T+1)·0.95)
0

]
.

Problem 4

a) The empirical distribution puts probability 1
n
on each observed value. Letting

F̂ denote the empirical distribution we have

Prob
F̂

(x ∈ A) = #xi’s in A
n

.

For a parameter θ defined as θ = t(F ), the plug-in estimator is defined as
θ̂ = t(F̂ ).

Letting x? denote a sample from F̂ , the plug-in estimator for µ = EF [x] is

µ̂ = E
F̂

[x?] =
n∑
i=1

xi ·
1
n

= 1
n

n∑
i=1

xi = x̄.

The plug-in estimator for the the variance σ2 = VarF [x] becomes

σ̂2 = Var
F̂

[x?] =
n∑
i=1

(xi − E
F̂

[x?])2 · 1
n

= 1
n

n∑
i=1

(xi − x̄)2.

b) The bias of µ̂ is defined as
biasF = EF [s(x)]− EF [x].

The ideal bootstrap estimator for the bias is defined as the plug-in estimator
for this quantity, i.e.

bias
F̂

= E
F̂

[s(x?)]− E
F̂

[x?].
Above we have shown that E

F̂
[x?] = µ, so it remains to find a simple expres-

sion for E
F̂

[s(x?)]. Inserting for s(x) we get

E
F̂

[s(x?)] = E
F̂

[
1
n

n∑
i=1

x?i

]
= 1
n

n∑
i=1

E
F̂

[x?i ] = 1
n

n∑
i=1

µ = µ,

where we have used that E
F̂

[x?i ] = µ when x?i ∼ F̂ . We get
bias

F̂
= E

F̂
[s(x?)]− E

F̂
[x?] = µ− µ = 0.
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Problem 5

a) We have

f(x;µ, σ) =
n∏
i=1

[
1√
2π

1
σ

exp
{
− 1

2σ2 (xi − µ)2
}]

=
( 1

2π

)n
2 1
σn

exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}
.

Taking the logarithm we get

ln f(x;µ, σ) = −n2 ln(2π)− n ln σ − 1
2σ2

n∑
i=1

(xi − µ)2.

Taking the expected value under the assumption xi ∼ N(µ(t), (σ(t))2) we get

E
[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
= −n2 ln(2π)− n ln σ − 1

2σ2

n∑
i=1

E
[
(xi − µ)2|z, µ(t), σ(t)

]
Expanding the square inside the expectation operator we get

E
[
(xi − µ)2|z, µ(t), σ(t)

]
= E

[
x2
i − 2µxi + µ2|z, µ(t), σ(t)

]
= E

[
x2
i |z, µ(t), σ(t)

]
− 2µE

[
xi|z, µ(t), σ(t)

]
+ µ2.

Thus, we need to find expressions for E
[
xi|z, µ(t), σ(t)

]
and E

[
x2
i |z, µ(t), σ(t)

]
.

The density of xi ∼ N(µ(t), (σ(t))2) can be expressed as

f(xi|µ(t), σ(t)) = 1
σ(t)ϕ

(
xi − µ(t)

σ(t)

)

and corresponding cumulative distribution function is

F (xi|µ(t), σ(t)) = Φ
(
xi − µ(t)

σ(t)

)
.

The conditional density for xi given zi becomes

f(xi|zi, µ(t), σ(t)) = f(xi|µ(t), σ(t))
P (xi ∈ [zi, zi + 1)) =

1
σ(t)ϕ

(
xi−µ(t)

σ(t)

)
Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) ,
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and the corresponding conditional expectation is

E
[
xi|z, µ(t), σ(t)

]
=

∫ zi+1

zi
xif(xi|zi, µ(t), σ(t))dxi

=
1
σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) ∫ zi+1

zi
xiϕ

(
xi − µ(t)

σ(t)

)
dxi

=
A
(
µ(t), σ(t), zi, zi + 1

)
/σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) .
Correspondingly we get

E
[
x2
i |z, µ(t), σ(t)

]
=

∫ zi+1

zi
x2
i f(xi|zi, µ(t), σ(t))dxi

=
1
σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) ∫ zi+1

zi
x2
iϕ

(
xi − µ(t)

σ(t)

)
dxi

=
B
(
µ(t), σ(t), zi, zi + 1

)
/σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) .
Thereby we have

E
[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
= −n2 ln(2π)− n ln σ

− 1
2σ2

n∑
i=1

B
(
µ(t), σ(t), zi, zi + 1

)
/σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) − 2µ
A
(
µ(t), σ(t), zi, zi + 1

)
/σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) + µ2


= −n2 ln(2π)−n ln σ− 1

2σ2

(
nµ2 − 2µα(z, µ(t), σ(t)) + β(z, µ(t), σ(t)) + nµ2

)
,

where

α(z, µ(t), σ(t)) =
n∑
i=1

A
(
µ(t), σ(t), zi, zi + 1

)
/σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

)
and

β(z, µ(t), σ(t)) =
n∑
i=1

B
(
µ(t), σ(t), zi, zi + 1

)
/σ(t)

Φ
(
zi+1−µ(t)

σ(t)

)
− Φ

(
zi−µ(t)

σ(t)

) .
b) To find for what values of µ and σ the E

[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
has its

maximum we find the partial derivatives of this expected value with respect
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to each of µ and σ. We get
∂

∂µ
E
[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
= − 1

2σ2

(
2nµ− 2α(z, µ(t), σ(t))

)
∂

∂σ
E
[
ln f(x;µ, σ)|z, µ(t), σ(t)

]
= −n

σ
+ 1
σ3

(
nµ2 − 2µα(z, µ(t), σ(t) + β(z, µ(t), σ(t))

)
Setting the partial derivative with respect to µ equal to zero and solving
with respect to µ gives

µ = α(z, µ(t), σ(t))
n

and setting the partial derivative with respect to σ equal to zero gives
n

σ
= 1

σ3

(
nµ2 − 2µα(z, µ(t), σ(t) + β(z, µ(t), σ(t))

)
σ2 = 1

n

(
nµ2 − 2µα(z, µ(t), σ(t) + β(z, µ(t), σ(t))

)
σ =

√
µ2 − 1

n
(2µα(z, µ(t), σ(t))− β(z, µ(t), σ(t))).

Thus µ(t+1) and σ(t+1) can be computed from µ(t) and σ(t) by

µ(t+1) = α(z, µ(t), σ(t))
n

σ(t+1) =
√

(µ(t+1))2 − 1
n

(2µ(t+1)α(z, µ(t), σ(t))− β(z, µ(t), σ(t))).

The standard deviations of the maximum likelihood estimators can be esti-
mated by bootstrapping by the following algorithm.

for b = 1, . . . , B do
Draw a bootstrap sample z?b1 , . . . , z

?b
n from z1, . . . , zn.

Use the EM algorithm to compute maximum likelihood estimates based
on z?b1 , . . . , z

?b
n . Denote the result by µ̂?b and σ̂?b .

Estimate the standard deviations of µ̂ and σ̂ by

ŜD [µ̂] =

√√√√ 1
B − 1

B∑
b=1

(
µ̂?b − µ̂?

)2
,

ŜD [σ̂] =

√√√√ 1
B − 1

B∑
b=1

(
σ̂?b − σ̂?

)2
,

respectively, where

µ̂? = 1
B

B∑
b=1

µ̂?b and σ̂? = 1
B

B∑
b=1

σ̂?b .


