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Solutions for exam questions

a) Letus write

b)

Ur=(a,b)x(0,1),
so the closure is

Ur =la,b] x [0, T]

Asusual, we denote by I' 7 the parabolic boundary, consisting of the bottom and vertical sides
of the boundary of [a, b] x [0, T]. Thus,

Ir={(x,)eUr:x=aorx=bort=0}
Now suppose u € Cf(UT) N C(U7) is a solution of the heat equation u; = Uy, in Ur. Define
M = maxu.
Ur

Then the weak maximum principle says that the maximum M is attained at some point on
the parabolic boundary T r. In symbols,

maxu =M.
I'r

It is trivial to verify that u = —2x¢— x? satisfies u; = xuyy. To check whether u violates the
weak maximum principle, we need to locate the maximum of « in the rectangle R = [-2,2] x
[0,1]. We first check interior points, so we solve

ut:ux:O;

which has only one solution, namely x = ¢ = 0, where u = 0. Now we check the boundary. For
t=0wehave u<0.Forx=-2and0<t<1,wehave u=4(tr—1)<0.Forx=2and0<t<1,
we have u = —4(¢+1) <0. Finally, for =1 we have u = -2x — x2, which has maximum u = 1
at x = —1. So clearly, the maximum of u over R is u = 1, and it occurs only at the top part of
the boundary, at the point (x, t) = (-1, 1), hence the weak maximum principle is violated.

We have two jumps in the initial data. The first jump (at x = 0) gives a rarefaction solution, the
other jump (at x = 1) gives a shock solution, which by Rankine-Hugoniot (with F(u) = u?/2) moves
with speed 1/2 to the right. Combining the rarefaction and shock solutions, we get

ey

0 forx <0,
X
p forO<x<t,
u(x,t) = t
(x,2) 1 fortsx<1+-,
t
0 forx=1+-—.
2

Note, however, that this is valid only until the time ¢ when the rarefaction and the shock meet:

t
t=1+- ie., r=2.
2
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At this time we have
for x <0,

0
X
u(x,2) = 3 for0<x<2,
0 for x = 2.
So now we solve the intial value problem starting from ¢ = 2 with these initial data. Then we get a

shock emanating from x = 2, moving to the right along a path

x=¢£(1),

and to the left of the shock we have the continuation of the rarefaction wave,

u:ul:?)

while u = u, = 0 to the right. Thus, by Rankine-Hugoniot,
dg

1 S
—_—=—Uur= -,
dr 2" 2t
which we separate and solve to get ¢ = v/2t, since the initial condition is ¢{(2) = 2. We conclude
that for £ = 2,

0 forx <0,
X

) u(x, t) = p for 0 < x < V21,
0 for x = V21,

which together with (1) for 0 < ¢ < 2 provides the complete solution.

Shecle
X=yd+
(+=22)
A A A A P
u=0
MAS—. A
l--
N
U=o
=]

Sheck X = H-E (ostg2)

Suppose u, v : U x [0, T] are two smooth solution of the initial/boundary value problem. Then
w = u— v is a solution of the same problem, but with f, g, h = 0. Now define

1
E(t):—f w? + |\Vwl? dx,
2Ju
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where the integrand is understood to be evaluated at (x, t). Then
E'(t) :f wwy +Vw-Vw, dx
U

0
:f wi (Wer — Aw) dx+f —wwtdx
U ou Ov
=0
where we used integration by parts and the fact that

ow
—=0 ondU x [0, T].
ov

Thus, 0< E(#) < E(0) for0< ¢t < T, but E(0) =0, since f = g=0. Thus Dw =01in U x [0, T], hence
w = const. in U x [0, T], but this constant must be zero, since we have zero initial data.

For simplicity let’s switch to (x1, x2, x3) instead of (x, y, z). By Kirchhoff’s formula,

t
u(x, 1) = D (— (x+ 1) dS)|,
b |y|:1f ydSly
where
f(x)=xf+x§.
Note that
foctty) = 22 + 22 + 20y + xay2) + 2 (72 + 12).

Now we use:

f yidS(y) =0,
ly|=1

fl | 1dS(y) =4n,
=1

1
as(y) = y3dS(y) =—f 1dS(y) = —
flyl |yl=1 ]Z ! 3 Jyl=1

It follows that

t s o 283

— fx+ty)dS(y) = t(x] +x5) + —,

7 Jlyl=1 3
hence

u=xf+x§+2t2.

a) A weak solution of the given Dirichlet problem is a function u € H& (U) such that

3) fUVu-Vudx:fovdx for all v e Hy (U).
W
By the Poincaré inequality, which reads (here C depends only on U)
lull 2y < CliDull 2y forall ue Hy(U),

we have that B[u,u] =0 = u =0, so B[u, v] is an inner product on Hé (U). Moreover, the
norm |ull = v'Blu, u] = | Dull;2(y, is equivalent to the standard norm on H&(U), again by
Poincaré’s inequality. Indeed,

lul < ”u”Hé(U) = lul 2@y + 1Dul 2y < Cllull.
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Finally, existence of a weak solution follows by the Riesz representation theorem applied to
the Hilbert space H(} (U), since v — [, fvdxis abounded linear functional on H(} (U):

Uvadx

Suppose u € H& (U) is a weak solution and suppu cc U. Let k€ {1,..., n}. We take

= ||f||L2(U) Il 2@y = C“f”LZ(U) lfaell,

forallve H&(U).

_n-hpnh
v—D,C Dku

in (3). Then
fUVu-VD,;hD,’judxzfoD;hDZudx.

=A =B

By "integration by parts" for difference quotients (valid by the support assumption on u),

h h no|? ny, ||?
A=~ vDpu-vDludx=-|vDlu| , == |Dvul, .
U L2(U) L2(U)
By Cauchy’s inequality with ¢, we have
Loep2 ~hpyh, |2 Losr2 n |12
IBl= -~ 1A 122wy +E“Dk [ 1A 122wy +5HVD1<” 2o’

where we used Theorem 3(i) in §5.8.2 of Evans (which holds with constant C = 1, actually) to
get the last inequality.

We conclude:
2

Hth ’
u y
k 2(U)

~ B 1 2 h
™ —A=-B< = ||f“L2(U) te ”DkVu

hence, choosing e =1/2,

2
|pival,, = 112w

Since this holds for all small enough £ # 0, it follows by Theorem 3(ii) in §5.8.2 that the sec-
ond order weak partial derivatives exist, and

” Uxjxy “iZ(U) = ”f”iZ(U) (Jik=1,...,n).

Therefore u € H2(U).
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