
TMA4300 - Spring 2021 - Solution sketch (not all details are given)

Direct Sampling
Part a)
The cdf of the standard Weibull distribution is

F0(x) =
∫ x

0
αuα−1e−u

α

du = 1− e−x
α

we then need to invert the cdf and find F−1
0 (u) as

1− e−x
α

= u

e−x
α

= 1− u
x = (− log(1− u))(1/α)

To simulate x ∼ f0(x) we can use the following algorithm

• Simulate U ∼ Unif(0, 1)
• Compute X = F−1

0 (u)
• Return X

Part b)
We want to show that if Y ∼ N(0, 1) then X = F−1

0 (Φ(Y )) is standard Weibull distributed.

P (X < x) = P (F−1
0 (Φ(Y )) < x)

= P (Φ(Y ) < F0(x))
= P (Y < Φ−1(F0(x))) = Φ(Φ−1(F0(x))) = F0(x)

To simulate two dependent and standard Weibull distributed random variables (X1, X2) one can use the
following algorithm

• Simulate (Y1, Y2) ∼ N(0,Σ)
• Compute X1 = F−1

0 (Φ(Y1)) and X2 = F−1
0 (Φ(Y2))

• Return X1 and X2

MCMC
Part a)
A sufficient condition for convergence is that the chain fullfills the detailed balance condition, that is

π(y)P (y, x) = π(x)P (x, y)

where P (x, y) is the transition probability. In the given algorithm the transition probability is given by

P (x, y) = Q(x, y)α1(x, y) if x 6= y

P (x, y) = Q(x, y)α1(x, y) +
∫
x′
Q(x′, y)(1− α1(x′, y))dx′ if x = y
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If x = y the detailed balance condition is obviously fulfilled. If x 6= y we have that

π(x)P (x, y) = π(x)Q(x, y)α1(x, y)

= π(x)Q(x, y) π(y)Q(y, x)
π(y)Q(x, y) + π(x)Q(y, x) =

= π(y)Q(y, x) π(x)Q(x, y)
π(y)Q(x, y) + π(x)Q(y, x) = π(y)P (y, x)

## Part b) The acceptance probability for the MH agrithm is

α2(x, y) = min
{

1, π(y)Q(y, x)
π(x)Q(x, y)

}
If π(y)Q(y, x) > π(x)Q(x, y) then α2(x, y) = 1 ≥ α1(x, y).

If π(y)Q(y, x) < π(x)Q(x, y) then α2(x, y) = π(y)Q(y,x)
π(x)Q(x,y) ≥

π(y)Q(y,x)
π(x)Q(x,y)+π(y)Q(y,x) = α1(x, y)

This means that, given the same proposal, the MH algorithm has a higher acceptance rate. According to the
theorem, moreover, we have that the variance of the estimator from the MH algorith is smaller than the one
of the estimator from the given algorithm.

Part b)
We simulate xt = (xt1, xt2, xt3, xt4), t = 1, . . . , N from the MCMC algorithm. After discarding the first L
samples as burn-in we can estimated q as:

q̂ = 1
N − L

N∑
i=L+1

I(x
i
1 + xi3
xi4

)

where I() is an indicator function.

INLA
Part a)
In order for the model to be amenable to INLA we need to have

• π(y|x) =
∏n
i=1 π(yi|xi)

• π(x|θ) ∼ N(0, Q−1(θ)) where Q−1(θ) is a sparse precision matrix

Part b)
Advantages: - INLA is fast and deterministic (no need to wait for convergence and for convercenge diagnostic)
- INLA is already implemented in the R-INLA library - INLA gives often estimates that are more accurate
than MCMC algorithms

Disadvantages: - INLA can only be applied to Latent Gaussian models with a sparse precision matrix
governing the latent Gaussian field - INLA only provides estimates for posterior marginals while MCMC
gives estimates for the whole joint posterior distribution.
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Rejection Sampling
Part a)
The proposal X = x is accepted

P (X is accepted) = P{U ≤ h(X)
Kg̃(x)}+ P{U >

h(X)
Kg̃(x) , V ≤

π̃(X)− h(X)
Kg̃(X)− h(X)}

= P{U ≤ h(X)
Kg̃(x)}+ P{U >

h(X)
Kg̃(x)}P{V ≤

π̃(X)− h(X)
Kg̃(X)− h(X)}

= h(X)
Kg̃(x) + (1− h(X)

Kg̃(x) ) π̃(X)− h(X)
Kg̃(X)− h(X)

= h(X)
Kg̃(x) + Kg̃(X)− h(X)

Kg̃(x)
π̃(X)− h(X)
Kg̃(X)− h(X)

= h(X)
Kg̃(x) + π̃(X)− h(X)

Kg̃(x) = π̃(X)
Kg̃(x)

We then have to find the distribution of the samples accepted by the algorithm. We have that

F (x) = P (X < x|x is accepted) = P (X < x and x is accepted)
x is accepted

=
∫ x
−∞

π̃(u)
Kg̃(u)g(u)du∫∞

−∞
π̃(u)
Kg̃(u)g(u)du

=
∫ x
−∞

Zππ(u)
Zgg(u) g(u)du∫∞

−∞
Zππ(u)
KZgg(u)g(u)du

=
∫ x
−∞ π(u)du∫∞
−∞ π(u)du

=
∫ x

−∞
π(u)du

Part b)
We have that

P (Carry out step 3) = 1− P (Accept in step 2)

= 1−
∫
P (Accept x in step 2|X = x)g(x)dx

= 1−
∫

h(u)
Kg̃(u)g(x)dx

= 1−
∫

h(u)
KZgg(u)g(x)dx

= 1−
∫

h(u)
KZg

dx =
∫
h(u)
KZg

Such algorithm can be convenient in cases when computing π(x) is computationally heavy.

Bootstrap
Part b)
We regard the bootstrap sample as a set of observations, i.e. ordering is ignored. Since all entries are distinct,
we can regard them as n different classes. Generating a bootstrap sample can be regarded as sampling from
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an urn with n different colored balls with replacement. This is equivalent to sampling from a multinomial
distribution. Thus each bootstrap sample has probability:

n!
z1! . . . zn! (

1
n

)z1+···+zn = n!
z1! . . . zn! (

1
n

)n

Where, zi represents the number of times the i-th observation is picked. The probability gets largest, if
z1 = · · · = zn = 1 that means each entry appears once, i.e. we get the original data set. The probability gets
smallest, if one of the zi is equal n while all the others are 0, that means that only one of the element of the
original dataset is picked up n times.
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