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SOLUTIONS to Exam in TMA4305 Partial Differential Equations, 27.05.2008

Problem 1

a) By the method of characteristics,

. __ x+3t
(1.; = 3z, g;(O) = X N T = 3zt + xg — To _§2t_+11
=0, Z(O) = h(q;o) integrate 2 = h(;po) h(zo)=2a0—1 5 — 3

and the solution is

5
le

i+l

2z =u(x,t) =

b) By the computations in a) we have the following characteristics,

p
X, To <0

r=3zt+xy =
3t +x9, a9 >0,

0 0
z = h(xo) :{’ o=

L 1, x>0,

and the solution is not defined in the wedge 0 < x < 3t. In this case a weak shock
solution will be a solution of the form

)0, < ()
u(x’t)_{l, x> (1),

where the shock curve ¢ satisfy the Rankine-Hugoniot condition

G(Ur) — G(Ul) for G(T) — §T2, u, =1, u; = 0.

Up — U 2
T l

Note that 0,G(u) = G'(u)u, = 3uu,. Initially the shock is at (0,0) so

£ =
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Problem 2
a) Bilinear form B(u,v) = [[;[uzvs + Suyv, — buyv].

A weak solution of (2) is a function u € H}(f2) satisfying

B(u,v) = F(v) :== // fv  forall  wve Hy(Q).
Q
Note: Boundary conditions are incorporated in the space Hg(€2).

b) We show existence and uniqueness using the Lax Milgram theorem. We must check that
the assumptions are satisfied:

1. X = H}(Q) is a Hilbert space (ok).
2. B: X x X — R is well-defined, bounded, and coercive bilinear form.

Well-defined and bilinear is obvious, and B is bounded since by Cauchy-Schwarz
| B(u, v)| < |luall2l[vallz + 5lluyll2llvyll2 + [1blloc luall2llvll2 < (5 + [bllco) lull1.2[0]l1.2-
Since
B = sl + 5l 13 + [ [ b
Q

> [Vull = [bllclusll2llulla - (Cauchy-Schwarz)
> (1= [bllocC) I Vull3 = el Vull;  (Poincare: [[ull3 < Cal| Vul3),

it follows that B is coercive when € > 0.
3. I': X — R is well-defined, linear, and bounded.

Well-defined and linear is obvious, and F' is bounded since by Cauchy-Schwarz,
[E)] < [[fll2llvlla < [ fll2l[o]l1.2-
Hence we conclude by Lax Milgram that there is a unique v € Hg () such that
B(u,v) = F(v) for all v e Hy(Q),

and by a) this is the unique weak solution of (2).
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Problem 3

a) Since the integrand is C*(Qx (0, 00)), we may interchange differentiation and integration.
We then get:

d
%Eu(t) = // (wpttyy + 2 (Uptigr + Uy Uyt ))
Q
= // (w4 ¢ (O (uptiy) — Uggtiy) + (0, (uyty) — Uyyug)] (product rule)
Q
= // Uty — (g + Uyy)] + // div (Vuuy)
Q Q
= / / Uy — (e + Uyy)] + € / (Vuuy) v (divergence theorem)
0 o9
=— / / u? + / uta—u <0. (equation+boundary condition)
Q on OV

b) Assume there are two solutions u,v. Then w = u — v solve

Wy + wy — AWy +wyy) =0 in Q x (0,00),

(*) du — on ?Qx(o,oo),
w=0 and w, =0 on € x {0}.

By a), £E,(t) <0, and by the initial conditions in (*),
w=0,w, =0,w, =0 att=0 = E,0)=0.
Hence (0 <)E,(t) <0, and since w is C?,
E,(t)=0 = w=0,w,=0,w,=0 = w = constant.

Since w(z,0) = 0, w = 0 and u = v. Solutions are unique.

Problem 4
a) The Euler-Lagrange equation is given by

O:DUF(u):limFm—i_tU)_F(u)

t—0

for all v € Wy*(Q).

Note that u, u +tv € W, *(Q) for |¢t| small implies that v € W,*(Q). A small calculation
shows that

(u + t0)[(ug + tv.)* + (u, + tv,)?] =
u(u? + uz) + t[o(ul + uz) + 2u(ugvy + uyvy)| + Pu(v + Uf,) + tPu(v2 + U;%
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and hence
F(u + tv) )+t // (uZ + u ) + 2u(uzv, + uyvy)] + fv} + O(#?).
The Euler-Lagrange equation is therefore

(EL) 0= D,F(u // (u? + u ) + u(ugvy + uyvy) + fv] for all v e W, (Q).

b) Note that for any u € C*(Q) and v € C5°(Q),

/ /Q [wtgv; + uuyv,] = / / L (111g0) = D (v + 0 (wieyo) — 0, (e, )|

_ —//Q[&C(uum)+8y(uuy)]vdm+/aﬂ [ . } vdS,
:_//Q [u(um+uyy)+(ui+u§)}v+0.

Here we used the divergence theorem and the fact that vu,v, uu,v € CZ().
By this identity, (EL), and the fact that C{°(Q) € Wy*(Q), we get

1
Since the integrand is continuous, the variational lemma then implies that

—U(Ugy + Uyy) — +u)—|—f—0 in €.

5

Problem 5
E.g. r =2 will do since:
Aw + |Vw| = A(u+ €e™) + |V (u + ee™)|
> A(u+ ee™) + |Vu| — |V(ee™)| = Au + |Vu| + ee™(r* — 1)
(**) >0+e™(r*—r)>0 if r>1
Let € > 0, r = 2, and z be a maximum point of w in Q:
w(zg) > w(x) forall — x¢€Q.

Such a point z( exists because w is continuous and €2 is compact.
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If zy € Q (interior maximum), then it follows that

Vw(zg) =0 and Zfiuxizjgj <0 forall ¢eR2
]
U
Vw(zg) =0 and wg,(z9) <0, wyy(zo) <0 (take & = (1,0) and then £ = (0,1))

4
Aw(zg) + |[Vw(zo)| < 0+0.

This contradicts (**) and therefore implies that zy € 92 and

max w = max w for all e > 0.
Q 0

Using this identity and the definition of w leads to

maxu < maxw = maxw < maxu + emaxe’”.
Q Q Q a0 a0

Since () is bounded, the last term tend to 0 as € — 0, and therefore

max u < max .
Q oN

Since maxg u > maxgg u, the weak maximum principle follows.



