EXAM IN TMA4305 Partial Differential Equations
 English
 Tuesday, May 27, 2008
 15:00-19:00

Aids (code C): Approved calculator (HP30S)
Rottman: Matematisk formelsamling
One sheet of A4 paper stamped by the IMF, on which you can write what you want.

Results: June 17, 2008
Give arguments for all answers, and include enough computations to show the methods used.

Problem 1 Consider the initial value problem

$$
\begin{cases}u_{t}+3 u u_{x}=0 & \text { in } \quad \mathbb{R} \times(0, \infty) \tag{1}\\ u(x, 0)=h(x) & \text { in } \\ \mathbb{R}\end{cases}
$$

a) Solve (1) when $h(x)=\frac{5}{3} x-1$. Sketch the projected characteristics in $x t$-plane.
b) Find a weak shock solution of (1) when

$$
h(x)= \begin{cases}0, & x<0 \\ 1, & x>0\end{cases}
$$

Problem 2 Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain and consider the boundary value problem

$$
\begin{cases}u_{x x}+5 u_{y y}+b(x, y) u_{x}=f(x, y) & \text { in } \Omega, \tag{2}\\ u(x, y)=0 & \text { on } \partial \Omega\end{cases}
$$

where $f \in L^{2}(\Omega)$ and $b \in C(\bar{\Omega})$.
a) Write down the bilinear form $B(u, v)$ associated to (2).

Use $B(u, v)$ to give a definition of a weak solution of (2).
b) Prove that there exists a unique weak solution to (2) provided

$$
\epsilon:=1-C_{\Omega}^{1 / 2}\|b\|_{\infty}>0,
$$

where C_{Ω} is the constant in the Poincare inequality.
Hint: Lax-Milgram theorem.

Problem 3 Let $c>0$ be a constant and $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary and outward unit normal vector field $\nu=\nu(x, y)$.
a) Let $u \in C^{2}(\bar{\Omega} \times(0, \infty))$ be a solution of the Neumann problem

$$
\begin{cases}u_{t t}+u_{t}-c^{2}\left(u_{x x}+u_{y y}\right)=0 & \text { in } \Omega \times(0, \infty), \\ \frac{u u}{\partial \nu}=0 & \text { on } \partial \Omega \times(0, \infty),\end{cases}
$$

and associate to u the energy function

$$
E_{u}(t)=\frac{1}{2} \iint_{\Omega}\left(u_{t}^{2}+c^{2}\left(u_{x}^{2}+u_{y}^{2}\right)\right) d x d y \quad \text { for } \quad t \geq 0
$$

Prove that $\frac{d}{d t} E_{u}(t) \leq 0$.
b) Let $g, h \in C^{2}(\bar{\Omega})$ and $f, q \in C^{2}(\bar{\Omega} \times(0, \infty))$ and consider the following initial boundary value problem

$$
\begin{cases}u_{t t}+u_{t}-c^{2}\left(u_{x x}+u_{y y}\right)=f(x, y, t) & \text { in } \Omega \times(0, \infty), \tag{3}\\ \frac{\partial u}{\partial \nu}=q(x, y, t) & \text { on } \partial \Omega \times(0, \infty), \\ u=g(x, y) \quad \text { and } \quad u_{t}=h(x, y) & \text { on } \bar{\Omega} \times\{0\} .\end{cases}
$$

Prove that solutions of (3) belonging to $C^{2}(\bar{\Omega} \times[0, \infty))$ are unique.

Problem 4 Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain, $f(x, y) \in L^{2}(\Omega)$, and define the map $F: W^{1,3}(\Omega) \rightarrow \mathbb{R}$ by

$$
F(u)=\iint_{\Omega}\left(\frac{1}{2} u\left(u_{x}^{2}+u_{y}^{2}\right)+f u\right) d x d y
$$

a) Find the Euler-Lagrange or critical point equation of F in $W_{0}^{1,3}(\Omega)$.
b) Let $u(x, y) \in C^{2}(\Omega)$ be a solution of the Euler-Lagrange equation in (a). Show that $u(x, y)$ is a classical solution of

$$
u \Delta u+\frac{1}{2}|\nabla u|^{2}=f(x, y) \quad \text { in } \quad \Omega .
$$

Hint: $C_{0}^{\infty}(\Omega) \subset W_{0}^{1,3}(\Omega)$.

Problem 5 Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain, and let $u(x, y) \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfy

$$
\Delta u+|\nabla u| \geq 0 \quad \text { in } \quad \Omega .
$$

Set $w(x, y):=u(x, y)+\epsilon e^{r x}$. Find an $r>0$ such that

$$
\Delta w+|\nabla w|>0 \quad \text { in } \quad \Omega \quad \text { for all } \quad \epsilon>0
$$

Prove that u satisfies the weak maximum principle, that is prove that

$$
\max _{x \in \bar{\Omega}} u(x)=\max _{x \in \partial \Omega} u(x) .
$$

