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Problem 1

a) To sample from this distribution the most natural alternative is to use the
probability integral transform method. We start by finding the cumulative
distribution function G(x):

G(x) =
∫ x

−∞
g(x) dx =


eλx

2 , for x < 0
1− 1

2e
−λx, for x ≥ 0

.

Sampling u ∼ Unif(0, 1) we get a sample from g(x) by solving u = G(x) wrt
x. This gives us:

G−1(u) =


1
λ

log(2u) for 0 ≤ u < 1/2
− 1
λ

log(2(1− u)) for 1/2 ≤ u ≤ 1

Pseudo code for generating x ∼ g(x) is then:
Generate u ∼ Unif(0, 1)
if u < 0.5 then

Compute x = 1
λ

log(2u)
else

Compute x = − 1
λ

log(2(1− u))
Return x

Note: You can also simulate x ∼ exponential(λ) and return x or −x each
with probability 0.5.

b) To sample from h(x) using rejection sampling with g(x) as proposal distri-
bution we first have to find a constant M such that:

h(x)
g(x) ≤M for each x such that h(x) > 0

We have that h(x) > 0 for ∀x ∈ R. So we get

h(x)
g(x) = exp

{
−x

2

2 + λ|x|
}

2
λ

1√
2π
≤ 1√

2π
2
λ

exp
{
λ2

2

}

WE can then choose
M = 1√

2π
2
λ

exp
{
λ2

2

}
The pseudocode to simulate x ∼ h(x) is then:
finished = 0
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while finished = 0 do
Generate x ∼ g(x)
Generate u ∼ Unif(0, 1)
Compute p = exp{λ|x| − 0.5x2 − 0.5λ2}
if u < p then finished = 1

Return x

c) In the rejection sampling algorithm the acceptance rate is given by:

P (accept) = 1
M

=
√

2π
2 λ exp

{
−1

2λ
2
}

To find the maximum derive the logP (accept) wrt λ and set to 0:

d

dλ
logP (accept) = d

dλ

[
const + log λ− 1

2λ
2
]

= 1
λ
− λ = 0

That is the acceptance rate is maximised for λ = 1. The maximum obtain-
able acceptance rate is then:

P (accept) =︸︷︷︸
λ=1

√
2π
2 1 exp

{
−1

212
}

=
√
π

2 e
−1/2 ≈ 0.76

Problem 2

a) a)

The posterior density is:

f(θ, λ, k|y1, . . . , yn) ∝ f(θ) f(λ) f(k) f(y1, . . . , yn|θ, λk)

= f(θ) f(λ) f(k)
k∏
i=1

λyi

yi!
e−λ

n∏
i=k+1

θyi

yi!
e−θ

And the full conditionals:

f(θ| . . . ) ∝ f(θ)
n∏

i=k+1

θyi

yi!
e−θ

∝ θ0.5−1 e−θ θ
∑n

i=k+1 yi e−(n−k)θ

= θ(
∑n

i=k+1 yi+0.5)−1 e−(n−k+1)θ
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that is θ| · · · ∼ Gamma(0.5 +∑n
i=k+1 yi, n− k + 1)

f(λ| . . . ) ∝ f(λ)
k∏
i=1

θyi

yi!
e−λ

∝ λ0.5−1 e−λ λ
∑k

i=1 yi e−kθ

= θ(
∑k

i=1 yi+0.5)−1 e−(k+1)θ

That is λ| · · · ∼ Gamma(0.5 +∑k
i=1 yi, k + 1).

Finally

f(k| . . . ) ∝ f(θ, λ, k|y1, . . . , yn)

∝
k∏
i=1

λyi

yi!
e−λ

n∏
i=k+1

θyi

yi!
e−θ

∝ λ
∑k

i=1 yiθ
∑n

i=k+1 yie−kλ−(n−k)θ

This is not a known distribution.

b) Alternative 1: Use Gibbs sampling for λ and θ and MH within Gibbs for
k. We can use, for example, an independent proposal for k:

q(k∗|kt−1) = 1
n

for k = 1, . . . , n

The corresponding acceptance probability is then:

α(k∗|kt−1) = min
{

1, f(k∗| . . . )
f(kt−1| . . . )

}

= min
{

1, exp{log(λt)∑k∗

i=1 yi + log(θt)∑n
i=k∗+1 yi − k∗λt − (n− k∗)θt}

exp{log(λt)∑kt−1
i=1 yi + log(θt)∑n

i=kt−1+1 yi − kt−1λt − (n− kt−1)θt}

}

Pseudo code:

• Set initial values λ0, θ0 and k0

• For t = 1, . . . , I
– Sample λt ∼ Gamma(0.5 +∑kt−1

i=1 yi, k
t−1 + 1)

– Sample θt ∼ Gamma(0.5 +∑n
i=kt−1+1 yi, n− kt−1 + 1)

– Propose k∗ ∼ Unif(1, n)
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– Compute α(k∗|kt− 1)
– Sample ut ∼ Unif(0, 1)
– If ut < α(k∗|kt−1) set kt = k∗ otherwise set kt = kt−1

Alternative 2: The full conditional distribution for k does not belong to
a known family. On the other side it is a discrete distribution therefore
easy to normalise and sample from using the standard inversion probability
techniques for discrete random variables. One possible alternative MCMC
scheme is therefore:
Pseudo code:

• Set initial values λ0, θ0 and k0

• For t = 1, . . . , T
– Sample λt ∼ Gamma(0.5 +∑kt−1

i=1 yi, k
t−1 + 1)

– Sample θt ∼ Gamma(0.5 +∑n
i=kt−1+1 yi, n− kt−1 + 1)

– Compute f(k|λt, θt, y1, . . . , yn) for k = 1, . . . , n
– Compute the normalising constant:

Ct =
n∑
k=1

f(k|λt, θt, y1, . . . , yn)

– Compute the cdf F (k|λt, θt, y1, . . . , yn)
– Sample kt ∼ F (k|λt, θt, y1, . . . , yn) using

c) The plot show fast convergence for all three parameters, the mixing appear
good the θ and λ but it is very slow for k.
To estimate the quantities of interest one needs first to find the length of
the burn-in period. This is done by output analysis Assume the chain has
(essentially) converged after T1 < T iterations. One can then estimate the
posterior mean for λ by

Ê[λ|y1, . . . , yn] = 1
T − T1

T∑
t=T1+1

λt

To estimate the probability:

P̂ [λ > 2.5|k = 100, y1, . . . , yn] = P̂ [λ > 2.5, k = 100|y1, . . . , yn]
P̂ [k = 100|y1, . . . , yn]

=
∑T
t=T1+1 I(λt > 2.5 and kt = 1)∑T

t=T1+1 I(kt = 1)

Where I(·) is an indicator function.
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Problem 3

a)
• Describe the idea behind the EM algorithm
• The function Q(λ|λ(k)) is the mean of the complete data likelihood

confitionla of the observed data and an impoted value for the unknown
parameters.

Q(λ|λ(k)) = E{log l(λ : x1, . . . , xn)|y1, . . . , yn, λ
(k)}

b)

In this case the complete data consists in the series of unobserved lifetimes
x1, . . . , xn while the incomplete data consists in the observed series y1, . . . , yn.
The complete data likelikelihood is given by:

L(λ : x1, . . . , xn) =
N∏
i=1

λ e−λxi = λn e−λ
∑N

i=1 xi

and the log-likelihood:

l(λ : x1, . . . , xn) = n log λ− λ
N∑
i=1

xi

For this problem we have:

Q(λ|λ(k)) = E{log l(λ : x1, . . . , xn)|y1, . . . , yn, λ
(k)}

E(n log λ− λ
N∑
i=1

xi|y1, . . . , yn, λ
(k))

= n log λ− λ
N∑
i=1

E(xi|yi, λ(k))

So we need to find E(xi|yi, λ(k)), here yi can be either 0 or 1. We look at one
case per time:

E(xi|yi = 0, λ(k)) =
∫ T

0
x
λ(k)e−λ

(k)x

1− e−λ(k)T
dx

= 1
λ(k) − T

e−λ
(k)T

1− e−λ(k)T
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and

E(xi|yi = 1, λ(k)) =
∫ ∞
T

x λ(k)e−λ
(k)(x−T ) dx

= 1
λ(k) + T

d) The Q(λ|λ(k)) is then:

Q(λ|λ(k)) = n log λ− λ

N0

 1
λ(k) − T

e−λ
(k)x

1− e−λ(k)T

+N1

[ 1
λ(k) + T

]
The M step in the EM algorith consists in maximizing Q(λ|λ(k)) with respect
to λ. We need therefore to derive Q(λ|λ(k)) and set the derivative to 0

dQ(λ|λ(k))
dλ

= n

λ
−

N0

 1
λ(k) − T

e−λ
(k)x

1− e−λ(k)T

+N1

[ 1
λ(k) + T

] = 0

This gives us:

λ(k+1) = N{
N0

[
1
λ(k) − T e−λ(k)x

1−e−λ(k)T

]
+N1

[
1
λ(k) + T

]}


