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Problem 1

a) We must first find the cumulative distribution function corresponding to the
density g(x). For x ≥ 0 we get

G(x) =
∫ x

0
g(x)dx =

∫ x

0
2xe−x2dx =

[
−e−x2]x

0

= −e−x2 − (−e0) = 1− e−x2
.

Next we need to find G−1(u). We do this by solving

u = G(x)

with respect to x. We get

u = 1− e−x2

1− u = e−x
2

ln(1− u) = −x2

x =
√
− ln(1− u),

where we use that we know x ≥ 0. Thus

G−1(u) =
√
− ln(1− u),

and pseudo code for generating a sample from the distribution with density
g(x) becomes

1. Sample u ∼ Unif(0, 1).

2. Compute x = G−1(x) =
√
− ln(1− u).

3. Return x.

b) To do rejection sampling we first need to find a value c̃ so that

c̃ · f(x)
g(x) ≤ 1 ⇒ c̃ ≤ g(x)

f(x)

for all x. Since both densities g(x) and f(x) are positive only for x ≥ 0
it is here sufficient that the inequality is fulfilled for x ≥ 0. Inserting the
expressions for g(x) and f(x) we get

min
x≥0

{
g(x)
f(x)

}
= min

x≥0

{
2xe−x2

cxe−x3

}
= min

x≥0

{2
c
· ex3−x2

}
= 2
c
· eminx≥0{x3−x2}.
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We define h(x) = x3−x2 and find the value of x that maximises this function
by setting the derivative to zero,

h′(x) = 3x2 − 2x = 0 ⇒ x ∈
{

0, 2
3

}
.

We have h(0) = 0,

h
(2

3

)
=
(2

3

)3
−
(2

3

)2
=
(2

3

)2
·
(2

3 − 1
)

= − 4
27

and we see that h(x) → ∞ when x → ∞. Thereby the minimum value for
h(x) for x ≥ 0 is − 4

27 . Thereby we can choose

c̃ = 2
c
· e−

4
27 .

The acceptance probability in the rejection sampling algorithm becomes

α = c̃ · f(x)
g(x) = 2

c
· e−

4
27 · cxe

−x3

2xe−x2 = e−
4

27 · ex2−x3
.

Pseudo code for generating a sample from f(x) is thereby

1. Sample x ∼ g(x).
2. Compute α = e−

4
27 · ex2−x3 .

3. Sample u ∼ Unif(0, 1).
4. If (u ≤ α) return x, otherwise go to 1.

Problem 2

We have
p(x;λ) = I(x ≥ 0)e−λx+ln(λ) = a(x)eφ(λ)t(x)+b(λ),

where (for example)

a(x) = I(x ≥ 0), φ(λ) = −λ, t(x) = x and b(λ) = ln(λ).

The density of the conjugate prior distribution is then

p(λ) ∝ eφ(λ)α+b(λ)β = e−λα+ln(λ)β = λβe−λα = λ(β+1)−1e−λ/(1/α).

We can recognise this as the density of a Gamma(β + 1, 1/α) distribution (when
using the parametrisation given in ’Statistiske tabeller og formler’).
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Problem 3

a) The posterior distribution becomes (ignoring factors that are not functions
of λ1, λN , α or β),

p(λ1, . . . , λN , α, β|x) ∝ p(α)p(β)
N∏
i=1

p(λi|α, β)
N∏
i=1

ni∏
j=1

p(xij|λi)

∝ e−
1
βb

βa+1 ·
N∏
i=1

[
1

βαΓ(α)λ
α−1
i e−

λi
β

]
·
N∏
i=1

ni∏
j=1

[
λie
−λixij

]

The full conditional for λi thereby becomes

p(λi|λj, j 6= i, α, β, x) ∝ p(λ1, . . . , λN , α, β|x)

∝
[
λα−1
i e−

λi
β

]
·
ni∏
j=1

[
λie
−λixij

]

∝ λα+ni−1
i e

−λi
(

1/β+
∑ni

j=1 xij

)
∝ λα+ni−1

i e
−λi/

(
1/
(

1/β+
∑ni

j=1 xij

))
.

We can recognise this as a Gamma
(
α + ni, 1/

(
1/β +∑ni

j=1 xij
))

distribu-
tion.
The full conditional for β becomes

p(β|λ1, . . . , λn, α, x) ∝ p(λ1, . . . , λN , α, β|x)

∝ e−
1
βb

βa+1 ·
N∏
i=1

[
1
βα
e−

λi
β

]

= e−
1
β ( 1

b
+
∑n

i=1 λi)
βa+Nα+1

= e
− 1
β(1/( 1

b
+
∑n

i=1 λi))
βa+Nα+1

and we recognise this as an InvGamma
(
a+Nα, 1/

(
1
b

+∑n
i=1 λi

))
distribu-

tion.
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Finally, the full conditional for α becomes

p(α|λ1, . . . , λN , β, x) ∝ p(λ1, . . . , λN , α, β|x)

∝
N∏
i=1

[
1

βαΓ(α)λ
α
i

]

= 1
βNα (Γ(α))N

(
N∏
i=1

λi

)α
.

This distribution does not belong to a known class.

b) We can use Gibbs updates for λ1, . . . , λN and β. For α we need to do
a Metropolis–Hastings update. We can for example use a normal random
walk proposal for α. It is then important to remember that the full con-
ditional found above are valid only for α ≥ 0, the density of full condi-
tional is zero when α < 0. Letting α̃ denote the potential new value and
Acc(α̃|α, λ1, . . . , λN , β) the corresponding acceptance probability, we get

Acc(α̃|α, λ1, . . . , λN , β) = 0 if α̃ < 0

and otherwise

Acc(α̃|α, λ1, . . . , λN , β) = min
{

1, p(α̃|λ1, . . . , λN , β, x)
p(α|λ1, . . . , λN , β, x)

}

= min

1, βN(α−α̃)
(

Γ(α)
Γ(α̃)

)N ( N∏
i=1

λi

)α̃−α .
Pseudo code for simulating from the posterior is (containing a tuning pa-
rameter σ2)

• Define initial values λ0
1, . . . , λ

0
N , α

0, β0.
• For k = 1, . . . , K

1. For i = 1, . . . , N sample λki ∼ Gamma
(
αk−1 + ni, 1/

(
1/βk−1 +∑ni

j=1 xij
))

.

2. Sample βk ∼ InvGamma
(
a+Nαk−1, 1/

(
1
b

+∑n
i=1 λ

k
i

))
3. Propose α̃k ∼ N

(
αk−1, σ2

)
4. Compute Acc(α̃k|αk−1, λk1, . . . , λ

k
N , β

k).
5. Sample uk ∼ Unif(0, 1).
6. If uk ≤ Acc(α̃k|αk−1, λk1, . . . , λ

k
N , β

k) set αk = α̃k, otherwise set
αk = αk−1.
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c) First one needs to find the length of the burn-in phase of the simulated chain.
This is typically done by output analysis. Assume the chain has (essentially)
converged after T < M iterations. One can then estimate E[λi|x] by

Ê[λi|x] = 1
M − T + 1

M∑
k=T

λki .

The probability P (λi < λj|x) can be estimated by

P̂ (λi < λj|x) = 1
M − T + 1

M∑
k=T

I(λki < λkj ),

where I(·) is the indicator function which equals one if the argument is true
and zero otherwise. To estimate P (xi,new > t|x) one can first use the law of
total probability to observe that

P (xinew > t|x) =
∫ ∞

0
P (xi,new > t|λi, x)p(λi|x)dλi.

When λi is given, the new xi,new is independent of the observations x, so

P (xi,new > t|λi, x) = P (xi,new > t|λi) = 1−Fxi,new|λi
(t) = 1−(1−e−λit) = e−λit.

Thereby

P (xinew > t|x) =
∫ ∞

0
e−λitp(λi|x)dλi = Eλi|x

[
e−λit

]
A natural estimator for the probability P (xi,new > t|x) is thereby

P̂ (xi,new > t|x) = 1
M − T + 1

M∑
k=T

e−λ
k
i t.

Problem 4

a) The plug-in principle is to estimate a parameter θ = t(F ) by the correspond-
ing parameter in the empirical distribution F̂ which puts a probability 1

n
to

each of the n observed values. Thus, according to the plug-in principle the
estimator for θ = t(F ) is

θ̂ = t(F̂ ).

Using the plug-in principle for estimating σ2 we get

σ̂2 = E
F̂

[(
X − µ

F̂

)2
]
.
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Since F̂ is a discrete distribution with probability 1
n
for each value x1, . . . , xn,

the expected value above is given by the sum

σ̂2 =
n∑
i=1

(
xi − µF̂

)2
· 1
n

= 1
n

n∑
i=1

(
xi − µF̂

)2
.

The mean value in the empirical distribution is

µ
F̂

= E
F̂

[X] =
n∑
i=1

xi ·
1
n

= 1
n

n∑
i=1

xi = x̄,

and thereby
σ̂2 = 1

n

n∑
i=1

(xi − x̄)2 .

b) The bias of ̂̂σ2 is

BiasF (̂̂σ2
, σ2) = EF

[̂̂σ2]− σ2

= EF
[

1
n− 1

n∑
i=1

(xi − x̄)2
]
− EF

[
(X − µF )2

]
.

The ideal bootstrap estimator for the bias of ̂̂σ2 thereby becomes

Bias
F̂

= E
F̂

[
1

n− 1

n∑
i=1

(x?i − x̄?)2
]
− E

F̂

[(
X − µ

F̂

)2
]

= E
F̂

[
1

n− 1

n∑
i=1

(x?i − x̄?)2
]
− σ̂2.

Pseudo code for how to estimate Bias
F̂
by stochastic simulation is

1. For b = 1, . . . , B
(a) Generate a bootstrap sample x?b1 , . . . , x

?b
n by sampling at random

from x1, . . . , xn with replacement.
(b) Compute ̂̂σ2?b = 1

n− 1

n∑
i=1

(
x?bi − x̄?b

)2
,

where x̄?b = 1
n

∑n
i=1 x

?b
i .

2. Estimate the ideal bootstrap estimator for the bias of ̂̂σ2 by

B̂iasB = 1
B

B∑
b=1

̂̂σ2?b − σ̂2.
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c) To find an easy to compute analytical formula for Bias
F̂
the difficult part is

to evaluate the mean

E
F̂

[
1

n− 1

n∑
i=1

(x?i − x̄?)
2
]
.

By putting the constant 1
n−1 and the sum outside the mean operator and

expanding the square we get

E
F̂

[
1

n− 1

n∑
i=1

(x?i − x̄?)
2
]

= 1
n− 1

n∑
i=1

E
F̂

[
(x?i )

2 − 2x?i x̄? + (x̄?)2)
]

= 1
n− 1

[
n∑
i=1

E
F̂

[
(x?i )

2
]
− 2

n∑
i=1

E
F̂

[x?i x̄?] + nE
F̂

[
(x̄?)2

]]

In the following we evaluate each of the three mean values in this expression
in turn. For the first mean value we get

E
F̂

[
(x?i )

2
]

=
n∑
i=1

x2
i ·

1
n

= 1
n

n∑
i=1

x2
i .

To evaluate the second mean value we can use that x̄? = 1
n

∑n
j=1 x

?
j ,

E
F̂

[x?i x̄?] = E
F̂

x?i 1
n

n∑
j=1

x?j


= 1

n

n∑
j=1

E
F̂

[
x?ix

?
j

]

= 1
n

∑
j 6=i

E
F̂

[
x?ix

?
j

]
+ E

F̂

[
(x?i )

2
]

= 1
n

∑
j 6=i

E
F̂

[x?i ] · EF̂
[
x?j
]

+ E
F̂

[
(x?i )

2
]

= 1
n

[
(n− 1)x̄2 + 1

n

n∑
i=1

x2
i

]
,

where we have used that x?i and x?j are independent when i 6= j, that

E
F̂

[x?i ] =
n∑
i=1

xi ·
1
n

= 1
n

n∑
i=1

xi = x̄
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and the expression for E
F̂

[
(x?i )

2
]
found above. To evaluate the last mean

value we can again use that x̄? = 1
n

∑n
j=1 x

?
j ,

E
F̂

[
(x̄?)2

]
= E

F̂

 1
n

n∑
j=1

x?j

 · ( 1
n

n∑
k=1

x?k

)
= 1

n2

n∑
j=1

n∑
k=1

E
F̂

[
x?jx

?
k

]

= 1
n2

 n∑
j=1

∑
k 6=j

E
F̂

[
x?jx

?
k

]
+

n∑
j=1

E
F̂

[(
x?j
)2
]

= 1
n2

 n∑
j=1

∑
k 6=j

E
F̂

[
x?j
]
E
F̂

[x?k] +
n∑
j=1

E
F̂

[(
x?j
)2
]

= 1
n2

[
n(n− 1)x̄2 + n · 1

n

n∑
i=1

x2
i

]

= n− 1
n

x̄2 + 1
n2

n∑
i=1

x2
i .

Thereby we have

E
F̂

[
1

n− 1

n∑
i=1

(x?i − x̄?)
2
]

= 1
n− 1

[
n · 1

n

n∑
i=1

x2
i − n ·

2
n

(
(n− 1)x̄2 + 1

n

n∑
i=1

x2
i

)
+ n ·

(
n− 1
n

x̄2 + 1
n2

n∑
i=1

x2
i

)]

= 1
n− 1

n∑
i=1

x2
i − 2x̄2 − 2

n(n− 1)

n∑
i=1

x2
i + x̄2 + 1

n(n− 1)

n∑
i=1

x2
i

= n− 2 + 1
n(n− 1)

n∑
i=1

x2
i − x̄2

= 1
n

n∑
i=1

x2
i − x̄2.

Since it is well known that (alternatively it can easily be shown by expanding
the square),

σ̂2 = 1
n

n∑
i=1

(xi − x̄)2 = 1
n

n∑
i=1

x2
i − x̄2,

we get

Bias
F̂

=
(

1
n

n∑
i=1

x2
i − x̄2

)
−
(

1
n

n∑
i=1

x2
i − x̄2

)
= 0.
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Comment: As we know ̂̂σ is unbiased it is of course reassuring that the
ideal bootstrap estimator for the bias is zero. However, there is no general
result saying that the ideal bootstrap estimator for the bias of an unbiased
estimator is zero, so what we found above is not obvious.


