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The principal symbol is auyy + buyy + cuyy with a =1, b = -2sinx and ¢ = —cos? x. Since b? —
4ac = 4sin® x + 4cos? x = 4 > 0, the equation is hyperbolic. The characteristic curves are found by
integrating

dy bivDb*-4ac
dx 2a
s0 y=cosx+x+ Cand y = cosx — x+ C’ are the characteristic curves, for arbitrary C,C’.

=-—sinx+1,

The ODEs for the characteristics are:

@—xz x(0)=s
dt— » - 9
dy 2

5. = » 0:2)
dt y y(©) s
%—zz z(0)=1
dr 7’ o

We solve these by separation, obtaining

1 1 1
x= , V= , z .
1/s—t 1/2s—t¢ 1-¢

Next, we solve for ¢ in terms of x, y (we only need ¢, since s does not appear in the expression for
z). We have 1/s—t=1/x and 1/2s— t = 1/y. Multiplying the last equation by —2 and adding the
two equations, we get t = —2/y + 1/x, hence

1 _ Xy
1+2/y-1/x  xy+2x-y

ulx,y)=z=

Let us introduce the linear operator Lv = vyy + vy, + Xvx + y vy, to simplify the notation.

a) Assume v does have a local maximum at some point (xo, yo) € Q. Then necessarily, vy, = vy, =
0 and vyy, vy, < 0 at this point. But this implies Lv(xp, yo) <0, so we have a contradiction.

b) Following the hint, we set v, (x, y) = u(x,y) + ex?, where € > 0 is arbitrary. Then Lv, = Lu +
eL(x®)=0+€2(1+x%) >0, so by part (a) we know that v, has no local maximum in Q. On the
other hand, v, is by assumption a continuous function on the compact set Q, hence it attains
its maximum at some point in Q, and we conclude that this point must be on the boundary
0Q. Thus,

max Vg = max Ug.
Q 00

Using this and the fact that u < v, < u+en? in Q, we get

maxu =maxve =mMaxve < (maxu +87'[2.
) ) 00 00

Since this holds for all £ > 0, we conclude that maxg u < maxsq u. Since the converse in-
equality holds trivially, we have proved maxg u = maxaq u, as desired.
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Solutions for exam questions

Let y(-1,1)(x) denote the function which equals 1 when |x| < 1, and 0 otherwise. Thus, the initial
condition can be stated as P(x,0) = 10y[-1,1) and P;(x,0) = y-1,1. From d’Alembert’s formula
(with ¢ = 4) we have

x+4t

10
Plx,t)= — [x[_l,l](x—4t) + X1-1,1] (x+4t)] + —f )([_1,1](8) ds.
2 8 Jx-ar
We are asked to find the maximum of P(10, #) for ¢ > 0. Setting x = 10 we get
1 rlo+ar
P10,t)=5 [X[*l,l] (10—41) + Xi-1,1] (10 +4t)] + g[ Xi-1,1] (s)ds.
10-4¢
Since t > 0, we have 10+ 4t > 1, so the expression simplifies to
1 1
P(10,1) =5X[_1'1](10—4t)+—f Xi-1,11(8) ds.
8 J10-4r
If10-4¢>1,i.e., t <9/4, then clearly P(10,1) = 0. Next,if -1 <10-4t<1,i.e,9/4 < t <11/4, then
! 4r-9

1
P(lO,t):5+—f lds=5+
8 J10-4t

Finally, if 10-4t < -1, i.e., t > 11/4, then

1! 1
P(lO,t)=0+—f lds=-.
8J-1 4

We conclude that

0 if0<t<9/4,
P(10,1))=<5+14t-9)/8 if9/4<t<11/4,
1/4 if t>11/4.

Thus, the maximum is 5+ 1/4, attained at ¢ = 11/4. Since 5+ 1/4 < 6, the building survives.

Differentiate under the integral sign and use integration by parts to get, for ¢ > 0,
E'(t) = f Ut + AVu-Vu,dx
Q

:f ut(un—czAu) dx+f us(Vu-v)dS
Q ————— le)

=0, by the equation

ou
= —dsS.
faQ “ov

Since u(x, t) = 0 for all x € 6Q and all ¢ > 0, it follows that u;(x, t) = 0 for x € 9Q and ¢ > 0. Thus, the
last integral above vanishes, and we conclude that &' () = 0 for ¢ > 0, proving that &(¢) is constant
for ¢t > 0. Since &(t) is continuous for all ¢ = 0, it follows that &(¢) = &(0) for all ¢ > 0.

Fix x € Q. Recall that
Gx,y) = K(x—y)+wx(y),

where w,(y) satisfies
Aywyx =0 in Q,
wx(y)=-K(x-y) foryeoQ.

Thus, y — G(x, y) is harmonic for y € Q, y # x, and

ey G(x,y)=0  for y€0Q.
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Solutions for exam questions

Since wy is a bounded function, and since K(x — y) — —oo as y — x, we conclude that there exists
€ > 0 such that B.(x) c Q and

2) G(x,y)<0 for ye B.(x), y # x.

Define Q' = Q\ B.(x). The boundary of Q' is the union of Q and 0B, (x). So the function y —
G(x, y) is harmonic in Q', with boundary values < 0; to be precise, the boundary value is = 0 on
0Q and < 0 on 0B (x), by (1) and (2), respectively. So by the weak maximum principle, G(x,y) <0
for all y € /. But y — G(x, y) is not constant in Q' (again by (1) and (2)), so the strong maximum
principle guarantees that there is no interior maximum point. Therefore, G(x, y) <0 forall y € &/,
and hence (using again (2)) forall ye Q, y # x.

a) We calculate
n n

1 1
F(u+v)—F(u) = ZE(xiuxl.+x,-vxi,x,-uxi+xivxi>+(f,u+ v>—ZE<xiuxi,xiuxi)—<f,u>
i=1 i=1

n n 1
= 2 (it xivyg ) + ) 5 (Xivg Xivy ) +(fov)-
i=1 i=1

Therefore,

Fu+ev)—F(u)
€
:limEZ?ﬂ(xiuxpxiVx,—>+522?:1%<xivxirxi'/xi>+5<f’v>

e—0 &€

= i(x,-uxi,xivxi>+<f)’/>'
i=1

D,F(u) =lim
e—0

The Euler-Lagrange equation for F is therefore

n
Y (xit, xivy, Y+ {f,v)=0  forallve H)(Q).
i=1

b) By the Cauchy-Schwarz inequality,
L2(Q). Hence,

(frw)] = (17l ] ul

,» where |||, denotes the norm on

® Pz 35 ot e )= [l
Using Young's inequality and then the Poincaré inequality, we estimate
bl = o 71+ e ul
a < |l +eclvul?
= 71 ”Cfﬂ ; W2, dx,

where C > 0 only depends on Q. But using the assumption that x1,...,x, =1 for all x € Q, we

2 2.2 PP
see that uy, < x7us,, so (4) implies

1 " 1 n
110l = ;Ilflliﬂcfm;x?ui dx = ;||f||§+fCiZZI<Xiuxi,xiuxi )

Plugging this estimate into (3) and choosing € = 1/4C, we obtain

1
F= 3 2 (g, ) -] I = -l 72
i=1
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Solutions for exam questions

¢) The Euler-Lagrange equation from part (c) can be written

n
fQ(Z x?uxi Uy, +fv) dx=0.
i=1

We need to identify this as the weak formulation of some PDE. So assume u is smooth and
v € C3°(Q). Then integrating by parts, we transform the above equation to (get the derivatives
off v)
n
f (Z (—2x1y; — XF Uy, x,) + f) vdx=0.
Q=1

This holds for all test functions v if and only if the following (elliptic) PDE is satisfied:
=2

(xi Us;x; +2X; uxi) =f.
=1

1

The boundary condition is u = 0, since we restrict to u € H& Q).
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