@NTNU

Norwegian University of
Science and Technology

Department of Mathematical Sciences

Examination paper for Solution Sketch for TMA4300

Academic contact during examination: Sara Martino
Phone: 99403330

Examination date: 05/06/2019
Examination time (from-to): 15.00-19.00

Permitted examination support material: C:

e Calculator HP30S, CITIZEN SR-270X or CITIZEN SR-270X College, Casio fx-82ES PLUS
with empty memory.

Statistiske tabeller og formler, Tapir.

K. Rottmann: Matematisk formelsamling.

One yellow, stamped A5 sheet with own handwritten formulas and notes.

Dictionary in any language.

Other information:

e All 10 sub-problems in this exam count approximately the same.
e All answers must be justified!!!

e In your solution you can use English and/or Norwegian.

Language: English
Number of pages: 77

Number of pages enclosed: 0

Checked by:

Date Signature






TMA4300 Computer Intensive Statistical Methods—June 2019 Page 1 of 77

Problem 1

a)

b)

To sample from this distribution the most natural alternative is to use the
probability integral transform method. We start by finding the cumulative
distribution function G(z):

e/\z

z e, for x <0
Ga) = | g(x)dx={2

—o0 1 —5e7, forx >0

Sampling u ~ Unif(0, 1) we get a sample from g(z) by solving u = G(x) wrt
x. This gives us:

G (u) = §log(2u) for 0 <u<1/2
—1log(2(1 —u)) for1/2<u<1

Pseudo code for generating = ~ g(x) is then:
Generate u ~ Unif(0, 1)
if ©v < 0.5 then
Compute z = 1 log(2u)
else
Compute z = —5 log(2(1 — u))
Return z

Note: You can also simulate x ~ exponential(A) and return = or —x each
with probability 0.5.

To sample from h(x) using rejection sampling with g(x) as proposal distri-
bution we first have to find a constant M such that:

h
gg“; < M for each = such that h(x) > 0

We have that h(x) > 0 for Vo € R. So we get

WE can then choose

The pseudocode to simulate x ~ h(x) is then:
finished = 0
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while finished = 0 do
Generate x ~ g(z)
Generate u ~ Unif(0, 1)
Compute p = exp{\|z| — 0.52% — 0.5)\?}
if u < p then finished = 1

Return z

c) In the rejection sampling algorithm the acceptance rate is given by:

1 V2 1
P(accept) = e TW)\ exp {—2)\2}

To find the maximum derive the log P(accept) wrt A and set to 0:
d d 1
a A—v]
) log P(accept) = Y [const + log 5
1

:——)\:
3 0

That is the acceptance rate is maximised for A = 1. The maximum obtain-
able acceptance rate is then:

V2T 1 5 T 4
= —= = /=2 x
= 1exp{ 21} 26 0.76

A=1

P(accept)

Problem 2

a) a)

The posterior density is:

FON Ky, - yn) o< f(0) f(A) F(R) f(yr, - unl0, AR)
= f(6) 1;[ y? -\ 11123: e~

And the full conditionals:
n eyi

FO. ) o f(0) TI —e

i=k+1
o B051 o0 g2 Ui o (n—k)O

—0

= 9(2?:k+1 ¥i+0.5)—1 e~ (n—k+1)0
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that is 0| - - - ~ Gamma(0.5 + Y7, ., yi,n — k+ 1)

k_ gy

FOAL-) o fVTT
=1 yZ

o A\05=1 o=A A vi kO

= Q(Zle y;+0.5)—1 6_(k+1)9

—)\

That is |-+ ~ Gamma(0.5 + 3% 5, k + 1).
Finally

SR o F(0, A By, - - )

k \Vi _)\ n Gyl »
X
H i~ i ]g-l yz

x )\21:1 Yi 92i:k+1 yzefk)\f(nfk)B
This is not a known distribution.

b) Alternative 1: Use Gibbs sampling for A and § and MH within Gibbs for
k. We can use, for example, an independent proposal for k:

1
q(K* k') = - fork=1,...,n

The corresponding acceptance probability is then:
a(k* [k :min{l,f( }
(k] ) fE .0
= min {1 exp{log(\") 317, yi + log(6") itk Yi — KA — (n— k)0'} }
Cexp{log(X) T,y +10g(0") Siperyy i — KTIN = (n— k7160

Pseudo code:

e Set initial values \°, #° and k°

e fort=1,...,1
— Sample ' ~ Gamma(0.5 + Z"“ Ly k)
— Sample 6" ~ Gamma(0.5 + 1" pi1 gy, — K+ 1)
— Propose k* ~ Unif(1,n)
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— Compute a(k*|kt — 1)

— Sample u' ~ Unif(0, 1)

— If u! < a(k*|k'™1) set k' = k* otherwise set k' = k'~!
Alternative 2: The full conditional distribution for £ does not belong to
a known family. On the other side it is a discrete distribution therefore
easy to normalise and sample from using the standard inversion probability

techniques for discrete random variables. One possible alternative MCMC
scheme is therefore:

Pseudo code:

e Set initial values \°, % and £°
e Fort=1,....T
— Sample A ~ Gamma(0.5 + X5y, kL 4+ 1)
— Sample 0" ~ Gamma(0.5 4+ Y1 1 Y, n — kN4 1)
— Compute f(k|A, 0% y1,.. . y,) for k=1,....n
— Compute the normalising constant:

Ct = Zf(kp\t’et?yh s ;yn>
k=1

— Compute the cdf F(k|X, 0% 1, ..., y,)
— Sample k' ~ F(k|\, 0"y, ..., y,) using

The plot show fast convergence for all three parameters, the mixing appear
good the # and A but it is very slow for k.

To estimate the quantities of interest one needs first to find the length of
the burn-in period. This is done by output analysis Assume the chain has
(essentially) converged after T} < T iterations. One can then estimate the
posterior mean for A by

~ 1 T
EXNyr, .. un) = Z A
T - Tl t=T1+1
To estimate the probability:
- PIA> 25,k =100y, ...,y

P\ > 25k =100,v1,...,Ys) =

Plk = 100|y1, . . ., yn]
Yl I(X > 25 and K = 1)
Yiera [k =1)

Where I(-) is an indicator function.
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Problem 3

a)
e Describe the idea behind the EM algorithm

e The function Q(A|JA®) is the mean of the complete data likelihood
confitionla of the observed data and an impoted value for the unknown
parameters.

QAN®Y = E{log (X : 1, ..., x0)|y1s - - - yn, AP}

b)

In this case the complete data consists in the series of unobserved lifetimes
x1, ..., T, while the incomplete data consists in the observed series y1, ..., Yn.

The complete data likelikelihood is given by:
N N
LAty z,) =[Ae ™™ = A" e Lim %
i=1
and the log-likelihood:

N
IA:xq,...,2,) =nlog X — )\in
i=1
For this problem we have:

QAN®Y = E{logl(\: 21, ..., |y1s - - - s yn, AP}

N
E(nlog A — )\in]yl, ey Yn, )\(k))

=1

N
=nlog\ — A Z E(zly;, )\(k))

i=1

So we need to find E(x;|y;, \®)), here y; can be either 0 or 1. We look at one
case per time:

T )\(k)e_A(k)z
oy — (k)y —
E(x;|y; = 0, A'%) —/0 T = dzx
1 e~ IT

G RS,
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and

Blaiyi = 1,09) = [ "2 AW e gy
T

1
:W—FT

d) The Q(A|A®) is then:

1 e\

@Muww—M%A_A{%lxm—Tl_www

1
*Nl{w”’]}

The M step in the EM algorith consists in maximizing Q(AA®*)) with respect
to . We need therefore to derive Q(AA®)) and set the derivative to 0

AQAIN®)Y 1 e M=
— 2 N, —T
) “1A

d\ (k) 1 — e AWT

1

This gives us:




