
Solution Sketch (not all details given)

Exam FS2015 TMA4300

05/10/15

1 Problem 1

•

– Computing analytical results from complicated system, e.g. within
physics, is often difficult. Simulation can be used to verify plausibility
arguments.

– Approximation of integrals/expected values

– Simulation of stochastic processes for example within financial math-
ematics.

– etc

It is not sufficient to mention an application. It needs to be described
shortly (more than done above), so that it becomes clear where/why sim-
ulation is involved and needed.

• Pseudo-random numbers are numbers in [0, 1] that were generated using a
deterministic function and have the same relevant statistical properties as
a sequence of Unif(0, 1) numbers. Given a particular function and a ”seed”
value, the same sequence of numbers will be generated by the function.

2 Problem 2

For k = 4 the point is classified as a circle, for k = 7 as well and for k = 10 it
is classified as a square. This classification should be justified.

The problem with a too small chosen k is that the algorithm is sensitive to
outliers, while when k is chosen too large many objects from other classes can
be in the decision set. Figure 1 illustrates this.

M -fold cross validation could be used to select k (Here, the crucial details
of the algorithm should be given). The algorithm is applied for each potential
k and k is then chosen according to the smallest misclassification rate.

1



DATABASE
SYSTEMS
GROUP

Wahl des Parameters k

x

Entscheidungsmenge für k = 1

Entscheidungsmenge für k = 7

Entscheidungsmenge für k = 17

• „zu kleines“ k: hohe Sensitivität gegenüber Ausreißern
• „zu großes“ k: viele Objekte aus anderen Clustern (Klassen)

in der Entscheidungsmenge.
• mittleres k: höchste Klassifikationsgüte, oft 1 << k < 10

x: zu klassifizieren

Knowledge Discovery in Databases I: Klassifikation 53

Figure 1: The object to be classified is indicated by a x. The solid circle indicates
the decision set using k = 1, the dashed circle the set for k = 7 and the dotted
circle the set for k = 17.

3 Problem 3

Proposing and describing a Metropolis-Hasting algorithm for example using a
discrete uniform distribution on {0, . . . , n} as a proposal distribution or a ran-
dom walk proposal. Using a random walk proposal be careful about boundaries.
Continuous propoasal distribution are not sensible, also problem with bound-
aries appears. All steps (initialisation, i.e integer!,proposal distribution, accep-
tance rates, acceptance step, . . . ) should be given in detail. Does something
cancel?. Be careful that algoritm should run until convergence otherwise the
generated samples will not be from the target binomial distribution. Log-scale
should be preferred to compute acceptance ratio due to numerical problems in
factorial computation.

It is insufficient to state the general Metropolis-Hastings algorithm, it needs
to be adapted to the binomial target distribution, where all steps are specified
and written out.

4 Problem 4

a) – A bootstrap sample can be obtained by drawing n times with replace-
ment from the observations of the original dataset. Each observation
has the probability 1/n to be drawn. The resulting set has the same
size as the original dataset, but some observations might be missing
while others appear several times.

– The probability that a certain observation is not picked when we
draw once is 1 − 1

n . Drawing n times the entry will not be picked

with probability
(
1− 1

n

)n
. Letting n go to infinity we get:

lim
n→∞

(
1− 1

n

)n
= e−1 = 0.368.

Thus, the probability that the observation appears in the bootstrap
sample is approximated by 1− 0.368 = 0.632.

2



b) We regard the bootstrap sample as a set of observations, i.e. ordering is
ignored. Since all entries are distinct, we can regard them as n different
classes. Generating a bootstrap sample can be regarded as sampling from
an urn with n different coloured balls with replacement. This is equivalent
to sampling from a multinomial distribution. Thus each bootstrap sample
has probability:

n!

x1! · · ·xn!
·
(

1

n

)x1+···+xn

=
n!

x1! · · ·xn!
·
(

1

n

)n
Here, xi represents the number of times the i-th observation is picked.
The probability gets largest, namely n!/nn, if x1 = . . . = xn = 1 that
means each entry appears once, i.e. we get the original data set.

5 Problem 5

a) Y ∼ Exp(λ). X = Y | Y > a with a > 0.

FX(x) = P (X ≤ x) = P (Y ≤ x | Y > a)

=
P (Y ≤ x, Y > a)

P (Y > a)

=
P (Y ≤ x, Y > a)

1− P (Y ≤ a)

If x ≤ a we get P (Y ≤ x, Y > a) = 0 and thus FX(x) = 0.
If x > a we get:

P (Y ≤ x, Y > a) = P (Y ≤ x)− P (Y ≤ a)

= 1− exp(−λx)− (1− exp(−λa)) = exp(−λa)− exp(−λx).

Thus,

FX(x) =

{
0 x ≤ a
exp(−λa)−exp(−λx)

exp(−λa) = 1− exp(−λx)
exp(−λa) x > a.

This corresponds to the CDF of a shifted exponential distribution. The
inverse CDF results as

F−1X (u) = a− 1

λ
log(1− u).

The inversion method can be used to generate samples for X. For this
sample U ∼ Unif(0, 1) and evaluate F−1X (u).

b) From a) we get

fX(x) =

{
0 x ≤ a

λ
exp(−λa) exp(−λx) x > a.

This corresponds to our target density. The proposal density is the expo-
nential distribution with parameter λ:

gX(x) =

{
0 x < 0

λ exp(−λx) x ≥ 0.

3



0 2 4 6 8 10

0
1

2
3

4

x

de
ns

ity

f(x)
g(x)
c*g(x)

Figure 2: Rejection sampling setting for λ = 1 and a = 4.

From this we get:

fX(x)

gX(x)
=

λ
exp(−λa) exp(−λx)

λ exp(−λx)
=

1

exp(−λa)
= exp(λa).

for x > a. That means c = exp(λa). For λ = 1 and a = 4 we get
c = exp(4) ≈ 54, which corresponds to the expected number of trials up
to the first accepted sample. This is because we asssume that the trials are
independent, so the number of trials up to the first success is geometrically
distributed with parameter 1/c.

Figure 2 illustrates f(x), g(x) and c ∗ g(x) for λ = 1 and a = 4. Since
f(x) = 0 for all x ≤ a will all proposed samples from g(x) that are smaller
than a be rejected as f(x)/(c · g(x)) = 0. On the other side all proposed
samples that are larger than a will be accepted as f(x)/(c · g(x)) = 1.
Hence, it is enough to sample from g(x), i.e. X ∼ Exp(λ) and accept the
value if it is larger than a.

4


