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Problem 1

1. One possibility could be to use an exponential with parameter 2 as proposal distribution g(x). One
would then have that

f(x)
g(x) = Ce−2x| sin(x)|

exp{−2x} = C| sin(x)| ≤ C

Since | sin(x)| take values in (0,1) for x ∈ R+. The rejection sampling algorithm is then:

1. Simulate x ∼ exp(1)
2. Simulate u ∼ Unif(0, 1)
3. Compute α = 1

CC exp(−x)| sin(x)| = exp(−x)| sin(x)|
4. If u < α accept the proposed value otherwise go to step 1.

Values from an exponential distribution can be simulated using the inversion method.

2. In the rejection sampling algorithm, the total acceptance rate is 1/C, one can therefore use the ratio
of accepted samples to provide an estimate for C.

Problem 2

Problem 2a)

The MCMC algorithm uses a random walk proposal. This can be recognised by the fact that the proposal
is symmetric with regard to the current and proposed value and therefore the ratio of proposals is always 1
(and the lo-ratio is 0)

Problem 3

The correct alternatives are 1 and 3. For the other two alternative the distribution of the linear predictor ηi
is not Gaussian.

Problem 4

The first statement is used in a frequentist setting. The interpretation is as follows: One defines two statistics
θ̂lower and θ̂upper as function of a sample x1, . . . , xn such that the stochastic interval [θ̂lower, θ̂upper] contains
the unknown paramter θ with 95% probability. The value of these statistics computed on the observed data
is θ̂lower = 2, θ̂upper = 2.5. The statemen “the probability that θ lies in the [2,2.5] interval is 95%” therefore,
does not make sense.

The second statement is used in Bayesian setting. Its interpretation is as follows: With some prior on θ,
π(θ) (not specified in the question), the posterior probability that θ is in the interval [2.3, 2.5] is 95%, i.e∫ 2.5

2 π(θ|x1, . . . , xn)dθ = 0.95
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Problem 5

Problem 5b)

The complete data likelihood is:

L(θ; y1, . . . , yn, x1, . . . , xn) =
∏
i:xi=0

1√
2π

exp{−1
2y

2
i }

∏
i : xi = 1 exp{−yi}

n∏
i=1

θxi(1− θ)1−xi

and the log-likelihood

l(θ; y1, . . . , yn, x1, . . . , xn) = −
∑
i:xi=0

1
2y

2
i −

∑
i:xi=1

yi +
n∑
i=1

I(xi = 1) log(θ) +
∑

I(xi = 0) log(1− θ)

=
n∑
i=1

I(xi = 0){−1
2y

2
i + log(1− θ)}+

n∑
i=1

I(xi = 1){−yi + log θ}

The Q(θ|θ′) is defined as

Q(θ|θ′) = E(l(θ; y1, . . . , yn, x1, . . . , xn)|y1, . . . , yn, θ
′)

which in out case becomes:

Q(θ|θ′) =
n∑
i=1

E[I(xi = 0)|y1, . . . , yn, θ
′]{−1

2y
2
i + log θ}+

n∑
i=1

E[I(xi = 1)|y1, . . . , yn, θ
′]{−yi + log(1− θ)}

so we what we need is to compute E[I(xi = 1)|y1, . . . , yn, θ
′] and E[I(xi = 0)|y1, . . . , yn, θ

′].

We get:

E[I(xi = 1)|y1, . . . , yn, θ
′] = P (xi = 1|y1, . . . , yn, θ

′) = f(yi|xi = 1, θ′)P (xi = 1|θ′)
f(yi|xi = 1, θ′)P (xi = 1|θ′) + f(yi|xi = 0, θ′)P (xi = 0|θ′)

= exp(yi)θ′

exp(yi)θ′ + 1√
2π exp(−0.5y2

i )(1− θ′)
= wi

and

E[I(xi = 0)|y1, . . . , yn, θ
′] = P (xi = 0|y1, . . . , yn, θ

′) = f(yi|xi = 0, θ′)P (xi = 1|θ′)
f(yi|xi = 1, θ′)P (xi = 1|θ′) + f(yi|xi = 0, θ′)P (xi = 0|θ′)

=
1√
2π exp(−0.5y2

i )(1− θ′)
exp(yi)θ′ + 1√

2π exp(−0.5y2
i )(1− θ′)

= 1− wi

so that the Q(θ|θ′) becomes:

Q(θ|θ′) =
n∑
i=1

(1− wi)(−
1
2y

2
i + log(1− θ)) + wi(−yi + log θ)

= K + log(1− θ)
∑

(1− wi) + log θ
∑

wi

where K is a quantity independent of θ.

To maximize wrt θ we have to compute the first derivative and set it to 0:

dQ(θ|θ′)
dθ

= −1
1− θ

∑
(1− wi) + 1

θ

∑
wi = 0

which gives θ = 1
n

∑
wi.
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Problem 5c)

The standard deviation of the maximum likelihood estimator can be estimated by usinf the following algo-
rithm:

For b = 1, . . . , B do

1. Draw a boorstrap sample $y_1ˆ{b},. . . , y_nˆ{b} $ by resampling the oberved data $y_1,. . . , y_n $
2. Use the EM algorithm to compute the ML estimator based on the bootstrap sample. Indicate the ML

estimator as θ̂∗b

Estimate the SD of θ̂ as:

ŜD(θ̂) =

√√√√ 1
B − 1

B∑
b=1

(θ̂∗b −
¯̂
θ∗)

where

¯̂
θ∗) = 1

B − 1

B∑
b=1

θ̂∗b

Problem 6

The mode is found by setting the first derivative equal to 0

df(x)
dx

= C exp{k1x− k2e
x}(k1 − k2e

x) = 0

The solution is found at x = log k1 − log k2.

Using the Taylor expansion around x0 we get that

h(x) ≈ a+ bx− 1
2cx

2

where b = h′(x0) − x0f
′′(x0) and c = −f ′′(x0). We want to expand around the mode so in our case

x0 = log k1 − log k2.

After some algebra we get that:
b = k1 log k1

k2 and c = k1

Out Gaussian approximation built around the mode of f(x) is then

f̃(x) ∝ exp(−1
2k1x

2 + k1 log k1
k2x)

which is the canonical form of a Gaussian distribution with variance 1/k1 and mean log k1
k2
.

To find an approximation to the normalizing constant C one can notice that at the mode x0 we have that

f(x0) ≈ f̃(x0)

We have that
f(x0) = C exp{k1 log k1 + k1 log k2 − k1}
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and

f̃(x0) =
√
k1

2π

So our estimate of the constant becomes

Ĉ =
√
k1

2π exp{−k1(log k1 − log k2 − 1)} ≈ 0.003

Problem 7

To apply the Gibbs sampling algorithm we need to find the two full conditional distribution from the joint

g(x1, x2) = C exp(−x2
1x2 + x1 log x2)

We have that:
f(x1|x2) ∝ exp(−x2x

2
1 + logx2x1

Here we recognise the core of a Gaussian distribution with variance σ2(x2) = 1/(2x2) and mean µ(x2) =
log x2
2x2

. Moreover we have that

f(x2|x1) ∝ exp(−x2
1x2 + x1 log x2) = xx1

2 exp(−x2
1x2)

and this is the core of a Gamma distribution with parameters a(x1) = x1 + 1 and b(x1) = x2
1. The Gibbs

algorith is then:

Set a starting value x0
1 and x0

2

For i = 1, . . . , N repeat

1. Sample xi1 ∼ N (µ(xi−1
2 , sigma2(xi−1

2 )))
2. Sample xi2 ∼ Gamma(a(xi1), b(xi1))
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