
Lecture notes in Generalized Linear Models
∗

Germán Rodŕıguez
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Chapter 2

Linear Models for

Continuous Data

The starting point in our exploration of statistical models in social research
will be the classical linear model. Stops along the way include multiple
linear regression, analysis of variance, and analysis of covariance. We will
also discuss regression diagnostics and remedies.

2.1 Introduction to Linear Models

Linear models are used to study how a quantitative variable depends on one
or more predictors or explanatory variables. The predictors themselves may
be quantitative or qualitative.

2.1.1 The Program Effort Data

We will illustrate the use of linear models for continuous data using a small
dataset extracted fromMauldin and Berelson (1978) and reproduced in Table
2.1. The data include an index of social setting, an index of family planning
effort, and the percent decline in the crude birth rate (CBR)—the number
of births per thousand population—between 1965 and 1975, for 20 countries
in Latin America and the Caribbean.

The index of social setting combines seven social indicators, namely lit-
eracy, school enrollment, life expectancy, infant mortality, percent of males
aged 15–64 in the non-agricultural labor force, gross national product per

capita and percent of population living in urban areas. Higher scores repre-
sent higher socio-economic levels.

G. Rodŕıguez. Revised September 2007
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Table 2.1: The Program Effort Data

Setting Effort CBR Decline

Bolivia 46 0 1
Brazil 74 0 10
Chile 89 16 29
Colombia 77 16 25
CostaRica 84 21 29
Cuba 89 15 40
Dominican Rep 68 14 21
Ecuador 70 6 0
El Salvador 60 13 13
Guatemala 55 9 4
Haiti 35 3 0
Honduras 51 7 7
Jamaica 87 23 21
Mexico 83 4 9
Nicaragua 68 0 7
Panama 84 19 22
Paraguay 74 3 6
Peru 73 0 2
Trinidad-Tobago 84 15 29
Venezuela 91 7 11

The index of family planning effort combines 15 different program indi-
cators, including such aspects as the existence of an official family planning
policy, the availability of contraceptive methods, and the structure of the
family planning program. An index of 0 denotes the absence of a program,
1–9 indicates weak programs, 10–19 represents moderate efforts and 20 or
more denotes fairly strong programs.

Figure 2.1 shows scatterplots for all pairs of variables. Note that CBR
decline is positively associated with both social setting and family planning
effort. Note also that countries with higher socio-economic levels tend to
have stronger family planning programs.

In our analysis of these data we will treat the percent decline in the
CBR as a continuous response and the indices of social setting and family
planning effort as predictors. In a first approach to the data we will treat the
predictors as continuous covariates with linear effects. Later we will group
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Figure 2.1: Scattergrams for the Program Effort Data

them into categories and treat them as discrete factors.

2.1.2 The Random Structure

The first issue we must deal with is that the response will vary even among
units with identical values of the covariates. To model this fact we will treat
each response yi as a realization of a random variable Yi. Conceptually, we
view the observed response as only one out of many possible outcomes that
we could have observed under identical circumstances, and we describe the
possible values in terms of a probability distribution.

For the models in this chapter we will assume that the random variable
Yi has a normal distribution with mean µi and variance σ2, in symbols:

Yi ∼ N(µi, σ
2).

The mean µi represents the expected outcome, and the variance σ2 measures
the extent to which an actual observation may deviate from expectation.

Note that the expected value may vary from unit to unit, but the variance
is the same for all. In terms of our example, we may expect a larger fertility
decline in Cuba than in Haiti, but we don’t anticipate that our expectation
will be closer to the truth for one country than for the other.

The normal orGaussian distribution (after the mathematician Karl Gauss)
has probability density function

f(yi) =
1√
2πσ2

exp{−1

2

(yi − µi)
2

σ2
}. (2.1)
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Figure 2.2: The Standard Normal Density

The standard density with mean zero and standard deviation one is shown
in Figure 2.2.

Most of the probability mass in the normal distribution (in fact, 99.7%)
lies within three standard deviations of the mean. In terms of our example,
we would be very surprised if fertility in a country declined 3σ more than
expected. Of course, we don’t know yet what to expect, nor what σ is.

So far we have considered the distribution of one observation. At this
point we add the important assumption that the observations are mutually
independent. This assumption allows us to obtain the joint distribution of
the data as a simple product of the individual probability distributions, and
underlies the construction of the likelihood function that will be used for
estimation and testing. When the observations are independent they are
also uncorrelated and their covariance is zero, so cov(Yi, Yj) = 0 for i 6= j.

It will be convenient to collect the n responses in a column vector y,
which we view as a realization of a random vector Y with mean E(Y) = µ

and variance-covariance matrix var(Y) = σ2I, where I is the identity matrix.
The diagonal elements of var(Y) are all σ2 and the off-diagonal elements are
all zero, so the n observations are uncorrelated and have the same variance.
Under the assumption of normality, Y has a multivariate normal distribution

Y ∼ Nn(µ, σ
2I) (2.2)

with the stated mean and variance.

2.1.3 The Systematic Structure

Let us now turn our attention to the systematic part of the model. Suppose
that we have data on p predictors x1, . . . , xp which take values xi1, . . . , xip
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for the i-th unit. We will assume that the expected response depends on
these predictors. Specifically, we will assume that µi is as linear function of
the predictors

µi = β1xi1 + β2xi2 + . . .+ βpxip

for some unknown coefficients β1, β2, . . . , βp. The coefficients βj are called
regression coefficients and we will devote considerable attention to their in-
terpretation.

This equation may be written more compactly using matrix notation as

µi = x′

iβ, (2.3)

where x′

i is a row vector with the values of the p predictors for the i-th unit
and β is a column vector containing the p regression coefficients. Even more
compactly, we may form a column vector µ with all the expected responses
and then write

µ = Xβ, (2.4)

where X is an n× p matrix containing the values of the p predictors for the
n units. The matrix X is usually called the model or design matrix. Matrix
notation is not only more compact but, once you get used to it, it is also
easier to read than formulas with lots of subscripts.

The expression Xβ is called the linear predictor, and includes many
special cases of interest. Later in this chapter we will show how it includes
simple and multiple linear regression models, analysis of variance models
and analysis of covariance models.

The simplest possible linear model assumes that every unit has the same
expected value, so that µi = µ for all i. This model is often called the null

model, because it postulates no systematic differences between the units.
The null model can be obtained as a special case of Equation 2.3 by setting
p = 1 and xi = 1 for all i. In terms of our example, this model would expect
fertility to decline by the same amount in all countries, and would attribute
all observed differences between countries to random variation.

At the other extreme we have a model where every unit has its own
expected value µi. This model is called the saturated model because it has
as many parameters in the linear predictor (or linear parameters, for short)
as it has observations. The saturated model can be obtained as a special
case of Equation 2.3 by setting p = n and letting xi take the value 1 for
unit i and 0 otherwise. In this model the x’s are indicator variables for the
different units, and there is no random variation left. All observed differences
between countries are attributed to their own idiosyncrasies.
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Obviously the null and saturated models are not very useful by them-
selves. Most statistical models of interest lie somewhere in between, and
most of this chapter will be devoted to an exploration of the middle ground.
Our aim is to capture systematic sources of variation in the linear predictor,
and let the error term account for unstructured or random variation.

2.2 Estimation of the Parameters

Consider for now a rather abstract model where µi = x′

iβ for some predictors
xi. How do we estimate the parameters β and σ2?

2.2.1 Estimation of β

The likelihood principle instructs us to pick the values of the parameters
that maximize the likelihood, or equivalently, the logarithm of the likelihood
function. If the observations are independent, then the likelihood function
is a product of normal densities of the form given in Equation 2.1. Taking
logarithms we obtain the normal log-likelihood

logL(β, σ2) = −n

2
log(2πσ2)− 1

2

∑

(yi − µi)
2/σ2, (2.5)

where µi = x′

iβ. The most important thing to notice about this expression
is that maximizing the log-likelihood with respect to the linear parameters β
for a fixed value of σ2 is exactly equivalent to minimizing the sum of squared
differences between observed and expected values, or residual sum of squares

RSS(β) =
∑

(yi − µi)
2 = (y−Xβ)′(y−Xβ). (2.6)

In other words, we need to pick values of β that make the fitted values
µi = x′

iβ as close as possible to the observed values yi.
Taking derivatives of the residual sum of squares with respect to β and

setting the derivative equal to zero leads to the so-called normal equations

for the maximum-likelihood estimator β̂

X′Xβ̂ = X′y.

If the model matrix X is of full column rank, so that no column is an exact
linear combination of the others, then the matrix of cross-products X′X is
of full rank and can be inverted to solve the normal equations. This gives an
explicit formula for the ordinary least squares (OLS) or maximum likelihood
estimator of the linear parameters:
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β̂ = (X′X)−1X′y. (2.7)

If X is not of full column rank one can use generalized inverses, but inter-
pretation of the results is much more straightforward if one simply eliminates
redundant columns. Most current statistical packages are smart enough to
detect and omit redundancies automatically.

There are several numerical methods for solving the normal equations,
including methods that operate on X′X, such as Gaussian elimination or the
Choleski decomposition, and methods that attempt to simplify the calcula-
tions by factoring the model matrix X, including Householder reflections,
Givens rotations and the Gram-Schmidt orthogonalization. We will not dis-
cuss these methods here, assuming that you will trust the calculations to a
reliable statistical package. For further details see McCullagh and Nelder
(1989, Section 3.8) and the references therein.

The foregoing results were obtained by maximizing the log-likelihood
with respect to β for a fixed value of σ2. The result obtained in Equation
2.7 does not depend on σ2, and is therefore a global maximum.

For the null model X is a vector of ones, X′X = n and X′y =
∑

yi

are scalars and β̂ = ȳ, the sample mean. For our sample data ȳ = 14.3.
Thus, the calculation of a sample mean can be viewed as the simplest case
of maximum likelihood estimation in a linear model.

2.2.2 Properties of the Estimator

The least squares estimator β̂ of Equation 2.7 has several interesting prop-
erties. If the model is correct, in the (weak) sense that the expected value of
the response Yi given the predictors xi is indeed x′

iβ, then the OLS estimator
is unbiased, its expected value equals the true parameter value:

E(β̂) = β. (2.8)

It can also be shown that if the observations are uncorrelated and have con-
stant variance σ2, then the variance-covariance matrix of the OLS estimator
is

var(β̂) = (X′X)−1σ2. (2.9)

This result follows immediately from the fact that β̂ is a linear function of the
data y (see Equation 2.7), and the assumption that the variance-covariance
matrix of the data is var(Y) = σ2I, where I is the identity matrix.

A further property of the estimator is that it has minimum variance
among all unbiased estimators that are linear functions of the data, i.e.
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it is the best linear unbiased estimator (BLUE). Since no other unbiased
estimator can have lower variance for a fixed sample size, we say that OLS
estimators are fully efficient.

Finally, it can be shown that the sampling distribution of the OLS es-
timator β̂ in large samples is approximately multivariate normal with the
mean and variance given above, i.e.

β̂ ∼ Np(β, (X
′X)−1σ2).

Applying these results to the null model we see that the sample mean
ȳ is an unbiased estimator of µ, has variance σ2/n, and is approximately
normally distributed in large samples.

All of these results depend only on second-order assumptions concerning
the mean, variance and covariance of the observations, namely the assump-
tion that E(Y) = Xβ and var(Y) = σ2I.

Of course, β̂ is also a maximum likelihood estimator under the assump-
tion of normality of the observations. If Y ∼ Nn(Xβ, σ2I) then the sampling
distribution of β̂ is exactly multivariate normal with the indicated mean and
variance.

The significance of these results cannot be overstated: the assumption of
normality of the observations is required only for inference in small samples.
The really important assumption is that the observations are uncorrelated
and have constant variance, and this is sufficient for inference in large sam-
ples.

2.2.3 Estimation of σ2

Substituting the OLS estimator of β into the log-likelihood in Equation 2.5
gives a profile likelihood for σ2

logL(σ2) = −n

2
log(2πσ2)− 1

2
RSS(β̂)/σ2.

Differentiating this expression with respect to σ2 (not σ) and setting the
derivative to zero leads to the maximum likelihood estimator

σ̂2 = RSS(β̂)/n.

This estimator happens to be biased, but the bias is easily corrected dividing
by n− p instead of n. The situation is exactly analogous to the use of n− 1
instead of n when estimating a variance. In fact, the estimator of σ2 for
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the null model is the sample variance, since β̂ = ȳ and the residual sum of
squares is RSS =

∑

(yi − ȳ)2.

Under the assumption of normality, the ratio RSS/σ2 of the residual sum
of squares to the true parameter value has a chi-squared distribution with
n − p degrees of freedom and is independent of the estimator of the linear
parameters. You might be interested to know that using the chi-squared
distribution as a likelihood to estimate σ2 (instead of the normal likelihood
to estimate both β and σ2) leads to the unbiased estimator.

For the sample data the RSS for the null model is 2650.2 on 19 d.f. and
therefore σ̂ = 11.81, the sample standard deviation.

2.3 Tests of Hypotheses

Consider testing hypotheses about the regression coefficients β. Sometimes
we will be interested in testing the significance of a single coefficient, say βj ,
but on other occasions we will want to test the joint significance of several
components of β. In the next few sections we consider tests based on the
sampling distribution of the maximum likelihood estimator and likelihood
ratio tests.

2.3.1 Wald Tests

Consider first testing the significance of one particular coefficient, say

H0 : βj = 0.

The m.l.e. β̂j has a distribution with mean 0 (under H0) and variance given
by the j-th diagonal element of the matrix in Equation 2.9. Thus, we can
base our test on the ratio

t =
β̂j

√

var(β̂j)
. (2.10)

Note from Equation 2.9 that var(β̂j) depends on σ2, which is usually un-
known. In practice we replace σ2 by the unbiased estimate based on the
residual sum of squares.

Under the assumption of normality of the data, the ratio of the coefficient
to its standard error has under H0 a Student’s t distribution with n − p
degrees of freedom when σ2 is estimated, and a standard normal distribution
if σ2 is known. This result provides a basis for exact inference in samples of
any size.
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Under the weaker second-order assumptions concerning the means, vari-
ances and covariances of the observations, the ratio has approximately in
large samples a standard normal distribution. This result provides a basis
for approximate inference in large samples.

Many analysts treat the ratio as a Student’s t statistic regardless of
the sample size. If normality is suspect one should not conduct the test
unless the sample is large, in which case it really makes no difference which
distribution is used. If the sample size is moderate, using the t test provides
a more conservative procedure. (The Student’s t distribution converges to
a standard normal as the degrees of freedom increases to ∞. For example
the 95% two-tailed critical value is 2.09 for 20 d.f., and 1.98 for 100 d.f.,
compared to the normal critical value of 1.96.)

The t test can also be used to construct a confidence interval for a co-
efficient. Specifically, we can state with 100(1 − α)% confidence that βj is
between the bounds

β̂j ± t1−α/2,n−p

√

var(β̂j), (2.11)

where t1−α/2,n−p is the two-sided critical value of Student’s t distribution
with n− p d.f. for a test of size α.

The Wald test can also be used to test the joint significance of several
coefficients. Let us partition the vector of coefficients into two components,
say β′ = (β′

1,β
′

2) with p1 and p2 elements, respectively, and consider the
hypothesis

H0 : β2 = 0.

In this case the Wald statistic is given by the quadratic form

W = β̂
′

2 var
−1(β̂2) β̂2,

where β̂2 is the m.l.e. of β2 and var(β̂2) is its variance-covariance matrix.
Note that the variance depends on σ2 which is usually unknown; in practice
we substitute the estimate based on the residual sum of squares.

In the case of a single coefficient p2 = 1 and this formula reduces to the
square of the t statistic in Equation 2.10.

Asymptotic theory tells us that underH0 the large-sample distribution of
the m.l.e. is multivariate normal with mean vector 0 and variance-covariance
matrix var(β2). Consequently, the large-sample distribution of the quadratic
form W is chi-squared with p2 degrees of freedom. This result holds whether
σ2 is known or estimated.

Under the assumption of normality we have a stronger result. The dis-
tribution of W is exactly chi-squared with p2 degrees of freedom if σ2 is
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known. In the more general case where σ2 is estimated using a residual sum
of squares based on n− p d.f., the distribution of W/p2 is an F with p2 and
n− p d.f.

Note that as n approaches infinity for fixed p (so n− p approaches infin-
ity), the F distribution approaches p2 times a chi-squared distribution with
p2 degrees of freedom. Thus, in large samples it makes no difference whether
one treats W as chi-squared or W/p2 as an F statistic. Many analysts treat
W/p2 as F for all sample sizes.

The situation is exactly analogous to the choice between the normal and
Student’s t distributions in the case of one variable. In fact, a chi-squared
with one degree of freedom is the square of a standard normal, and an F with
one and v degrees of freedom is the square of a Student’s t with v degrees of
freedom.

2.3.2 The Likelihood Ratio Test

Consider again testing the joint significance of several coefficients, say

H0 : β2 = 0

as in the previous subsection. Note that we can partition the model matrix
into two components X = (X1,X2) with p1 and p2 predictors, respectively.
The hypothesis of interest states that the response does not depend on the
last p2 predictors.

We now build a likelihood ratio test for this hypothesis. The general
theory directs us to (1) fit two nested models: a smaller model with the first
p1 predictors in X1, and a larger model with all p predictors in X; and (2)
compare their maximized likelihoods (or log-likelihoods).

Suppose then that we fit the smaller model with the predictors in X1

only. We proceed by maximizing the log-likelihood of Equation 2.5 for a
fixed value of σ2. The maximized log-likelihood is

max log L(β1) = c− 1

2
RSS(X1)/σ

2,

where c = −(n/2) log(2πσ2) is a constant depending on π and σ2 but not
on the parameters of interest. In a slight abuse of notation, we have written
RSS(X1) for the residual sum of squares after fitting X1, which is of course
a function of the estimate β̂1.

Consider now fitting the larger model X1 +X2 with all predictors. The
maximized log-likelihood for a fixed value of σ2 is

max log L(β1,β2) = c− 1

2
RSS(X1 +X2)/σ

2,
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where RSS(X1+X2) is the residual sum of squares after fitting X1 and X2,
itself a function of the estimate β̂.

To compare these log-likelihoods we calculate minus twice their differ-
ence. The constants cancel out and we obtain the likelihood ratio criterion

−2 log λ =
RSS(X1)− RSS(X1 +X2)

σ2
. (2.12)

There are two things to note about this criterion. First, we are directed
to look at the reduction in the residual sum of squares when we add the
predictors in X2. Basically, these variables are deemed to have a significant
effect on the response if including them in the model results in a reduction
in the residual sum of squares. Second, the reduction is compared to σ2, the
error variance, which provides a unit of comparison.

To determine if the reduction (in units of σ2) exceeds what could be
expected by chance alone, we compare the criterion to its sampling distri-
bution. Large sample theory tells us that the distribution of the criterion
converges to a chi-squared with p2 d.f. The expected value of a chi-squared
distribution with ν degrees of freedom is ν (and the variance is 2ν). Thus,
chance alone would lead us to expect a reduction in the RSS of about one σ2

for each variable added to the model. To conclude that the reduction exceeds
what would be expected by chance alone, we usually require an improvement
that exceeds the 95-th percentile of the reference distribution.

One slight difficulty with the development so far is that the criterion
depends on σ2, which is not known. In practice, we substitute an estimate
of σ2 based on the residual sum of squares of the larger model. Thus, we
calculate the criterion in Equation 2.12 using

σ̂2 = RSS(X1 +X2)/(n− p).

The large-sample distribution of the criterion continues to be chi-squared
with p2 degrees of freedom, even if σ2 has been estimated.

Under the assumption of normality, however, we have a stronger result.
The likelihood ratio criterion −2 log λ has an exact chi-squared distribution
with p2 d.f. if σ2 is know. In the usual case where σ2 is estimated, the
criterion divided by p2, namely

F =
(RSS(X1)− RSS(X1 +X2))/p2

RSS(X1 +X2)/(n− p)
, (2.13)

has an exact F distribution with p2 and n− p d.f.
The numerator of F is the reduction in the residual sum of squares per

degree of freedom spent. The denominator is the average residual sum of
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squares, a measure of noise in the model. Thus, an F -ratio of one would
indicate that the variables in X2 are just adding noise. A ratio in excess of
one would be indicative of signal. We usually reject H0, and conclude that
the variables in X2 have an effect on the response if the F criterion exceeds
the 95-th percentage point of the F distribution with p2 and n − p degrees
of freedom.

A Technical Note: In this section we have built the likelihood ratio test
for the linear parameters β by treating σ2 as a nuisance parameter. In other
words, we have maximized the log-likelihood with respect to β for fixed
values of σ2. You may feel reassured to know that if we had maximized the
log-likelihood with respect to both β and σ2 we would have ended up with an
equivalent criterion based on a comparison of the logarithms of the residual
sums of squares of the two models of interest. The approach adopted here
leads more directly to the distributional results of interest and is typical of
the treatment of scale parameters in generalized linear models.✷

2.3.3 Student’s t, F and the Anova Table

You may be wondering at this point whether you should use the Wald test,
based on the large-sample distribution of the m.l.e., or the likelihood ratio
test, based on a comparison of maximized likelihoods (or log-likelihoods).
The answer in general is that in large samples the choice does not matter
because the two types of tests are asymptotically equivalent.

In linear models, however, we have a much stronger result: the two tests
are identical. The proof is beyond the scope of these notes, but we will
verify it in the context of specific applications. The result is unique to linear
models. When we consider logistic or Poisson regression models later in the
sequel we will find that the Wald and likelihood ratio tests differ.

At least for linear models, however, we can offer some simple practical
advice:

• To test hypotheses about a single coefficient, use the t-test based on
the estimator and its standard error, as given in Equation 2.10.

• To test hypotheses about several coefficients, or more generally to com-
pare nested models, use the F -test based on a comparison of RSS’s, as
given in Equation 2.13.

The calculations leading to an F -test are often set out in an analysis of
variance (anova) table, showing how the total sum of squares (the RSS of
the null model) can be partitioned into a sum of squares associated with X1,
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a sum of squares added by X2, and a residual sum of squares. The table also
shows the degrees of freedom associated with each sum of squares, and the
mean square, or ratio of the sum of squares to its d.f.

Table 2.2 shows the usual format. We use φ to denote the null model.
We also assume that one of the columns of X1 was the constant, so this
block adds only p1 − 1 variables to the null model.

Table 2.2: The Hierarchical Anova Table

Source of Sum of Degrees of
variation squares freedom

X1 RSS(φ)− RSS(X1) p1 − 1
X2 given X1 RSS(X1)− RSS(X1 +X2) p2
Residual RSS(X1 +X2) n− p

Total RSS(φ) n− 1

Sometimes the component associated with the constant is shown explic-
itly and the bottom line becomes the total (also called ‘uncorrected’) sum of
squares:

∑

y2i . More detailed analysis of variance tables may be obtained by
introducing the predictors one at a time, while keeping track of the reduction
in residual sum of squares at each step.

Rather than give specific formulas for these cases, we stress here that all
anova tables can be obtained by calculating differences in RSS’s and differ-
ences in the number of parameters between nested models. Many examples
will be given in the applications that follow. A few descriptive measures of
interest, such as simple, partial and multiple correlation coefficients, turn
out to be simple functions of these sums of squares, and will be introduced
in the context of the applications.

An important point to note before we leave the subject is that the order
in which the variables are entered in the anova table (reflecting the order in
which they are added to the model) is extremely important. In Table 2.2, we
show the effect of adding the predictors in X2 to a model that already has
X1. This net effect of X2 after allowing for X1 can be quite different from
the gross effect of X2 when considered by itself. The distinction is important
and will be stressed in the context of the applications that follow.
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2.4 Simple Linear Regression

Let us now turn to applications, modelling the dependence of a continuous
response y on a single linear predictor x. In terms of our example, we will
study fertility decline as a function of social setting. One can often obtain
useful insight into the form of this dependence by plotting the data, as we
did in Figure 2.1.

2.4.1 The Regression Model

We start by recognizing that the response will vary even for constant values of
the predictor, and model this fact by treating the responses yi as realizations
of random variables

Yi ∼ N(µi, σ
2) (2.14)

with means µi depending on the values of the predictor xi and constant
variance σ2.

The simplest way to express the dependence of the expected response µi

on the predictor xi is to assume that it is a linear function, say

µi = α+ βxi. (2.15)

This equation defines a straight line. The parameter α is called the
constant or intercept, and represents the expected response when xi = 0.
(This quantity may not be of direct interest if zero is not in the range of
the data.) The parameter β is called the slope, and represents the expected
increment in the response per unit change in xi.

You probably have seen the simple linear regression model written with
an explicit error term as

Yi = α+ βxi + ǫi.

Did I forget the error term? Not really. Equation 2.14 defines the random
structure of the model, and is equivalent to saying that Yi = µi + ǫi where
ǫi ∼ N(0, σ2). Equation 2.15 defines the systematic structure of the model,
stipulating that µi = α + βxi. Combining these two statements yields the
traditional formulation of the model. Our approach separates more clearly
the systematic and random components, and extends more easily to gener-
alized linear models by focusing on the distribution of the response rather
than the distribution of the error term.
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2.4.2 Estimates and Standard Errors

The simple linear regression model can be obtained as a special case of the
general linear model of Section 2.1 by letting the model matrix X consist of
two columns: a column of ones representing the constant and a column with
the values of x representing the predictor. Estimates of the parameters,
standard errors, and tests of hypotheses can then be obtained from the
general results of Sections 2.2 and 2.3.

It may be of interest to note that in simple linear regression the estimates
of the constant and slope are given by

α̂ = ȳ − β̂x̄ and β̂ =

∑

(x− x̄)(y − ȳ)
∑

(x− x̄)2
.

The first equation shows that the fitted line goes through the means of the
predictor and the response, and the second shows that the estimated slope
is simply the ratio of the covariance of x and y to the variance of x.

Fitting this model to the family planning effort data with CBR decline
as the response and the index of social setting as a predictor gives a residual
sum of squares of 1449.1 on 18 d.f. (20 observations minus two parameters:
the constant and slope).

Table 2.3 shows the estimates of the parameters, their standard errors
and the corresponding t-ratios.

Table 2.3: Estimates for Simple Linear Regression
of CBR Decline on Social Setting Score

Parameter Symbol Estimate Std.Error t-ratio

Constant α -22.13 9.642 -2.29
Slope β 0.5052 0.1308 3.86

We find that, on the average, each additional point in the social setting
scale is associated with an additional half a percentage point of CBR decline,
measured from a baseline of an expected 22% increase in CBR when social
setting is zero. (Since the social setting scores range from 35 to 91, the
constant is not particularly meaningful in this example.)

The estimated standard error of the slope is 0.13, and the corresponding
t-test of 3.86 on 18 d.f. is highly significant. With 95% confidence we estimate
that the slope lies between 0.23 and 0.78.

Figure 2.3 shows the results in graphical form, plotting observed and
fitted values of CBR decline versus social setting. The fitted values are
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calculated for any values of the predictor x as ŷ = α̂+ β̂x and lie, of course,
in a straight line.
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Figure 2.3: Linear Regression of CBR Decline on Social Setting

You should verify that the analogous model with family planning effort
as a single predictor gives a residual sum of squares of 950.6 on 18 d.f., with
constant 2.336(±2.662) and slope 1.253(±0.2208). Make sure you know how
to interpret these estimates.

2.4.3 Anova for Simple Regression

Instead of using a test based on the distribution of the OLS estimator, we
could test the significance of the slope by comparing the simple linear regres-
sion model with the null model. Note that these models are nested, because
we can obtain the null model by setting β = 0 in the simple linear regression
model.

Fitting the null model to the family planning data gives a residual sum
of squares of 2650.2 on 19 d.f. Adding a linear effect of social setting reduces
the RSS by 1201.1 at the expense of one d.f. This gain can be contrasted
with the remaining RSS of 1449.1 on 18 d.f. by constructing an F -test. The
calculations are set out in Table 2.4, and lead to an F -statistic of 14.9 on
one and 18 d.f.

These results can be used to verify the equivalence of t and F test statis-
tics and critical values. Squaring the observed t-statistic of 3.86 gives the
observed F -ratio of 14.9. Squaring the 95% two-sided critical value of the
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Table 2.4: Analysis of Variance for Simple Regression
of CBR Decline on Social Setting Score

Source of Degrees of Sum of Mean F -
variation freedom squares squared ratio

Setting 1 1201.1 1201.1 14.9
Residual 18 1449.1 80.5

Total 19 2650.2

Student’s t distribution with 18 d.f., which is 2.1, gives the 95% critical value
of the F distribution with one and 18 d.f., which is 4.4.

You should verify that the t and F tests for the model with a linear effect
of family planning effort are t = 5.67 and F = 32.2.

2.4.4 Pearson’s Correlation Coefficient

A simple summary of the strength of the relationship between the predictor
and the response can be obtained by calculating a proportionate reduction
in the residual sum of squares as we move from the null model to the model
with x. The quantity

R2 = 1− RSS(x)

RSS(φ)

is know as the coefficient of determination, and is often described as the
proportion of ‘variance’ explained by the model. (The description is not
very accurate because the calculation is based on the RSS not the variance,
but it is too well entrenched to attempt to change it.) In our example the
RSS was 2650.2 for the null model and 1449.1 for the model with setting, so
we have ‘explained’ 1201.1 points or 45.3% as a linear effect of social setting.

The square root of the proportion of variance explained in a simple linear
regression model, with the same sign as the regression coefficient, is Pearson’s
linear correlation coefficient. This measure ranges between −1 and 1, taking
these values for perfect inverse and direct relationships, respectively. For
the model with CBR decline as a linear function of social setting, Pearson’s
r = 0.673. This coefficient can be calculated directly from the covariance of
x and y and their variances, as

r =

∑

(y − ȳ)(x− x̄)
√

∑

(y − ȳ)2
∑

(x− x̄)2
.
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There is one additional characterization of Pearson’s r that may help in
interpretation. Suppose you standardize y by subtracting its mean and di-
viding by its standard deviation, standardize x in the same fashion, and
then regress the standardized y on the standardized x forcing the regression
through the origin (i.e. omitting the constant). The resulting estimate of
the regression coefficient is Pearson’s r. Thus, we can interpret r as the
expected change in the response in units of standard deviation associated
with a change of one standard deviation in the predictor.

In our example, each standard deviation of increase in social setting
is associated with an additional decline in the CBR of 0.673 standard de-
viations. While the regression coefficient expresses the association in the
original units of x and y, Pearson’s r expresses the association in units of
standard deviation.

You should verify that a linear effect of family planning effort accounts
for 64.1% of the variation in CBR decline, so Pearson’s r = 0.801. Clearly
CBR decline is associated more strongly with family planning effort than
with social setting.

2.5 Multiple Linear Regression

Let us now study the dependence of a continuous response on two (or more)
linear predictors. Returning to our example, we will study fertility decline
as a function of both social setting and family planning effort.

2.5.1 The Additive Model

Suppose then that we have a response y and two predictors x1 and x2. We
will use yi to denote the value of the response and xi1 and xi2 to denote the
values of the predictors for the i-th unit, where i = 1, . . . , n.

We maintain the assumptions regarding the stochastic component of the
model, so yi is viewed as a realization of Yi ∼ N(µi, σ

2), but change the
structure of the systematic component. We now assume that the expected
response µi is a linear function of the two predictors, that is

µi = α+ β1xi1 + β2xi2. (2.16)

This equation defines a plane in three dimensional space (you may want
to peek at Figure 2.4 for an example). The parameter α is the constant,
representing the expected response when both xi1 and xi2 are zero. (As
before, this value may not be directly interpretable if zero is not in the
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range of the predictors.) The parameter β1 is the slope along the x1-axis
and represents the expected change in the response per unit change in x1
at constant values of x2. Similarly, β2 is the slope along the x2 axis and
represents the expected change in the response per unit change in x2 while
holding x1 constant.

It is important to note that these interpretations represent abstractions
based on the model that we may be unable to observe in the real world. In
terms of our example, changes in family planning effort are likely to occur
in conjunction with, if not directly as a result of, improvements in social
setting. The model, however, provides a useful representation of the data
and hopefully approximates the results of comparing countries that differ in
family planning effort but have similar socio-economic conditions.

A second important feature of the model is that it is additive, in the
sense that the effect of each predictor on the response is assumed to be the
same for all values of the other predictor. In terms of our example, the
model assumes that the effect of family planning effort is exactly the same
at every social setting. This assumption may be unrealistic, and later in this
section we will introduce a model where the effect of family planning effort
is allowed to depend on social setting.

2.5.2 Estimates and Standard Errors

The multiple regression model in 2.16 can be obtained as a special case
of the general linear model of Section 2.1 by letting the model matrix X

consist of three columns: a column of ones representing the constant, a
column representing the values of x1, and a column representing the values
of x2. Estimates, standard errors and tests of hypotheses then follow from
the general results in Sections 2.2 and 2.3.

Fitting the two-predictor model to our example, with CBR decline as the
response and the indices of family planning effort and social setting as linear
predictors, gives a residual sum of squares of 694.0 on 17 d.f. (20 observations
minus three parameters: the constant and two slopes). Table 2.5 shows the
parameter estimates, standard errors and t-ratios.

We find that, on average, the CBR declines an additional 0.27 percentage
points for each additional point of improvement in social setting at constant
levels of family planning effort. The standard error of this coefficient is
0.11. Since the t ratio exceeds 2.11, the five percent critical value of the t
distribution with 17 d.f., we conclude that we have evidence of association
between social setting and CBR decline net of family planning effort. A
95% confidence interval for the social setting slope, based on Student’s t
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Table 2.5: Estimates for Multiple Linear Regression of
CBR Decline on Social Setting and Family Planning Effort Scores

Parameter Symbol Estimate Std.Error t-ratio

Constant α -14.45 7.094 −2.04
Setting β1 0.2706 0.1079 2.51
Effort β2 0.9677 0.2250 4.30

distribution with 17 d.f., has bounds 0.04 and 0.50.

Similarly, we find that on average the CBR declines an additional 0.97
percentage points for each additional point of family planning effort at con-
stant social setting. The estimated standard error of this coefficient is 0.23.
Since the coefficient is more than four times its standard error, we conclude
that there is a significant linear association between family planning effort
and CBR decline at any given level of social setting. With 95% confidence
we conclude that the additional percent decline in the CBR per extra point
of family planning effort lies between 0.49 and 1.44.

The constant is of no direct interest in this example because zero is not
in the range of the data; while some countries have a value of zero for the
index of family planning effort, the index of social setting ranges from 35 for
Haiti to 91 for Venezuela.

The estimate of the residual standard deviation in our example is σ̂ =
6.389. This value, which is rarely reported, provides a measure of the extent
to which countries with the same setting and level of effort can experience
different declines in the CBR.

Figure 2.4 shows the estimated regression equation ŷ = α̂+ β̂1x1 + β̂2x2
evaluated for a grid of values of the two predictors. The grid is confined to
the range of the data on setting and effort. The regression plane may be
viewed as an infinite set of regression lines. For any fixed value of setting,
expected CBR decline is a linear function of effort with slope 0.97. For any
fixed value of effort, expected CBR decline is a linear function of setting
with slope 0.27.

2.5.3 Gross and Net Effects

It may be instructive to compare the results of the multiple regression anal-
ysis, which considered the two predictors simultaneously, with the results of
the simple linear regression analyses, which considered the predictors one at
a time.
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Figure 2.4: Multiple Regression of CBR Decline on
Social Setting and Family Planning Effort

The coefficients in a simple linear regression represent changes in the
response that can be associated with a given predictor, and will be called
gross effects. In our simple linear regression analysis of CBR decline as
a function of family planning effort we found that, on the average, each
additional point of family planning effort was associated with an additional
1.25 percentage point of CBR decline. Interpretation of gross effects must
be cautious because comparisons involving one factor include, implicitly,
other measured and unmeasured factors. In our example, when we compare
countries with strong programs with countries with weak programs, we are
also comparing implicitly countries with high and low social settings.

The coefficients in a multiple linear regression are more interesting be-
cause they represent changes in the response that can be associated with a
given predictor for fixed values of other predictors, and will be called net ef-
fects. In our multiple regression analysis of CBR decline as a function of both
family planning effort and social setting, we found that, on the average, each
additional point of family planning effort was associated with an additional
0.97 percentage points of CBR decline if we held social setting constant, i.e.
if we compared countries with the same social setting. Interpretation of this
coefficient as measuring the effect of family planning effort is on somewhat
firmer ground than for the gross effect, because the differences have been
adjusted for social setting. Caution is in order, however, because there are
bound to be other confounding factors that we have not taken into account.
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In my view, the closest approximation we have to a true causal effect
in social research based on observational data is a net effect in a multiple
regression analysis that has controlled for all relevant factors, an ideal that
may be approached but probably can never be attained. The alternative
is a controlled experiment where units are assigned at random to various
treatments, because the nature of the assignment itself guarantees that any
ensuing differences, beyond those than can be attributed to chance, must
be due to the treatment. In terms of our example, we are unable to ran-
domize the allocation of countries to strong and weak programs. But we
can use multiple regression as a tool to adjust the estimated effects for the
confounding effects of observed covariates.

Table 2.6: Gross and Net Effects of Social Setting
and Family Planning Effort on CBR Decline

Predictor
Effect

Gross Net

Setting 0.505 0.271
Effort 1.253 0.968

Gross and net effects may be presented in tabular form as shown in Table
2.6. In our example, the gross effect of family planning effort of 1.25 was
reduced to 0.97 after adjustment for social setting, because part of the ob-
served differences between countries with strong and weak programs could be
attributed to the fact that the former tend to enjoy higher living standards.
Similarly, the gross effect of social setting of 0.51 has been reduced to 0.27
after controlling for family planning effort, because part of the differences
between richer and poorer countries could be attributed to the fact that the
former tend to have stronger family planning programs.

Note, incidentally, that it is not reasonable to compare either gross or
net effects across predictors, because the regression coefficients depend on
the units of measurement. I could easily ‘increase’ the gross effect of family
planning effort to 12.5 simply by dividing the scores by ten. One way to
circumvent this problem is to standardize the response and all predictors,
subtracting their means and dividing by their standard deviations. The re-
gression coefficients for the standardized model (which are sometimes called
‘beta’ coefficients) are more directly comparable. This solution is particu-
larly appealing when the variables do not have a natural unit of measure-
ment, as is often the case for psychological test scores. On the other hand,
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standardized coefficients are heavily dependent on the range of the data; they
should not be used, for example, if one has sampled high and low values of
one predictor to increase efficiency, because that design would inflate the
variance of the predictor and therefore reduce the standardized coefficient.

2.5.4 Anova for Multiple Regression

The basic principles of model comparison outlined earlier may be applied to
multiple regression models. I will illustrate the procedures by considering a
test for the significance of the entire regression, and a test for the significance
of the net effect of one predictor after adjusting for the other.

Consider first the hypothesis that all coefficients other than the constant
are zero, i.e.

H0 : β1 = β2 = 0.

To test the significance of the entire regression we start with the null model,
which had a RSS of 2650.2 on 19 degrees of freedom. Adding the two linear
predictors, social setting and family planning effort, reduces the RSS by
1956.2 at the expense of two d.f. Comparing this gain with the remaining
RSS of 694.0 on 17 d.f. leads to an F -test of 24.0 on two and 17 d.f. This
statistic is highly significant, with a P-value just above 0.00001. Thus, we
have clear evidence that CBR decline is associated with social setting and
family planning effort. Details of these calculations are shown in Table 2.7

Table 2.7: Analysis of Variance for Multiple Regression
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Regression 1956.2 2 978.1 24.0
Residual 694.0 17 40.8
Total 2650.2 19

In the above comparison we proceeded directly from the null model to the
model with two predictors. A more detailed analysis is possible by adding
the predictors one at a time. Recall from Section 2.4 that the model with
social setting alone had a RSS of 1449.1 on 18 d.f., which represents a gain of
1201.1 over the null model. In turn, the multiple regression model with both
social setting and family planning effort had a RSS of 694.0 on 17 d.f. which
represents a gain of 755.1 over the model with social setting alone. These
calculation are set out in the hierarchical anova shown in Table 2.8.
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Table 2.8: Hierarchical Analysis of Variance for Multiple Regression
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting 1201.1 1 1201.1 29.4
Effort|Setting 755.1 1 755.1 18.5
Residual 694.0 17 40.8
Total 2650.2 19

Note the following features of this table. First, adding the sums of squares
and d.f.’s in the first two rows agrees with the results in the previous table;
thus, we have further decomposed the sum of squares associated with the
regression into a term attributed to social setting and a term added by family
planning effort.

Second, the notation Effort|Setting emphasizes that we have considered
first the contribution of setting and then the additional contribution of effort
once setting is accounted for. The order we used seemed more natural for
the problem at hand. An alternative decomposition would introduce effort
first and then social setting. The corresponding hierarchical anova table is
left as an exercise.

Third, the F -test for the additional contribution of family planning effort
over and above social setting (which is F = 18.5 from Table 2.8) coincides
with the test for the coefficient of effort based on the estimate and its stan-
dard error (which is t = 4.3 from Table 2.5), since 4.32 = 18.5. In both cases
we are testing the hypothesis

H0 : β2 = 0

that the net effect of effort given setting is zero. Keep in mind that divid-
ing estimates by standard errors tests the hypothesis that the variable in
question has no effect after adjusting for all other variables. It is perfectly
possible to find that two predictors are jointly significant while neither ex-
ceeds twice its standard error. This occurs when the predictors are highly
correlated and either could account for (most of) the effects of the other.

2.5.5 Partial and Multiple Correlations

A descriptive measure of how much we have advanced in our understanding
of the response is given by the proportion of variance explained, which was
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first introduced in Section 2.4. In our case the two predictors have reduced
the RSS from 2650.2 to 694.0, explaining 73.8%.

The square root of the proportion of variance explained is the multiple

correlation coefficient, and measures the linear correlation between the re-
sponse in one hand and all the predictors on the other. In our case R = 0.859.
This value can also be calculated directly as Pearson’s linear correlation be-
tween the response y and the fitted values ŷ.

An alternative construction of R is of some interest. Suppose we want
to measure the correlation between a single variable y and a set of variables
(a vector) x. One approach reduces the problem to calculating Pearson’s
r between two single variables, y and a linear combination z = c′x of the
variables in x, and then taking the maximum over all possible vectors of
coefficients c. Amazingly, the resulting maximum is R and the coefficients
c are proportional to the estimated regression coefficients.

We can also calculate proportions of variance explained based on the hi-
erarchical anova tables. Looking at Table 2.8, we note that setting explained
1201.1 of the total 2650.2, or 45.3%, while effort explained 755.1 of the same
2650.2, or 28.5%, for a total of 1956.2 out of 2650.2, or 73.8%. In a sense
this calculation is not fair because setting is introduced before effort. An
alternative calculation may focus on how much the second variable explains
not out of the total, but out of the variation left unexplained by the first
variable. In this light, effort explained 755.1 of the 1449.1 left unexplained
by social setting, or 52.1%.

The square root of the proportion of variation explained by the second
variable out of the amount left unexplained by the first is called the partial

correlation coefficient, and measures the linear correlation between y and x2
after adjusting for x1. In our example, the linear correlation between CBR
decline and effort after controlling for setting is 0.722.

The following calculation may be useful in interpreting this coefficient.
First regress y on x1 and calculate the residuals, or differences between
observed and fitted values. Then regress x2 on x1 and calculate the residuals.
Finally, calculate Pearson’s r between the two sets of residuals. The result
is the partial correlation coefficient, which can thus be seen to measure the
simple linear correlation between y and x2 after removing the linear effects
of x1.

Partial correlation coefficients involving three variables can be calculated
directly from the pairwise simple correlations. Let us index the response y
as variable 0 and the predictors x1 and x2 as variables 1 and 2. Then the
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partial correlation between variables 0 and 2 adjusting for 1 is

r02.1 =
r02 − r01r12

√

1− r201

√

1− r212

,

where rij denotes Pearson’s linear correlation between variables i and j.
The formulation given above is more general, because it can be used to
compute the partial correlation between two variables (the response and one
predictor) adjusting for any number of additional variables.

Table 2.9: Simple and Partial Correlations of CBR Decline
with Social Setting and Family Planning Effort

Predictor
Correlation

Simple Partial

Setting 0.673 0.519
Effort 0.801 0.722

Simple and partial correlation coefficients can be compared in much the
same vein as we compared gross and net effects earlier. Table 2.9 summarizes
the simple and partial correlations between CBR decline on the one hand
and social setting and family planning effort on the other. Note that the
effect of effort is more pronounced and more resilient to adjustment than
the effect of setting.

2.5.6 More Complicated Models

So far we have considered four models for the family planning effort data:
the null model (φ), the one-variate models involving either setting (x1) or
effort (x2), and the additive model involving setting and effort (x1 + x2).

More complicated models may be obtained by considering higher order
polynomial terms in either variable. Thus, we might consider adding the
squares x21 or x22 to capture non-linearities in the effects of setting or effort.
The squared terms are often highly correlated with the original variables,
and on certain datasets this may cause numerical problems in estimation. A
simple solution is to reduce the correlation by centering the variables before
squaring them, using x1 and (x1− x̄1)

2 instead of x1 and x21. The correlation
can be eliminated entirely, often in the context of designed experiments, by
using orthogonal polynomials.



28 CHAPTER 2. LINEAR MODELS FOR CONTINUOUS DATA

We could also consider adding the cross-product term x1x2 to capture
a form of interaction between setting and effort. In this model the linear
predictor would be

µi = α+ β1xi1 + β2xi2 + β3xi1xi2. (2.17)

This is simply a linear model where the model matrix X has a column
of ones for the constant, a column with the values of x1, a column with the
values of x2, and a column with the products x1x2. This is equivalent to
creating a new variable, say x3, which happens to be the product of the
other two.

An important feature of this model is that the effect of any given variable
now depends on the value of the other. To see this point consider fixing x1
and viewing the expected response µ as a function of x2 for this fixed value
of x1. Rearranging terms in Equation 2.17 we find that µ is a linear function
of x2:

µi = (α+ β1xi1) + (β2 + β3xi1)xi2,

with both constant and slope depending on x1. Specifically, the effect of x2
on the response is itself a linear function of x1; it starts from a baseline effect
of β2 when x1 is zero, and has an additional effect of β3 units for each unit
increase in x1.

The extensions considered here help emphasize a very important point
about model building: the columns of the model matrix are not necessarily
the predictors of interest, but can be any functions of them, including linear,
quadratic or cross-product terms, or other transformations.

Are any of these refinements necessary for our example? To find out, fit
the more elaborate models and see if you can obtain significant reductions
of the residual sum of squares.

2.6 One-Way Analysis of Variance

We now consider models where the predictors are categorical variables or
factors with a discrete number of levels. To illustrate the use of these mod-
els we will group the index of social setting (and later the index of family
planning effort) into discrete categories.

2.6.1 The One-Way Layout

Table 2.10 shows the percent decline in the CBR for the 20 countries in our
illustrative dataset, classified according to the index of social setting in three
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categories: low (under 70 points), medium (70–79) and high (80 or more).

Table 2.10: CBR Decline by Levels of Social Setting

Setting Percent decline in CBR

Low 1, 0, 7, 21, 13, 4, 7
Medium 10, 6, 2, 0, 25
High 9, 11, 29, 29, 40, 21, 22, 29

It will be convenient to modify our notation to reflect the one-way layout
of the data explicitly. Let k denote the number of groups or levels of the
factor, ni denote the number of observations in group i, and let yij denote the
response for the j-th unit in the i-th group, for j = 1, . . . , ni, and i = 1, . . . , k.
In our example k = 3 and yij is the CBR decline in the j-th country in the
i-th category of social setting, with i = 1, 2, 3; j = 1, . . . , ni;n1 = 7, n2 = 5
and n3 = 8).

2.6.2 The One-Factor Model

As usual, we treat yij as a realization of a random variable Yij ∼ N(µij , σ
2),

where the variance is the same for all observations. In terms of the systematic
structure of the model, we assume that

µij = µ+ αi, (2.18)

where µ plays the role of the constant and αi represents the effect of level i
of the factor.

Before we proceed further, it is important to note that the model as
written is not identified. We have essentially k groups but have introduced
k+1 linear parameters. The solution is to introduce a constraint, and there
are several ways in which we could proceed.

One approach is to set µ = 0 (or simply drop µ). If we do this, the
αi’s become cell means, with αi representing the expected response in group
i. While simple and attractive, this approach does not generalize well to
models with more than one factor.

Our preferred alternative is to set one of the αi’s to zero. Conventionally
we set α1 = 0, but any of the groups could be chosen as the reference cell or
level. In this approach µ becomes the expected response in the reference cell,
and αi becomes the effect of level i of the factor, compared to the reference
level.
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A third alternative is to require the group effects to add-up to zero, so
∑

αi = 0. In this case µ represents some sort of overall expected response,
and αi measures the extent to which responses at level i of the factor deviate
from the overall mean. Some statistics texts refer to this constraint as the
‘usual’ restrictions, but I think the reference cell method is now used more
widely in social research.

A variant of the ‘usual’ restrictions is to require a weighted sum of the
effects to add up to zero, so

∑

wiαi = 0. The weights are often taken to be
the number of observations in each group, so wi = ni. In this case µ is a
weighted average representing the expected response, and αi is, as before,
the extent to which responses at level i of the factor deviate from the overall
mean.

Each of these parameterizations can easily be translated into one of the
others, so the choice can rest on practical considerations. The reference
cell method is easy to implement in a regression context and the resulting
parameters have a clear interpretation.

2.6.3 Estimates and Standard Errors

The model in Equation 2.18 is a special case of the generalized linear model,
where the design matrix X has k+1 columns: a column of ones representing
the constant, and k columns of indicator variables, say x1, . . . , xk, where xi
takes the value one for observations at level i of the factor and the value zero
otherwise.

Note that the model matrix as defined so far is rank deficient, because
the first column is the sum of the last k. Hence the need for constraints.
The cell means approach is equivalent to dropping the constant, and the ref-
erence cell method is equivalent to dropping one of the indicator or dummy
variables representing the levels of the factor. Both approaches are eas-
ily implemented. The other two approaches, which set to zero either the
unweighted or weighted sum of the effects, are best implemented using La-
grange multipliers and will not be considered here.

Parameter estimates, standard errors and t ratios can then be obtained
from the general results of Sections 2.2 and 2.3. You may be interested to
know that the estimates of the regression coefficients in the one-way layout
are simple functions of the cell means. Using the reference cell method,

µ̂ = ȳ1 and α̂i = ȳi − ȳ1 for i > 1,

where ȳi is the average of the responses at level i of the factor.
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Table 2.11 shows the estimates for our sample data. We expect a CBR
decline of almost 8% in countries with low social setting (the reference cell).
Increasing social setting to medium or high is associated with additional de-
clines of one and 16 percentage points, respectively, compared to low setting.

Table 2.11: Estimates for One-Way Anova Model of
CBR Decline by Levels of Social Setting

Parameter Symbol Estimate Std. Error t-ratio

Low µ 7.571 3.498 2.16
Medium (vs. low) α2 1.029 5.420 0.19
High (vs. low) α3 16.179 4.790 3.38

Looking at the t ratios we see that the difference between medium and
low setting is not significant, so we acceptH0 : α2 = 0, whereas the difference
between high and low setting, with a t-ratio of 3.38 on 17 d.f. and a two-
sided P-value of 0.004, is highly significant, so we reject H0 : α3 = 0. These
t-ratios test the significance of two particular contrasts: medium vs. low
and high vs. low. In the next subsection we consider an overall test of the
significance of social setting.

2.6.4 The One-Way Anova Table

Fitting the model with social setting treated as a factor reduces the RSS
from 2650.2 (for the null model) to 1456.4, a gain of 1193.8 at the expense
of two degrees of freedom (the two α’s). We can contrast this gain with the
remaining RSS of 1456.4 on 17 d.f. The calculations are laid out in Table
2.12, and lead to an F -test of 6.97 on 2 and 17 d.f., which has a P-value of
0.006. We therefore reject the hypothesis H0 : α2 = α3 = 0 of no setting
effects, and conclude that the expected response depends on social setting.

Table 2.12: Analysis of Variance for One-Factor Model
of CBR Decline by Levels of Social Setting

Source of Sum of Degrees of Mean F -
variation squares Freedom squared ratio

Setting 1193.8 2 596.9 6.97
Residual 1456.4 17 85.7

Total 2650.2 19
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Having established that social setting has an effect on CBR decline, we
can inspect the parameter estimates and t-ratios to learn more about the
nature of the effect. As noted earlier, the difference between high and low
settings is significant, while that between medium and low is not.

It is instructive to calculate the Wald test for this example. Let α =
(α2, α3)

′ denote the two setting effects. The estimate and its variance-
covariance matrix, calculated using the general results of Section 2.2, are

α̂ =

(

1.029
16.179

)

and v̂ar(α̂) =

(

29.373 12.239
12.239 22.948

)

.

The Wald statistic is

W = α̂′ v̂ar−1(α̂) α̂ = 13.94,

and has approximately a chi-squared distribution with two d.f. Under the
assumption of normality, however, we can divide by two to obtain F = 6.97,
which has an F distribution with two and 17 d.f., and coincides with the
test based on the reduction in the residual sum of squares, as shown in Table
2.12.

2.6.5 The Correlation Ratio

Note from Table 2.12 that the model treating social setting as a factor with
three levels has reduced the RSS by 1456.6 out of 2650.2, thereby explaining
45.1%. The square root of the proportion of variance explained by a discrete
factor is called the correlation ratio, and is often denoted η. In our example
η̂ = 0.672.

If the factor has only two categories the resulting coefficient is called the
point-biserial correlation, a measure often used in psychometrics to correlate
a test score (a continuous variable) with the answer to a dichotomous item
(correct or incorrect). Note that both measures are identical in construction
to Pearson’s correlation coefficient. The difference in terminology reflects
whether the predictor is a continuous variable with a linear effect or a discrete
variable with two or more than two categories.

2.7 Two-Way Analysis of Variance

We now consider models involving two factors with discrete levels. We il-
lustrate using the sample data with both social setting and family planning
effort grouped into categories. Key issues involve the concepts of main effects
and interactions.
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2.7.1 The Two-Way Layout

Table 2.13 shows the CBR decline in our 20 countries classified according
to two criteria: social setting, with categories low (under 70), medium (70–
79) and high (80+), and family planning effort, with categories weak (0–4),
moderate (5–14) and strong (15+). In our example both setting and effort
are factors with three levels. Note that there are no countries with strong
programs in low social settings.

Table 2.13: CBR Decline by Levels of Social Setting
and Levels of Family Planning Effort

Setting
Effort

Weak Moderate Strong

Low 1,0,7 21,13,4,7 –
Medium 10,6,2 0 25
High 9 11 29,29,40,21,22,29

We will modify our notation to reflect the two-way layout of the data.
Let nij denote the number of observations in the (i, j)-th cell of the table,
i.e. in row i and column j, and let yijk denote the response of the k-th unit
in that cell, for k = 1, . . . , nij . In our example yijk is the CBR decline of the
k-th country in the i-th category of setting and the j-th category of effort.

2.7.2 The Two-Factor Additive Model

Once again, we treat the response as a realization of a random variable
Yijk ∼ N(µijk, σ

2). In terms of the systematic component of the model, we
will assume that

µijk = µ+ αi + βj (2.19)

In this formulation µ represents a baseline value, αi represents the effect
of the i-th level of the row factor and βj represents the effect of the j-th
level of the column factor. Before we proceed further we must note that
the model is not identified as stated. You could add a constant δ to each of
the αi’s (or to each of the βj ’s) and subtract it from µ without altering any
of the expected responses. Clearly we need two constraints to identify the
model.

Our preferred approach relies on the reference cell method, and sets to
zero the effects for the first cell (in the top-left corner of the table), so that
α1 = β1 = 0. The best way to understand the meaning of the remaining
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parameters is to study Table 2.14, showing the expected response for each
combination of levels of row and column factors having three levels each.

Table 2.14: The Two-Factor Additive Model

Row
Column

1 2 3

1 µ µ+ β2 µ+ β3
2 µ+ α2 µ+ α2 + β2 µ+ α2 + β3
3 µ+ α3 µ+ α3 + β2 µ+ α3 + β3

In this formulation of the model µ represents the expected response in the
reference cell, αi represents the effect of level i of the row factor (compared
to level 1) for any fixed level of the column factor, and βj represents the
effect of level j of the column factor (compared to level 1) for any fixed level
of the row factor.

Note that the model is additive, in the sense that the effect of each factor
is the same at all levels of the other factor. To see this point consider moving
from the first to the second row. The response increases by α2 if we move
down the first column, but also if we move down the second or third columns.

2.7.3 Estimates and Standard Errors

The model in Equation 2.19 is a special case of the general linear model,
where the model matrix X has a column of ones representing the constant,
and two sets of dummy or indicator variables representing the levels of the
row and column factors, respectively. This matrix is not of full column
rank because the row (as well as the column) dummies add to the constant.
Clearly we need two constraints and we choose to drop the dummy variables
corresponding to the first row and to the first column. Table 2.15 shows the
resulting parameter estimates, standard errors and t-ratios for our example.

Thus, we expect a CBR decline of 5.4% in countries with low setting
and weak programs. In countries with medium or high social setting we
expect CBR declines of 1.7 percentage points less and 2.4 percentage points
more, respectively, than in countries with low setting and the same level of
effort. Finally, in countries with moderate or strong programs we expect
CBR declines of 3.8 and 20.7 percentage points more than in countries with
weak programs and the same level of social setting.

It appears from a cursory examination of the t-ratios in Table 2.15 that
the only significant effect is the difference between strong and weak pro-
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Table 2.15: Parameter Estimates for Two-Factor Additive Model
of CBR Decline by Social Setting and Family Planning Effort

Parameter Symbol Estimate Std. Error t-ratio

Baseline low/weak µ 5.379 3.105 1.73
Setting medium α2 −1.681 3.855 −0.44

high α3 2.388 4.457 0.54
Effort moderate β2 3.836 3.575 1.07

strong β3 20.672 4.339 4.76

grams. Bear in mind, however, that the table only shows the comparisons
that are explicit in the chosen parameterization. In this example it turns out
that the difference between strong and moderate programs is also significant.
(This test can be calculated from the variance-covariance matrix of the esti-
mates, or by fitting the model with strong programs as the reference cell, so
the medium-strong comparison becomes one of the parameters.) Questions
of significance for factors with more than two-levels are best addressed by
using the F -test discussed below.

2.7.4 The Hierarchical Anova Table

Fitting the two-factor additive model results in a residual sum of squares
of 574.4 on 15 d.f., and represents an improvement over the null model of
2075.8 at the expense of four d.f. We can further decompose this gain as an
improvement of 1193.8 on 2 d.f. due to social setting (from Section 2.6) and
a gain of 882.0, also on 2 d.f., due to effort given setting. These calculations
are set out in Table 2.16, which also shows the corresponding mean squares
and F -ratios.

Table 2.16: Hierarchical Anova for Two-Factor Additive Model
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting 1193.8 2 596.9 15.6
Effort|Setting 882.0 2 441.0 11.5
Residual 574.4 15 38.3
Total 2650.2 19
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We can combine the sum of squares for setting and for effort given setting
to construct a test for the overall significance of the regression. This results
in an F -ratio of 13.6 on four and 15 d.f., and is highly significant. The
second of the F -ratios shown in Table 2.16, which is 11.5 on two and 15 d.f.,
is a test for the net effect of family planning effort after accounting for social
setting, and is highly significant. (The first of the F -ratios in the table, 15.6
on two and 15 d.f., is not in common use but is shown for completeness; it
can be interpreted as an alternative test for the gross effect of setting, which
combines the same numerator as the test in the previous section with a more
refined denominator that takes into account the effect of effort.)

There is an alternative decomposition of the regression sum of squares
into an improvement of 2040.0 on two d.f. due to effort and a further gain
of 35.8 on two d.f. due to setting given effort. The latter can be contrasted
with the error sum of squares of 574.4 on 15 d.f. to obtain a test of the
net effect of setting given effort. This test would address the question of
whether socio-economic conditions have an effect on fertility decline after
we have accounted for family planning effort.

2.7.5 Partial and Multiple Correlation Ratios

The sums of squares described above can be turned into proportions of vari-
ance explained using the now-familiar calculations. For example the two
factors together explain 2075.8 out of 2650.2, or 78.3% of the variation in
CBR decline.

The square root of this proportion, 0.885 in the example, is the multiple

correlation ratio; it is analogous to (and in fact is often called) the multiple
correlation coefficient. We use the word ‘ratio’ to emphasize the categorical
nature of the predictors and to note that it generalizes to more than one
factor the correlation ratio introduced in Section 2.4.

We can also calculate the proportion of variance explained by one of the
factors out of the amount left unexplained by the other. In our example
effort explained 882.0 out of the 1456.6 that setting had left unexplained,
or 60.6%. The square root of this proportion, 0.778, is called the partial

correlation ratio, and can be interpreted as a measure of correlation between
a discrete factor and a continuous variable after adjustment for another
factor.
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2.7.6 Fitted Means and Standardization

Parameter estimates from the additive model can be translated into fitted

means using Equation 2.19 evaluated at the estimates. The body of Table
2.17 shows these values for our illustrative example. Note that we are able to
estimate the expected CBR decline for strong programs in low social settings
although there is no country in our dataset with that particular combination
of attributes. Such extrapolation relies on the additive nature of the model
and should be interpreted with caution. Comparison of observed and fitted
values can yield useful insights into the adequacy of the model, a topic that
will be pursued in more detail when we discuss regression diagnostics later
in this chapter.

Table 2.17: Fitted Means Based on Two-Factor Additive Model
of CBR Decline by Social Setting and Family Planning Effort

Setting
Effort

All
Weak Moderate Strong

Low 5.38 9.22 26.05 13.77
Medium 3.70 7.54 24.37 12.08
High 7.77 11.60 28.44 16.15

All 5.91 9.75 26.59 14.30

Table 2.17 also shows column (and row) means, representing expected
CBR declines by effort (and setting) after adjusting for the other factor.
The column means are calculated as weighted averages of the cell means in
each column, with weights given by the total number of countries in each
category of setting. In symbols

µ̂.j =
∑

ni.µ̂ij/n,

where we have used a dot as a subscript placeholder so ni. is the number of
observations in row i and µ.j is the mean for column j.

The resulting estimates may be interpreted as standardized means; they
estimate the CBR decline that would be expected at each level of effort
if those countries had the same distribution of social setting as the total
sample. (The column means can also be calculated by using the fitted model
to predict CBR decline for each observation with the dummies representing
social setting held fixed at their sample averages and all other terms kept as
observed. This construction helps reinforce their interpretation in terms of
predicted CBR decline at various levels of effort adjusted for setting.)
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Table 2.18: CBR Decline by Family Planning Effort
Before and After Adjustment for Social Setting

Effort
CBR Decline

Unadjusted Adjusted

Weak 5.00 5.91
Moderate 9.33 9.75
Strong 27.86 26.59

Standardized means may be useful in presenting the results of a regression
analysis to a non-technical audience, as done in Table 2.18. The column
labelled unadjusted shows the observed mean CBR decline by level of effort.
The difference of 23 points between strong and weak programs may be due to
program effort, but could also reflect differences in social setting. The column
labelled adjusted corrects for compositional differences in social setting using
the additive model. The difference of 21 points may be interpreted as an
effect of program effort net of social setting.

2.7.7 Multiple Classification Analysis

Multiple Classification Analysis (MCA), a technique that has enjoyed some
popularity in Sociology, turns out to be just another name for the two factor
additive model discussed in this section (and more generally, for multi-factor
additive models). A nice feature of MCA, however, is a tradition of present-
ing the results of the analysis in a table that contains

• the gross effect of each of the factors, calculated using a one-factor
model under the ‘usual’ restrictions, together with the corresponding
correlation ratios (called ‘eta’ coefficients), and

• the net effect of each factor, calculated using a two-factor additive
model under the ‘usual’ restrictions, together with the corresponding
partial correlation ratios (unfortunately called ‘beta’ coefficients).

Table 2.19 shows a multiple classification analysis of the program effort
data that follows directly from the results obtained so far. Estimates for the
additive model under the usual restrictions can be obtained from Table 2.18
as differences between the row and column means and the overall mean.

The overall expected decline in the CBR is 14.3%. The effects of low,
medium and high setting are substantially reduced after adjustment for ef-
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Table 2.19: Multiple Classification Analysis of CBR Decline
by Social Setting and Family Planning Effort

Factor Category Gross Eta Net Beta
Effect Effect

Setting Low −6.73 −0.54
Medium −5.70 −2.22
High 9.45 1.85

0.67 0.24
Effort Weak −9.30 −8.39

Moderate −4.97 −4.55
Strong 13.56 12.29

0.88 0.78

Total 14.30 14.30

fort, an attenuation reflected in the reduction of the correlation ratio from
0.67 to 0.24. On the other hand, the effects of weak, moderate and strong
programs are slightly reduced after adjustment for social setting, as can be
seen from correlation ratios of 0.88 and 0.78 before and after adjustment.
The analysis indicates that the effects of effort are more pronounced and
more resilient to adjustment than the effects of social setting.

2.7.8 The Model With Interactions

The analysis so far has rested on the assumption of additivity. We now
consider a more general model for the effects of two discrete factors on a
continuous response which allows for more general effects

µij = µ+ αi + βj + (αβ)ij . (2.20)

In this formulation the first three terms should be familiar: µ is a constant,
and αi and βj are the main effects of levels i of the row factor and j of the
column factor.

The new term (αβ)ij is an interaction effect. It represents the effect
of the combination of levels i and j of the row and column factors. (The
notation (αβ) should be understood as a single symbol, not a product; we
could have used γij to denote the interaction, but the notation (αβ)ij is more
suggestive and reminds us that the term involves a combined effect.)

One difficulty with the model as defined so far is that it is grossly overpa-
rameterized. If the row and column factors have R and C levels, respectively,
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we have only RC possible cells but have introduced 1+R+C +RC param-
eters. Our preferred solution is an extension of the reference cell method,
and sets to zero all parameters involving the first row or the first column in
the two-way layout, so that α1 = β1 = (αβ)1j = (αβ)i1 = 0. The best way
to understand the meaning of the remaining parameters is to study Table
2.20, which shows the structure of the means in a three by three layout.

Table 2.20: The Two-Factor Model With Interactions

Row Column
1 2 3

1 µ µ+ β2 µ+ β3
2 µ+ α2 µ+ α2 + β2 + (αβ)22 µ+ α2 + β3 + (αβ)23
3 µ+ α3 µ+ α3 + β2 + (αβ)32 µ+ α3 + β3 + (αβ)33

Here µ is the expected response in the reference cell, just as before. The
main effects are now more specialized: αi is the effect of level i of the row
factor, compared to level one, when the column factor is at level one, and
βj is the effect of level j of the column factor, compared to level one, when
the row factor is at level one. The interaction term (αβ)ij is the additional
effect of level i of the row factor, compared to level one, when the column
factor is at level j rather than one. This term can also be interpreted as the
additional effect of level j of the column factor, compared to level one, when
the row factor is at level i rather than one.

The key feature of this model is that the effect of a factor now depends
on the levels of the other. For example the effect of level two of the row
factor, compared to level one, is α2 in the first column, α2 + (αβ)22 in the
second column, and α2 + (αβ)23 in the third column.

The resulting model is a special case of the general lineal model where
the model matrix X has a column of ones to represent the constant, a set of
R − 1 dummy variables representing the row effects, a set of C − 1 dummy
variables representing the column effects, and a set of (R−1)(C−1) dummy
variables representing the interactions.

The easiest way to calculate the interaction dummies is as products of
the row and column dummies. If ri takes the value one for observations
in row i and zero otherwise, and cj takes the value one for observations in
column j1 and zero otherwise, then the product ricj takes the value one for
observations that are in row i and column j, and is zero for all others.

In order to fit this model to the program effort data we need to introduce
one additional constraint because the cell corresponding to strong programs
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in low settings is empty. As a result, we cannot distinguish β3 from β3 +
(αβ)23. A simple solution is to set (αβ)23 = 0. This constraint is easily
implemented by dropping the corresponding dummy, which would be r2c3
in the above notation.

The final model has eight parameters: the constant, two setting effects,
two effort effects, and three (rather than four) interaction terms.

Table 2.21: Anova for Two-Factor Model with Interaction Effect
for CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting 1193.8 2 596.9 15.5
Effort|Setting 882.0 2 441.0 11.5
Interaction 113.6 3 37.9 1.0
Residual 460.8 12 38.4

Total 2650.2 19

Fitting the model gives a RSS of 460.8 on 12 d.f. Combining this result
with the anova for the additive model leads to the hierarchical anova in Table
2.21. The F -test for the interaction is one on three and 12 d.f. and is clearly
not significant. Thus, we have no evidence to contradict the assumption of
additivity. We conclude that the effect of effort is the same at all social
settings. Calculation and interpretation of the parameter estimates is left as
an exercise.

2.7.9 Factors or Variates?

In our analysis of CBR decline we treated social setting and family planning
effort as continuous variates with linear effects in Sections 2.4 and 2.5, and
as discrete factors in Sections 2.6 and 2.7.

The fundamental difference between the two approaches hinges on the
assumption of linearity. When we treat a predictor as a continuous vari-
ate we assume a linear effect. If the assumption is reasonable we attain a
parsimonious fit, but if it is not reasonable we are forced to introduce trans-
formations or higher-order polynomial terms, resulting in models which are
often harder to interpret.

A reasonable alternative in these cases is to model the predictor as a
discrete factor, an approach that allows arbitrary changes in the response
from one category to another. This approach has the advantage of a simpler
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and more direct interpretation, but by grouping the predictor into categories
we are not making full use of the information in the data.

In our example we found that social setting explained 45% of the vari-
ation in CBR declines when treated as a variate and 45% when treated as
a factor with three levels. Both approaches give the same result, suggesting
that the assumption of linearity of setting effects is reasonable.

On the other hand family planning effort explained 64% when treated as
a variate and 77% when treated as a factor with three levels. The difference
suggests that we might be better off grouping effort into three categories.
The reason, of course, is that the effect of effort is non-linear: CBR decline
changes little as we move from weak to moderate programs, but raises steeply
for strong programs.

2.8 Analysis of Covariance Models

We now consider models where some of the predictors are continuous vari-
ates and some are discrete factors. We continue to use the family planning
program data, but this time we treat social setting as a variate and program
effort as a factor.

2.8.1 The Data and Notation

Table 2.22 shows the effort data classified into three groups, corresponding
to weak (0–4), moderate (5–14) and strong (15+) programs. For each group
we list the values of social setting and CBR decline.

Table 2.22: Social Setting Scores and CBR Percent Declines
by Levels of Family Planning Effort

Family Planning Effort
Weak Moderate Strong

Setting Change Setting Change Setting Change

46 1 68 21 89 29
74 10 70 0 77 25
35 0 60 13 84 29
83 9 55 4 89 40
68 7 51 7 87 21
74 6 91 11 84 22
72 2 84 29
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As usual, we modify our notation to reflect the structure of the data.
Let k denote the number of groups, or levels of the discrete factor, ni the
number of observations in group i, yij the value of the response and xij the
value of the predictor for the j-th unit in the i-th group, with j = 1, . . . , ni

and i = 1, . . . , k.

2.8.2 The Additive Model

We keep the random structure of our model, treating yij as a realization
of a random variable Yij ∼ N(µij , σ

2). To express the dependence of the
expected response µij on a discrete factor we have used an anova model of
the form µij = µ+αi, whereas to model the effect of a continuous predictor
we have used a regression model of the form µij = α + βxij . Combining
these two models we obtain the additive analysis of covariance model

µij = µ+ αi + βxij . (2.21)

This model defines a series of straight-line regressions, one for each level of
the discrete factor (you may want to peek at Figure 2.5). These lines have
different intercepts µ+ αi, but a common slope β, so they are parallel. The
common slope β represents the effects of the continuous variate at any level
of the factor, and the differences in intercept αi represent the effects of the
discrete factor at any given value of the covariate.

The model as defined in Equation 2.21 is not identified: we could add a
constant δ to each αi and subtract it from µ without changing any of the
expected values. To solve this problem we set α1 = 0, so µ becomes the
intercept for the reference cell, and αi becomes the difference in intercepts
between levels i and one of the factor.

The analysis of covariance model may be obtained as a special case of
the general linear model by letting the model matrix X have a column of
ones representing the constant, a set of k dummy variables representing the
levels of the discrete factor, and a column with the values of the contin-
uous variate. The model is not of full column rank because the dummies
add up to the constant, so we drop one of them, obtaining the reference
cell parametrization. Estimation and testing then follows form the general
results in Sections 2.2 and 2.3.

Table 2.23 shows the parameter estimates, standard errors and t-ratios
after fitting the model to the program effort data with setting as a variate
and effort as a factor with three levels.

The results show that each point in the social setting scale is associated
with a further 0.17 percentage points of CBR decline at any given level of
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Table 2.23: Parameter Estimates for Analysis of Covariance Model
of CBR Decline by Social Setting and Family Planning Effort

Parameter Symbol Estimate Std.Error t-ratio

Constant µ −5.954 7.166 −0.83
Effort moderate α2 4.144 3.191 1.30

strong α3 19.448 3.729 5.21
Setting (linear) β 0.1693 0.1056 1.60

effort. Countries with moderate and strong programs show additional CBR
declines of 19 and 4 percentage points, respectively, compared to countries
with weak programs at the same social setting.
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Figure 2.5: Analysis of Covariance Model for CBR Decline
by Social Setting Score and Level of Program Effort

Figure 2.5 depicts the analysis of covariance model in graphical form. We
have plotted CBR decline as a function of social setting using the letters w,
m and s for weak, moderate and strong programs, respectively. The figure
also shows the fitted lines for the three types of programs. The vertical
distances between the lines represent the effects of program effort at any
given social setting. The common slope represents the effect of setting at
any given level of effort.
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2.8.3 The Hierarchical Anova Table

Fitting the analysis of covariance model to our data gives a RSS of 525.7 on
16 d.f. (20 observations minus four parameters: the constant, two intercepts
and one slope). Combining this result with the RSS’s for the null model
and for the model of Section 2.4 with a linear effect of setting, leads to the
hierarchical analysis of variance shown in Table 2.24.

Table 2.24: Hierarchical Anova for Analysis of Covariance Model
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting (linear) 1201.1 1 1201.1 36.5
Effort|Setting 923.4 2 461.7 14.1
Residual 525.7 16 32.9

Total 2650.2 19

The most interesting statistic in this table is the F -test for the net effect
of program effort, which is 14.1 on two and 16 d.f. and is highly significant, so
we reject the hypothesis H0 : α2 = α3 = 0 of no program effects. Looking at
the t-ratios in Table 2.23 we see that the difference between strong and weak
programs is significant, while that between moderate and weak programs is
not, confirming our earlier conclusions. The difference between strong and
moderate programs, which is not shown in the table, is also significant.

From these results we can calculate proportions of variance explained in
the usual fashion. In this example setting explains 45.3% of the variation in
CBR declines and program effort explains an additional 34.5%, representing
63.7% of what remained unexplained, for a total of 80.1%. You should be
able to translate these numbers into simple, partial and multiple correlation
coefficients or ratios.

2.8.4 Gross and Net Effects

The estimated net effects of setting and effort based on the analysis of co-
variance model may be compared with the estimated gross effects based on
the simple linear regression model for setting and the one-way analysis of
variance model for effort. The results are presented in a format analogous
to multiple classification analysis in Table 2.25, where we have used the
reference cell method rather than the ‘usual’ restrictions.
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Table 2.25: Gross and Net Effects of Social Setting Score
and Level of Family Planning Effort on CBR Decline

Predictor Category
Effect

Gross Net

Setting (linear) 0.505 0.169
Effort Weak – –

Moderate 4.33 4.14
Strong 22.86 19.45

The effect of social setting is reduced substantially after adjusting for
program effort. On the other hand, the effects of program effort, measured
by comparing strong and moderate programs with weak ones, are hardly
changed after adjustment for social setting.

If interest centers on the effects of program effort, it may be instructive
to calculate CBR declines by categories of program effort unadjusted and
adjusted for linear effects of setting. To obtain adjusted means we use the
fitted model to predict CBR decline with program effort set at the observed
values but social setting set at the sample mean, which is 72.1 points. Thus,
we calculate expected CBR decline at level i of effort holding setting constant
at the mean as µ̂i = µ̂+ α̂i + β̂ 72.1. The results are shown in Table 2.26.

Table 2.26: CBR Decline by Family Planning Effort
Before and After Linear Adjustment for Social Setting

Effort
CBR Decline

Unadjusted Adjusted

Weak 5.00 6.25
Moderate 9.33 10.40
Strong 27.86 25.70

Thus, countries with strong program show on average a 28% decline
in the CBR, but these countries tend to have high social settings. If we
adjusted linearly for this advantage, we would expect them to show only a
26% decline. Clearly, adjusting for social setting does not change things very
much.

Note that the analysis in this sections parallels the results in Section 2.7.
The only difference is the treatment of social setting as a discrete factor with
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three levels or as a continuous variate with a linear effect.

2.8.5 The Assumption of Parallelism

In order to test the assumption of equal slopes in the analysis of covariance
model we consider a more general model where

µij = (µ+ αi) + (β + γi)xij . (2.22)

In this formulation each of the k groups has its own intercept µ+αi and its
own slope β + γi.

As usual, this model is overparametrized and we introduce the reference
cell restrictions, setting α1 = γ1 = 0. As a result, µ is the constant and β
is the slope for the reference cell, αi and γi are the differences in intercept
and slope, respectively, between level i and level one of the discrete factor.
(An alternative is to drop µ and β, so that αi is the constant and γi is the
slope for group i. The reference cell method, however, extends more easily
to models with more than one discrete factor.)

The parameter αi may be interpreted as the effect of level i of the factor,
compared to level one, when the covariate is zero. (This value will not be of
interest if zero is not in the range of the data.) On the other hand, β is the
expected increase in the response per unit increment in the variate when the
factor is at level one. The parameter γi is the additional expected increase
in the response per unit increment in the variate when the factor is at level
i rather than one. Also, the product γix is the additional effect of level i of
the factor when the covariate has value x rather than zero.

Before fitting this model to the program effort data we take the pre-
caution of centering social setting by subtracting its mean. This simple
transformation simplifies interpretation of the intercepts, since a value of
zero represents the mean setting and is therefore definitely in the range of
the data. The resulting parameter estimates, standard errors and t-ratios
are shown in Table 2.27.

The effect of setting is practically the same for countries with weak and
moderate programs, but appears to be more pronounced in countries with
strong programs. Note that the slope is 0.18 for weak programs but increases
to 0.64 for strong programs. Equivalently, the effect of strong programs
compared to weak ones seems to be somewhat more pronounced at higher
levels of social setting. For example strong programs show 13 percentage
points more CBR decline than weak programs at average levels of setting,
but the difference increases to 18 percentage points if setting is 10 points
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Table 2.27: Parameter Estimates for Ancova Model with Different Slopes
for CBR Decline by Social Setting and Family Planning Effort

(Social setting centered around its mean)

Parameter Symbol Estimate Std.Error t-ratio

Constant µ 6.356 2.477 2.57
Effort moderate α2 3.584 3.662 0.98

strong α3 13.333 8.209 1.62
Setting (linear) β 0.1836 0.1397 1.31
Setting × moderate γ2 −0.0868 0.2326 −0.37

Effort strong γ3 0.4567 0.6039 0.46

above the mean. However, the t ratios suggest that none of these interactions
is significant.

To test the hypothesis of parallelism (or no interaction) we need to con-
sider the joint significance of the two coefficients representing differences in
slopes, i.e. we need to test H0 : γ2 = γ3 = 0. This is easily done comparing
the model of this subsection, which has a RSS of 497.1 on 14 d.f., with the
parallel lines model of the previous subsection, which had a RSS of 525.7 on
16 d.f. The calculations are set out in Table 2.28.

Table 2.28: Hierarchical Anova for Model with Different Slopes
of CBR Decline by Social Setting and Family Planning Effort

Source of Sum of Degrees of Mean F -
variation squares freedom squared ratio

Setting (linear) 1201.1 1 1201.1 33.8
Effort ( intercepts) 923.4 2 461.7 13.0
Setting × Effort (slopes) 28.6 2 14.3 0.4
Residual 497.1 14 35.5
Total 2650.2 19

The test for parallelism gives an F -ratio of 0.4 on two and 14 d.f., and
is clearly not significant. We therefore accept the hypothesis of parallelism
and conclude that we have no evidence of an interaction between program
effort and social setting.



2.9. REGRESSION DIAGNOSTICS 49

2.9 Regression Diagnostics

The process of statistical modeling involves three distinct stages: formulating
a model, fitting the model to data, and checking the model. Often, the third
stage suggests a reformulation of the model that leads to a repetition of the
entire cycle and, one hopes, an improved model. In this section we discuss
techniques that can be used to check the model.

2.9.1 Fitted Values and Residuals

The raw materials of model checking are the residuals ri defined as the
differences between observed and fitted values

ri = yi − ŷi, (2.23)

where yi is the observed response and ŷi = x′

iβ̂ is the fitted value for the
i-th unit.

The fitted values may be written in matrix notation as ŷ = Xβ̂. Using
Equation 2.7 for the m.l.e. of β, we can write the fitted values as ŷ = Hy

where

H = X(X′X)−1X′.

The matrix H is called the hat matrix because it maps y into y-hat. From
these results one can show that the fitted values have mean E(ŷ) = µ and
variance-covariance matrix var(ŷ) = Hσ2.

The residuals may be written in matrix notation as r = y− ŷ, where y

is the vector of responses and ŷ is the vector of fitted values. Since ŷ = Hy,
we can write the raw residuals as r = (I −H)y. It is then a simple matter
to verify that under the usual second-order assumptions, the residuals have
expected value 0 and variance-covariance matrix var(r) = (I − H)σ2. In
particular, the variance of the i-th residual is

var(ri) = (1− hii)σ
2, (2.24)

where hii is the i-th diagonal element of the hat matrix.

This result shows that the residuals may have different variances even
when the original observations all have the same variance σ2, because the
precision of the fitted values depends on the pattern of covariate values.

For models with a constant it can be shown that the value of hii is always
between 1/n and 1/r, where n is the total number of observations and r is
the number of replicates of the i-th observation (the number of units with
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the same covariate values as the i-th unit). In simple linear regression with
a constant and a predictor x we have

hii = 1/n+
(xi − x̄)2

∑

j(xj − x̄)2
,

so that hii has a minimum of 1/n at the mean of x. Thus, the variance
of the fitted values is smallest for observations near the mean and increases
towards the extremes, as you might have expected. Perhaps less intuitively,
this implies that the variance of the residuals is greatest near the mean and
decreases as one moves towards either extreme.

Table 2.29 shows raw residuals (and other quantities to be discussed
below) for the covariance analysis model fitted to the program effort data.
Note that the model underestimates the decline of fertility in both Cuba and
the Dominican Republic by a little bit more than eleven percentage points.
At the other end of the scale, the model overestimates fertility change in
Ecuador by ten percentage points.

2.9.2 Standardized Residuals

When we compare residuals for different observations we should take into
account the fact that their variances may differ. A simple way to allow for
this fact is to divide the raw residual by an estimate of its standard deviation,
calculating the standardized (or internally studentized) residual

si =
ri√

1− hiiσ̂
, (2.25)

where σ̂ is the estimate of the standard deviation based on the residual sum
of squares.

Standardized residuals are useful in detecting anomalous observations or
outliers. In general, any observation with a standardized residual greater
than two in absolute value should be considered worthy of further scrutiny
although, as we shall see below, such observations are not necessarily outliers.

Returning to Table 2.29, we see that the residuals for both Cuba and the
Dominican Republic exceed two in absolute value, whereas the residual for
Ecuador does not. Standardizing the residuals helps assess their magnitude
relative to the precision of the estimated regression.

2.9.3 Jack-knifed Residuals

One difficulty with standardized residuals is that they depend on an estimate
of the standard deviation that may itself be affected by outliers, which may
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Table 2.29: Regression Diagnostics for Analysis of Covariance Model
of CBR Decline by Social Setting and Program Effort

Country
Residual Leverage Cook’s

ri si ti hii Di

Bolivia −0.83 −0.17 −0.16 0.262 0.0025
Brazil 3.43 0.66 0.65 0.172 0.0225
Chile 0.44 0.08 0.08 0.149 0.0003
Colombia −1.53 −0.29 −0.28 0.164 0.0042
Costa Rica 1.29 0.24 0.24 0.143 0.0025
Cuba 11.44 2.16 2.49 0.149 0.2043

Dominican Rep. 11.30 2.16 2.49 0.168 0.2363

Ecuador −10.04 −1.93 −2.13 0.173 0.1932

El Salvador 4.65 0.90 0.89 0.178 0.0435
Guatemala −3.50 −0.69 −0.67 0.206 0.0306
Haiti 0.03 0.01 0.01 0.442 0.0000
Honduras 0.18 0.04 0.03 0.241 0.0001
Jamaica −7.22 −1.36 −1.40 0.144 0.0782
Mexico 0.90 0.18 0.18 0.256 0.0029
Nicaragua 1.44 0.27 0.26 0.147 0.0032
Panama −5.71 −1.08 −1.08 0.143 0.0484
Paraguay −0.57 −0.11 −0.11 0.172 0.0006
Peru −4.40 −0.84 −0.83 0.166 0.0352
Trinidad-Tobago 1.29 0.24 0.24 0.143 0.0025
Venezuela −2.59 −0.58 −0.56 0.381 0.0510

thereby escape detection.

A solution to this problem is to standardize the i-th residual using an
estimate of the error variance obtained by omitting the i-th observation. The
result is the so-called jack-knifed (or externally studentized, or sometimes
just studentized) residual

ti =
ri√

1− hiiσ̂(i)
, (2.26)

where σ̂(i) denotes the estimate of the standard deviation obtained by fitting
the model without the i-th observation, and is based on a RSS with n−p−1
d.f. Note that the fitted value and the hat matrix are still based on the
model with all observations.
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You may wonder what would happen if we omitted the i-th observation
not just for purposes of standardizing the residual, but also when estimating
the residual itself. Let β̂(i) denote the estimate of the regression coefficients
obtained by omitting the i-th observation. We can combine this estimate
with the covariate values of the i-th observation to calculate a predicted
response ŷ(i) = x′

iβ̂(i) based on the rest of the data. The difference between
observed and predicted responses is sometimes called a predictive residual

yi − ŷ(i).

Consider now standardizing this residual, dividing by an estimate of its
standard deviation. Since the i-th unit was not included in the regression,
yi and ŷ(i) are independent. The variance of the predictive residual is

var(yi − ŷ(i)) = (1 + x′

i(X
′

(i)X(i))
−1xi)σ

2,

where X(i) is the model matrix without the i-th row. This variance is es-
timated replacing the unknown σ2 by σ̂2

(i), the estimate based on the RSS
of the model omitting the i-th observation. We are now in a position to
calculate a standardized predictive residual

ti =
yi − ŷ(i)

√

v̂ar(yi − ŷ(i))
. (2.27)

The result turns out to be exactly the same as the jack-knifed residual in
Equation 2.26 and provides an alternative characterization of this statistic.

At first sight it might appear that jack-knifed residuals require a lot of
calculation, as we would need to fit the model omitting each observation in
turn. It turns out, however, that there are simple updating formulas that
allow direct calculation of regression coefficients and RSS’s after omitting
one observation (see Weisberg, 1985, p. 293). These formulas can be used to
show that the jack-knifed residual ti is a simple function of the standardized
residual si

ti = si

√

n− p− 1

n− p− s2i
.

Note that ti is a monotonic function of si, so ranking observations by their
standardized residuals is equivalent to ordering them by their jack-knifed
residuals.

The jack-knifed residuals on Table 2.29 make Cuba and the D.R. stand
out more clearly, and suggest that Ecuador may also be an outlier.
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2.9.4 A Test For Outliers

The jack-knifed residual can also be motivated as a formal test for outliers.
Suppose we start from the model µi = x′

iβ and add a dummy variable to
allow a location shift for the i-th observation, leading to the model

µi = x′

iβ + γzi,

where zi is a dummy variable that takes the value one for the i-th observation
and zero otherwise. In this model γ represents the extent to which the i-th
response differs from what would be expected on the basis of its covariate
values xi and the regression coefficients β. A formal test of the hypothesis

H0 : γ = 0

can therefore be interpreted as a test that the i-th observation follows the
same model as the rest of the data (i.e. is not an outlier).

The Wald test for this hypothesis would divide the estimate of γ by its
standard error. Remarkably, the resulting t-ratio,

ti =
γ̂

√

var(γ̂)

on n− p− 1 d.f., is none other than the jack-knifed residual.
This result should not be surprising in light of the previous developments.

By letting the i-th observation have its own parameter γ, we are in effect
estimating β from the rest of the data. The estimate of γ measures the
difference between the response and what would be expected from the rest
of the data, and coincides with the predictive residual.

In interpreting the jack-knifed residual as a test for outliers one should
be careful with levels of significance. If the suspect observation had been
picked in advance then the test would be valid. If the suspect observation
has been selected after looking at the data, however, the nominal significance
level is not valid, because we have implicitly conducted more than one test.
Note that if you conduct a series of tests at the 5% level, you would expect
one in twenty to be significant by chance alone.

A very simple procedure to control the overall significance level when
you plan to conduct k tests is to use a significance level of α/k for each
one. A basic result in probability theory known as the Bonferroni inequality
guarantees that the overall significance level will not exceed α. Unfortu-
nately, the procedure is conservative, and the true significance level could be
considerably less than α.
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For the program effort data the jack-knifed residuals have 20−4−1 = 15
d.f. To allow for the fact that we are testing 20 of them, we should use a
significance level of 0.05/20 = 0.0025 instead of 0.05. The corresponding two-
sided critical value of the Student’s t distribution is t.99875,15 = 3.62, which
is substantially higher than the standard critical value t.975,15 = 2.13. The
residuals for Cuba, the D.R. and Ecuador do not exceed this more stringent
criterion, so we have no evidence that these countries depart systematically
from the model.

2.9.5 Influence and Leverage

Let us return for a moment to the diagonal elements of the hat matrix. Note
from Equation 2.24 that the variance of the residual is the product of 1−hii
and σ2. As hii approaches one the variance of the residual approaches zero,
indicating that the fitted value ŷi is forced to come close to the observed value
yi. In view of this result, the quantity hii has been called the leverage or
potential influence of the i-th observation. Observations with high leverage
require special attention, as the fit may be overly dependent upon them.

An observation is usually considered to have high leverage if hii exceeds
2p/n, where p is the number of predictors, including the constant, and n is
the number of observations. This tolerance is not entirely arbitrary. The
trace or sum of diagonal elements of H is p, and thus the average leverage
is p/n. An observation is influential if it has more than twice the mean
leverage.

Table 2.29 shows leverage values for the analysis of covariance model
fitted to the program effort data. With 20 observations and four parameters,
we would consider values of hii exceeding 0.4 as indicative of high leverage.
The only country that exceeds this tolerance is Haiti, but Venezuela comes
close. Haiti has high leverage because it is found rather isolated at the low
end of the social setting scale. Venezuela is rather unique in having high
social setting but only moderate program effort.

2.9.6 Actual Influence and Cook’s Distance

Potential influence is not the same as actual influence, since it is always
possible that the fitted value ŷi would have come close to the observed value
yi anyway. Cook proposed a measure of influence based on the extent to
which parameter estimates would change if one omitted the i-th observation.
We define Cook’s Distance as the standardized difference between β̂(i), the

estimate obtained by omitting the i-th observation, and β̂, the estimate
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obtained using all the data

Di = (β̂(i) − β̂)′ v̂ar−1(β̂)(β̂(i) − β̂)/p. (2.28)

It can be shown that Cook’s distance is also the Euclidian distance (or
sum of squared differences) between the fitted values ŷ(i) obtained by omit-
ting the i-th observation and the fitted values ŷ based on all the data, so
that

Di =
n
∑

j=1

(ŷ(i)j − ŷj)
2/(pσ̂2). (2.29)

This result follows readily from Equation 2.28 if you note that var−1(β̂) =
X′X/σ2 and ŷ(i) = Xβ̂(i).

It would appear from this definition that calculation of Cook’s distance
requires a lot of work, but the regression updating formulas mentioned earlier
simplify the task considerably. In fact, Di turns out to be a simple function
of the standardized residual si and the leverage hii,

Di = s2i
hii

(1− hii)p
.

Thus, Cook’s distance Di combines residuals and leverages in a single mea-
sure of influence.

Values of Di near one are usually considered indicative of excessive influ-
ence. To provide some motivation for this rule of thumb, note from Equation
2.28 that Cook’s distance has the form W/p, where W is formally identical
to the Wald statistic that one would use to test H0: β = β0 if one hypothe-
sized the value β̂(i). Recalling that W/p has an F distribution, we see that
Cook’s distance is equivalent to the F statistic for testing this hypothesis. A
value of one is close to the median of the F distribution for a large range of
values of the d.f. An observation has excessive influence if deleting it would
move this F statistic from zero to the median, which is equivalent to moving
the point estimate to the edge of a 50% confidence region. In such cases it
may be wise to repeat the analysis without the influential observation and
examine which estimates change as a result.

Table 2.29 shows Cook’s distance for the analysis of covariance model
fitted to the program effort data. The D.R., Cuba and Ecuador have the
largest indices, but none of them is close to one. To investigate the exact
nature of the D.R.’s influence, I fitted the model excluding this country.
The main result is that the parameter representing the difference between
moderate and weak programs is reduced from 4.14 to 1.89. Thus, a large part
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of the evidence pointing to a difference between moderate and weak programs
comes from the D.R., which happens to be a country with substantial fertility
decline and only moderate program effort. Note that the difference was not
significant anyway, so no conclusions would be affected.

Note also from Table 2.29 that Haiti, which had high leverage or potential
influence, turned out to have no actual influence on the fit. Omitting this
country would not alter the parameter estimates at all.

2.9.7 Residual Plots

One of the most useful diagnostic tools available to the analyst is the resid-
ual plot, a simple scatterplot of the residuals ri versus the fitted values ŷi.
Alternatively, one may plot the standardized residuals si or the jack-knifed
residuals ti versus the fitted values. In all three cases we expect basically
a rectangular cloud with no discernible trend or pattern. Figure 2.6 shows
a plot of jack-knifed residuals for the analysis of covariance model fitted to
the program effort data. Some of the symptoms that you should be alert for
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Figure 2.6: Residual Plot for Analysis of Covariance Model
of CBR Decline by Social Setting and Program Effort

when inspecting residual plots include the following:

• Any trend in the plot, such as a tendency for negative residuals at
small ŷi and positive residuals at large ŷi. Such a trend would indicate
non-linearities in the data. Possible remedies include transforming the
response or introducing polynomial terms on the predictors.
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• Non-constant spread of the residuals, such as a tendency for more
clustered residuals for small ŷi and more dispersed residuals for large
ŷi. This type of symptom results in a cloud shaped like a megaphone,
and indicates heteroscedasticity or non-constant variance. The usual
remedy is a transformation of the response.

For examples of residual plots see Weisberg (1985) or Draper and Smith (1966).

2.9.8 The Q-Q Plot

A second type of diagnostic aid is the probability plot, a graph of the residu-
als versus the expected order statistics of the standard normal distribution.
This graph is also called a Q-Q Plot because it plots quantiles of the data
versus quantiles of a distribution. The Q-Q plot may be constructed using
raw, standardized or jack-knifed residuals, although I recommend the latter.

The first step in constructing a Q-Q plot is to order the residuals from
smallest to largest, so r(i) is the i-th smallest residual. The quantity r(i) is
called an order statistic. The smallest value is the first order statistic and
the largest out of n is the n-th order statistic.

The next step is to imagine taking a sample of size n from a standard
normal distribution and calculating the order statistics, say z(i). The ex-
pected values of these order statistics are sometimes called rankits. A useful
approximation to the i-th rankit in a sample of size n is given by

E(z(i)) ≈ Φ−1[(i− 3/8)/(n+ 1/4)]

where Φ−1 denotes the inverse of the standard normal distribution function.
An alternative approximation proposed by Filliben (1975) uses Φ−1[(i −
0.3175)/(n+0.365)] except for the first and last rankits, which are estimated
as Φ−1(1 − 0.51/n) and Φ−1(0.51/n), respectively. The two approximations
give very similar results.

If the observations come from a normal distribution we would expect the
observed order statistics to be reasonably close to the rankits or expected
order statistics. In particular, if we plot the order statistics versus the rankits
we should get approximately a straight line.

Figure 2.7 shows a Q-Q plot of the jack-knifed residuals from the anal-
ysis of covariance model fitted to the program effort data. The plot comes
very close to a straight line, except possibly for the upper tail, where we
find a couple of residuals somewhat larger than expected. In general, Q-Q
plots showing curvature indicate skew distributions, with downward concav-
ity corresponding to negative skewness (long tail to the left) and upward



58 CHAPTER 2. LINEAR MODELS FOR CONTINUOUS DATA

•

•
•

•
• •

• • • • • • • • • •
•

•

• •

Quantiles of standard normal

Q
u
a
n
ti
le

s
 o

f 
ja

c
k
-k

n
if
e
d
 r

e
s
id

u
a
ls

-1 0 1

-2
-1

0
1

2

Figure 2.7: Q-Q Plot of Residuals From Analysis of Covariance Model
of CBR Decline by Social Setting and Program Effort

concavity indicating positive skewness. On the other hand, S-shaped Q-Q
plots indicate heavy tails, or an excess of extreme values, relative to the
normal distribution.

Filliben (1975) has proposed a test of normality based on the linear
correlation between the observed order statistics and the rankits and has
published a table of critical values. The 5% points of the distribution of
r for n = 10(10)100 are shown below. You would reject the hypothesis of
normality if the correlation is less than the critical value. Note than to
accept normality we require a very high correlation coefficient.

n 10 20 30 40 50 60 70 80 90 100
r .917 .950 .964 .972 .977 .980 .982 .984 .985 .987

The Filliben test is closely related to the Shapiro-Francia approximation to
the Shapiro-Wilk test of normality. These tests are often used with stan-
dardized or jack-knifed residuals, although the fact that the residuals are
correlated affects the significance levels to an unknown extent. For the pro-
gram effort data in Figure 2.7 the Filliben correlation is a respectable 0.966.
Since this value exceeds the critical value of 0.950 for 20 observations, we
conclude that we have no evidence against the assumption of normally dis-
tributed residuals.
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2.10 Transforming the Data

We now consider what to do if the regression diagnostics discussed in the
previous section indicate that the model is not adequate. The usual solutions
involve transforming the response, transforming the predictors, or both.

2.10.1 Transforming the Response

The response is often transformed to achieve linearity and homoscedasticity
or constant variance. Examples of variance stabilizing transformations are
the square root, which tends to work well for counts, and the arc-sine trans-
formation, which is often appropriate when the response is a proportion.
These two solutions have fallen out of fashion as generalized linear models
designed specifically to deal with counts and proportions have increased in
popularity. My recommendation in these two cases is to abandon the linear
model in favor of better alternatives such as Poisson regression and logistic
regression.

Transformations to achieve linearity, or linearizing transformations, are
still useful. The most popular of them is the logarithm, which is specially
useful when one expects effects to be proportional to the response. To fix
ideas consider a model with a single predictor x, and suppose the response
is expected to increase 100ρ percent for each point of increase in x. Suppose
further that the error term, denoted U , is multiplicative. The model can
then be written as

Y = γ(1 + ρ)xU.

Taking logs on both sides of the equation, we obtain a linear model for the
transformed response

log Y = α+ βx+ ǫ,

where the constant is α = log γ, the slope is β = log(1 + ρ) and the error
term is ǫ = logU . The usual assumption of normal errors is equivalent to
assuming that U has a log-normal distribution. In this example taking logs
has transformed a relatively complicated multiplicative model to a familiar
linear form.

This development shows, incidentally, how to interpret the slope in a
linear regression model when the response is in the log scale. Solving for ρ
in terms of β, we see that a unit increase in x is associated with an increase
of 100(eβ − 1) percent in y. If β is small, eβ − 1 ≈ β, so the coefficient can
be interpreted directly as a relative effect. For |β| < 0.10 the absolute error
of the approximation is less than 0.005 or half a percentage point. Thus, a
coefficient of 0.10 can be interpreted as a 10% effect on the response.
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A general problem with transformations is that the two aims of achieving
linearity and constant variance may be in conflict. In generalized linear
models the two aims are separated more clearly, as we will see later in the
sequel.

2.10.2 Box-Cox Transformations

Box and Cox (1964) have proposed a family of transformations that can
be used with non-negative responses and which includes as special cases all
the transformations in common use, including reciprocals, logarithms and
square roots.

The basic idea is to work with the power transformation

y(λ) =

{

yλ−1
λ λ 6= 0

log(y) λ = 0

and assume that y(λ) follows a normal linear model with parameters β and
σ2 for some value of λ. Note that this transformation is essentially yλ for
λ 6= 0 and log(y) for λ = 0, but has been scaled to be continuous at λ = 0.
Useful values of λ are often found to be in the range (−2, 2). Except for
scaling factors, -1 is the reciprocal, 0 is the logarithm, 1/2 is the square
root, 1 is the identity and 2 is the square.

Given a value of λ, we can estimate the linear model parameters β and
σ2 as usual, except that we work with the transformed response y(λ) instead
of y. To select an appropriate transformation we need to try values of λ in a
suitable range. Unfortunately, the resulting models cannot be compared in
terms of their residual sums of squares because these are in different units.
We therefore use a likelihood criterion.

Starting from the normal distribution of the transformed response y(λ),
we can change variables to obtain the distribution of y. The resulting log-
likelihood is

logL(β, σ2, λ) = −n

2
log(2πσ2)− 1

2

∑

(y
(λ)
i − µi)

2/σ2 + (λ− 1)
∑

log(yi),

where the last term comes from the Jacobian of the transformation, which
has derivative yλ−1 for all λ. The other two terms are the usual normal
likelihood, showing that we can estimate β and σ2 for any fixed value of
λ by regressing the transformed response y(λ) on the x’s. Substituting the
m.l.e.’s of β and σ2 we obtain the concentrated or profile log-likelihood

logL(λ) = c− n

2
logRSS(y(λ)) + (λ− 1)

∑

log(yi),
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where c = n
2 log(2π/n)− n

2 is a constant not involving λ.
Calculation of the profile log-likelihood can be simplified slightly by work-

ing with the alternative transformation

z(λ) =

{

yλ−1
λỹλ−1 λ 6= 0

log(y)ỹ λ = 0,

where ỹ is the geometric mean of the original response, best calculated as
ỹ = exp(

∑

log(yi)/n). The profile log-likelihood can then be written as

logL(λ) = c− n

2
logRSS(z(λ)), (2.30)

where RSS(z(λ)) is the RSS after regressing z(λ) on the x’s. Using this alter-
native transformation the models for different values of λ can be compared
directly in terms of their RSS’s.

In practice we evaluate this profile log-likelihood for a range of possible
values of λ. Rather than selecting the exact maximum, one often rounds to
a value such as −1, 0, 1/2, 1 or 2, particularly if the profile log-likelihood is
relatively flat around the maximum.

More formally, let λ̂ denote the value that maximizes the profile likeli-
hood. We can test the hypothesis H0: λ = λ0 for any fixed value λ0 by
calculating the likelihood ratio criterion

χ2 = 2(logL(λ̂)− logL(λ0)),

which has approximately in large samples a chi-squared distribution with one
d.f. We can also define a likelihood-based confidence interval for λ as the set
of values that would be a accepted by the above test, i.e. the set of values for
which twice the log-likelihood is within χ2

1−α,1 of twice the maximum log-
likelihood. Identifying these values requires a numerical search procedure.

Box-Cox transformations are designed for non-negative responses, but
can be applied to data that have occassional zero or negative values by
adding a constant α to the response before applying the power transforma-
tion. Although α could be estimated, in practice one often uses a small value
such as a half or one (depending, obviously, on the scale of the response).

Let us apply this procedure to the program effort data. Since two coun-
tries show no decline in the CBR, we add 0.5 to all responses before trans-
forming them. Figure 2.8 shows the profile log-likelihood as a function of λ
for values in the range (−1, 2). Note that λ = 1 is not a bad choice, indi-
cating that the model in the original scale is reasonable. A slightly better
choice appears to be λ = 0.5, which is equivalent to using

√
y + 0.5 as the
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Figure 2.8: Profile Log-likelihood for Box-Cox Transformations
for Ancova Model of CBR Decline by Setting and Effort

response. Fitting this model leads to small changes in the significance of the
coefficients of setting and strong programs, but does not materially alter any
of the conclusions.

More formally, we note that the profile log-likelihood for λ = 1 is −61.07.
The maximum is attained at λ = 0.67 and is −59.25. Twice the difference
between these values gives a chi-squared statistic of 3.65 on one degree of
freedom, which is below the 5% critical value of 3.84. Thus, there is no
evidence that we need to transform the response. A more detailed search
shows that a 95% confidence interval for λ goes from 0.34 to 1.01. The
horizontal line in Figure 2.8, at a height of -61.17, identifies the limits of the
likelihood-based confidence interval.

2.10.3 The Atkinson Score

The Box-Cox procedure requires fitting a series of linear models, one for each
trial value of λ. Atkinson (1985) has proposed a simpler procedure that gives
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a quick indication of whether a transformation of the response is required
at all. In practical terms, this technique involves adding to the model an
auxiliary variable a defined as

ai = yi (log(yi/ỹ)− 1), (2.31)

where ỹ is the geometric mean of y, as in the previous subsection. Let
γ denote the coefficient of a in the expanded model. If the estimate of γ
is significant, then a Box-Cox transformation is indicated. A preliminary
estimate of the value of λ is 1− γ̂.

To see why this procedure works suppose the true model is

z(λ) = Xβ + ǫ,

where we have used the scale-independent version of the Box-Cox trans-
formation. Expanding the left-hand-side using a first-order Taylor series
approximation around λ = 1 gives

z(λ) ≈ z(1) + (λ− 1)
dz(λ)

dλ

∣

∣

∣

∣

∣

λ=1

.

The derivative evaluated at λ = 1 is a+log ỹ+1, where a is given by Equation
2.31. The second term does not depend on λ, so it can be absorbed into the
constant. Note also that z(1) = y−1. Using these results we can rewrite the
model as

y ≈ Xβ + (1− λ)a+ ǫ.

Thus, to a first-order approximation the coefficient of the ancillary variable
is 1− λ.

For the program effort data, adding the auxiliary variable a (calculated
using CBR+1/2 to avoid taking the logarithm of zero) to the analysis of
covariance model gives a coefficient of 0.59, suggesting a Box-Cox transfor-
mation with λ = 0.41. This value is reasonably close to the square root trans-
formation suggested by the profile log-likelihood. The associated t-statistic
is significant at the two percent level, but the more precise likelihood ra-
tio criterion of the previous section, though borderline, was not significant.
In conclusion, we do not have strong evidence of a need to transform the
response.

2.10.4 Transforming the Predictors

The Atkinson procedure is similar in spirit to a procedure first suggested by
Box and Tidwell (1962) to check whether one of the predictors needs to be
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transformed. Specifically, to test whether one should use a transformation
xλ of a continuous predictor x, these authors suggest adding the auxiliary
covariate

ai = xi log(xi)

to a model that already has x.
Let γ̂ denote the estimated coefficient of the auxiliary variate x log(x).

This coefficient can be tested using the usual t statistic with n − p d.f.
If the test is significant, it indicates a need to transform the predictor. A
preliminary estimate of the appropriate transformation is given by λ̂ = γ̂/β̂+
1, where β̂ is the estimated coefficient of x in the model with both x and
x log(x).

This procedure relies on a simple first-order approximation. Suppose the
true model is

Y = α+ βxλ + ǫ,

where we have considered a single predictor for simplicity. Using a first order
Taylor series expansion of xλ around λ = 1 we obtain xλ ≈ x+(λ−1)x log(x).
Using this approximation in the model we obtain

Y = α+ βx+ β(λ− 1)x log(x) + ǫ,

so the coefficient of x is β and the coefficient of x log(x) is γ = β(λ− 1). If
the estimate of γ is not significant, we have an indication that the predictor
has no effect on the response (β = 0) or that there is no need to transform
it (λ = 1). If the estimate is significant, we can solve for λ to obtain λ =
γ/β + 1, leading to the preliminary estimate given above. This method can
be iterated to obtain an improved approximation, but is used primarily as a
diagnostic check.

We can apply this technique to the program effort data by calculating a
new variable equal to the product of setting and its logarithm, and adding
it to the covariance analysis model with setting and effort. The estimated
coefficient is -0.030 with a standard error of 0.728, so there is no need to
transform setting. Note, incidentally, that the effect of setting is not signifi-
cant in this model.



Chapter 3

Logit Models for Binary

Data

We now turn our attention to regression models for dichotomous data, in-
cluding logistic regression and probit analysis. These models are appropriate
when the response takes one of only two possible values representing success
and failure, or more generally the presence or absence of an attribute of
interest.

3.1 Introduction to Logistic Regression

We start by introducing an example that will be used to illustrate the anal-
ysis of binary data. We then discuss the stochastic structure of the data in
terms of the Bernoulli and binomial distributions, and the systematic struc-
ture in terms of the logit transformation. The result is a generalized linear
model with binomial response and link logit.

3.1.1 The Contraceptive Use Data

Table 3.1, adapted from Little (1978), shows the distribution of 1607 cur-
rently married and fecund women interviewed in the Fiji Fertility Survey of
1975, classified by current age, level of education, desire for more children,
and contraceptive use.

In our analysis of these data we will view current use of contraception as
the response or dependent variable of interest and age, education and desire
for more children as predictors. Note that the response has two categories:
use and non-use. In this example all predictors are treated as categorical

G. Rodŕıguez. Revised September 2007
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Table 3.1: Current Use of Contraception Among Married Women
by Age, Education and Desire for More Children

Fiji Fertility Survey, 1975

Age Education
Desires More Contraceptive Use

Total
Children? No Yes

<25 Lower Yes 53 6 59
No 10 4 14

Upper Yes 212 52 264
No 50 10 60

25–29 Lower Yes 60 14 74
No 19 10 29

Upper Yes 155 54 209
No 65 27 92

30–39 Lower Yes 112 33 145
No 77 80 157

Upper Yes 118 46 164
No 68 78 146

40–49 Lower Yes 35 6 41
No 46 48 94

Upper Yes 8 8 16
No 12 31 43

Total 1100 507 1607

variables, but the techniques to be studied can be applied more generally to
both discrete factors and continuous variates.

The original dataset includes the date of birth of the respondent and the
date of interview in month/year form, so it is possible to calculate age in
single years, but we will use ten-year age groups for convenience. Similarly,
the survey included information on the highest level of education attained
and the number of years completed at that level, so one could calculate
completed years of education, but we will work here with a simple distinction
between lower primary or less and upper primary or more. Finally, desire
for more children is measured as a simple dichotomy coded yes or no, and
therefore is naturally a categorical variate.

The fact that we treat all predictors as discrete factors allows us to sum-
marize the data in terms of the numbers using and not using contraception in
each of sixteen different groups defined by combinations of values of the pre-
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dictors. For models involving discrete factors we can obtain exactly the same
results working with grouped data or with individual data, but grouping is
convenient because it leads to smaller datasets. If we were to incorporate
continuous predictors into the model we would need to work with the orig-
inal 1607 observations. Alternatively, it might be possible to group cases
with identical covariate patterns, but the resulting dataset may not be much
smaller than the original one.

The basic aim of our analysis will be to describe the way in which con-
traceptive use varies by age, education and desire for more children. An
example of the type of research question that we will consider is the extent
to which the association between education and contraceptive use is affected
by the fact that women with upper primary or higher education are younger
and tend to prefer smaller families than women with lower primary education
or less.

3.1.2 The Binomial Distribution

We consider first the case where the response yi is binary, assuming only two
values that for convenience we code as one or zero. For example, we could
define

yi =

{

1 if the i-th woman is using contraception
0 otherwise.

We view yi as a realization of a random variable Yi that can take the values
one and zero with probabilities πi and 1− πi, respectively. The distribution
of Yi is called a Bernoulli distribution with parameter πi, and can be written
in compact form as

Pr{Yi = yi} = πyi
i (1− πi)

1−yi , (3.1)

for yi = 0, 1. Note that if yi = 1 we obtain πi, and if yi = 0 we obtain 1−πi.

It is fairly easy to verify by direct calculation that the expected value
and variance of Yi are

E(Yi) = µi = πi, and

var(Yi) = σ2
i = πi(1− πi).

(3.2)

Note that the mean and variance depend on the underlying probability πi.
Any factor that affects the probability will alter not just the mean but also
the variance of the observations. This suggest that a linear model that allows
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the predictors to affect the mean but assumes that the variance is constant
will not be adequate for the analysis of binary data.

Suppose now that the units under study can be classified according to
the factors of interest into k groups in such a way that all individuals in a
group have identical values of all covariates. In our example, women may be
classified into 16 different groups in terms of their age, education and desire
for more children. Let ni denote the number of observations in group i, and
let yi denote the number of units who have the attribute of interest in group
i. For example, let

yi = number of women using contraception in group i.

We view yi as a realization of a random variable Yi that takes the values
0, 1, . . . , ni. If the ni observations in each group are independent, and they
all have the same probability πi of having the attribute of interest, then the
distribution of Yi is binomial with parameters πi and ni, which we write

Yi ∼ B(ni, πi).

The probability distribution function of Yi is given by

Pr{Yi = yi} =

(

ni

yi

)

πyi
i (1− πi)

ni−yi (3.3)

for yi = 0, 1, . . . , ni. Here πyi
i (1 − πi)

ni−yi is the probability of obtaining yi
successes and ni − yi failures in some specific order, and the combinatorial
coefficient is the number of ways of obtaining yi successes in ni trials.

The mean and variance of Yi can be shown to be

E(Yi) = µi = niπi, and

var(Yi) = σ2
i = niπi(1− πi).

(3.4)

The easiest way to obtain this result is as follows. Let Yij be an indicator
variable that takes the values one or zero if the j-th unit in group i is a success
or a failure, respectively. Note that Yij is a Bernoulli random variable with
mean and variance as given in Equation 3.2. We can write the number of
successes Yi in group i as a sum of the individual indicator variables, so
Yi =

∑

j Yij . The mean of Yi is then the sum of the individual means, and
by independence, its variance is the sum of the individual variances, leading
to the result in Equation 3.4. Note again that the mean and variance depend
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on the underlying probability πi. Any factor that affects this probability will
affect both the mean and the variance of the observations.

From a mathematical point of view the grouped data formulation given
here is the most general one; it includes individual data as the special case
where we have n groups of size one, so k = n and ni = 1 for all i. It also
includes as a special case the other extreme where the underlying probability
is the same for all individuals and we have a single group, with k = 1 and
n1 = n. Thus, all we need to consider in terms of estimation and testing is
the binomial distribution.

From a practical point of view it is important to note that if the pre-
dictors are discrete factors and the outcomes are independent, we can use
the Bernoulli distribution for the individual zero-one data or the binomial
distribution for grouped data consisting of counts of successes in each group.
The two approaches are equivalent, in the sense that they lead to exactly
the same likelihood function and therefore the same estimates and standard
errors. Working with grouped data when it is possible has the additional
advantage that, depending on the size of the groups, it becomes possible to
test the goodness of fit of the model. In terms of our example we can work
with 16 groups of women (or fewer when we ignore some of the predictors)
and obtain exactly the same estimates as we would if we worked with the
1607 individuals.

In Appendix B we show that the binomial distribution belongs to Nelder
and Wedderburn’s (1972) exponential family, so it fits in our general theo-
retical framework.

3.1.3 The Logit Transformation

The next step in defining a model for our data concerns the systematic
structure. We would like to have the probabilities πi depend on a vector
of observed covariates xi. The simplest idea would be to let πi be a linear
function of the covariates, say

πi = x
′

iβ, (3.5)

where β is a vector of regression coefficients. Model 3.5 is sometimes called
the linear probability model. This model is often estimated from individual
data using ordinary least squares (OLS).

One problem with this model is that the probability πi on the left-hand-
side has to be between zero and one, but the linear predictor x

′

iβ on the
right-hand-side can take any real value, so there is no guarantee that the
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predicted values will be in the correct range unless complex restrictions are
imposed on the coefficients.

A simple solution to this problem is to transform the probability to re-
move the range restrictions, and model the transformation as a linear func-
tion of the covariates. We do this in two steps.

First, we move from the probability πi to the odds

oddsi =
πi

1− πi
,

defined as the ratio of the probability to its complement, or the ratio of
favorable to unfavorable cases. If the probability of an event is a half, the
odds are one-to-one or even. If the probability is 1/3, the odds are one-
to-two. If the probability is very small, the odds are said to be long. In
some contexts the language of odds is more natural than the language of
probabilities. In gambling, for example, odds of 1 : k indicate that the fair
payoff for a stake of one is k. The key from our point of view is that the
languages are equivalent, i.e. one can easily be translated into the other, but
odds can take any positive value and therefore have no ceiling restriction.

Second, we take logarithms, calculating the logit or log-odds

ηi = logit(πi) = log
πi

1− πi
, (3.6)

which has the effect of removing the floor restriction. To see this point note
that as the probability goes down to zero the odds approach zero and the logit
approaches −∞. At the other extreme, as the probability approaches one
the odds approach +∞ and so does the logit. Thus, logits map probabilities
from the range (0, 1) to the entire real line. Note that if the probability
is 1/2 the odds are even and the logit is zero. Negative logits represent
probabilities below one half and positive logits correspond to probabilities
above one half. Figure 3.1 illustrates the logit transformation.

Logits may also be defined in terms of the binomial mean µi = niπi as
the log of the ratio of expected successes µi to expected failures ni−µi. The
result is exactly the same because the binomial denominator ni cancels out
when calculating the odds.

In the contraceptive use data there are 507 users of contraception among
1607 women, so we estimate the probability as 507/1607 = 0.316. The odds
are 507/1100 or 0.461 to one, so non-users outnumber users roughly two to
one. The logit is log(0.461) = −0.775.

The logit transformation is one-to-one. The inverse transformation is
sometimes called the antilogit, and allows us to go back from logits to prob-
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Figure 3.1: The Logit Transformation

abilities. Solving for πi in Equation 3.6 gives

πi = logit−1(ηi) =
eηi

1 + eηi
. (3.7)

In the contraceptive use data the estimated logit was −0.775. Exponenti-
ating this value we obtain odds of exp(−0.775) = 0.461 and from this we
obtain a probability of 0.461/(1 + 0.461) = 0.316.

We are now in a position to define the logistic regression model, by
assuming that the logit of the probability πi, rather than the probability
itself, follows a linear model.

3.1.4 The Logistic Regression Model

Suppose that we have k independent observations y1, . . . , yk, and that the
i-th observation can be treated as a realization of a random variable Yi. We
assume that Yi has a binomial distribution

Yi ∼ B(ni, πi) (3.8)

with binomial denominator ni and probability πi. With individual data
ni = 1 for all i. This defines the stochastic structure of the model.

Suppose further that the logit of the underlying probability πi is a linear
function of the predictors

logit(πi) = x
′

iβ, (3.9)
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where xi is a vector of covariates and β is a vector of regression coefficients.
This defines the systematic structure of the model.

The model defined in Equations 3.8 and 3.9 is a generalized linear model
with binomial response and link logit. Note, incidentally, that it is more
natural to consider the distribution of the response Yi than the distribution
of the implied error term Yi − µi.

The regression coefficients β can be interpreted along the same lines as in
linear models, bearing in mind that the left-hand-side is a logit rather than
a mean. Thus, βj represents the change in the logit of the probability asso-
ciated with a unit change in the j-th predictor holding all other predictors
constant. While expressing results in the logit scale will be unfamiliar at
first, it has the advantage that the model is rather simple in this particular
scale.

Exponentiating Equation 3.9 we find that the odds for the i-th unit are
given by

πi
1− πi

= exp{x′

iβ}. (3.10)

This expression defines a multiplicative model for the odds. For example
if we were to change the j-th predictor by one unit while holding all other
variables constant, we would multiply the odds by exp{βj}. To see this
point suppose the linear predictor is x

′

iβ and we increase xj by one, to
obtain x

′

iβ+βj . Exponentiating we get exp{x′

iβ} times exp{βj}. Thus, the
exponentiated coefficient exp{βj} represents an odds ratio. Translating the
results into multiplicative effects on the odds, or odds ratios, is often helpful,
because we can deal with a more familiar scale while retaining a relatively
simple model.

Solving for the probability πi in the logit model in Equation 3.9 gives
the more complicated model

πi =
exp{x′

iβ}
1 + exp{x′

iβ}
. (3.11)

While the left-hand-side is in the familiar probability scale, the right-hand-
side is a non-linear function of the predictors, and there is no simple way
to express the effect on the probability of increasing a predictor by one unit
while holding the other variables constant. We can obtain an approximate
answer by taking derivatives with respect to xj , which of course makes sense
only for continuous predictors. Using the quotient rule we get

dπi
dxij

= βjπi(1− πi).
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Thus, the effect of the j-th predictor on the probability πi depends on the
coefficient βj and the value of the probability. Analysts sometimes evaluate
this product setting πi to the sample mean (the proportion of cases with the
attribute of interest in the sample). The result approximates the effect of
the covariate near the mean of the response.

In the examples that follow we will emphasize working directly in the
logit scale, but we will often translate effects into odds ratios to help in
interpretation.

Before we leave this topic it may be worth considering the linear proba-
bility model of Equation 3.5 one more time. In addition to the fact that the
linear predictor x

′

iβ may yield values outside the (0, 1) range, one should
consider whether it is reasonable to assume linear effects on a probability
scale that is subject to floor and ceiling effects. An incentive, for example,
may increase the probability of taking an action by ten percentage points
when the probability is a half, but couldn’t possibly have that effect if the
baseline probability was 0.95. This suggests that the assumption of a linear
effect across the board may not be reasonable.

In contrast, suppose the effect of the incentive is 0.4 in the logit scale,
which is equivalent to approximately a 50% increase in the odds of taking
the action. If the original probability is a half the logit is zero, and adding
0.4 to the logit gives a probability of 0.6, so the effect is ten percentage
points, just as before. If the original probability is 0.95, however, the logit
is almost three, and adding 0.4 in the logit scale gives a probability of 0.97,
an effect of just two percentage points. An effect that is constant in the
logit scale translates into varying effects on the probability scale, adjusting
automatically as one approaches the floor of zero or the ceiling of one. This
feature of the transformation is clearly seen from Figure 3.1.

3.2 Estimation and Hypothesis Testing

The logistic regression model just developed is a generalized linear model
with binomial errors and link logit. We can therefore rely on the general
theory developed in Appendix B to obtain estimates of the parameters and
to test hypotheses. In this section we summarize the most important results
needed in the applications.

3.2.1 Maximum Likelihood Estimation

Although you will probably use a statistical package to compute the esti-
mates, here is a brief description of the underlying procedure. The likelihood
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function for n independent binomial observations is a product of densities
given by Equation 3.3. Taking logs we find that, except for a constant in-
volving the combinatorial terms, the log-likelihood function is

logL(β) =
∑

{yi log(πi) + (ni − yi) log(1− πi)},

where πi depends on the covariates xi and a vector of p parameters β through
the logit transformation of Equation 3.9.

At this point we could take first and expected second derivatives to obtain
the score and information matrix and develop a Fisher scoring procedure for
maximizing the log-likelihood. As shown in Appendix B, the procedure is
equivalent to iteratively re-weighted least squares (IRLS). Given a current
estimate β̂ of the parameters, we calculate the linear predictor η̂ = x

′

iβ̂ and
the fitted values µ̂ = logit−1(η). With these values we calculate the working
dependent variable z, which has elements

zi = η̂i +
yi − µ̂i

µ̂i(ni − µ̂i)
ni,

where ni are the binomial denominators. We then regress z on the covariates
calculating the weighted least squares estimate

β̂ = (X′
WX)−1

X
′
Wz,

where W is a diagonal matrix of weights with entries

wii = µ̂i(ni − µ̂i)/ni.

(You may be interested to know that the weight is inversely proportional to
the estimated variance of the working dependent variable.) The resulting
estimate of β is used to obtain improved fitted values and the procedure is
iterated to convergence.

Suitable initial values can be obtained by applying the link to the data.
To avoid problems with counts of 0 or ni (which is always the case with
individual zero-one data), we calculate empirical logits adding 1/2 to both
the numerator and denominator, i.e. we calculate

zi = log
yi + 1/2

ni − yi + 1/2
,

and then regress this quantity on xi to obtain an initial estimate of β.
The resulting estimate is consistent and its large-sample variance is given

by
var(β̂) = (X′

WX)−1 (3.12)
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where W is the matrix of weights evaluated in the last iteration.

Alternatives to maximum likelihood estimation include weighted least
squares, which can be used with grouped data, and a method that minimizes
Pearson’s chi-squared statistic, which can be used with both grouped and
individual data. We will not consider these alternatives further.

3.2.2 Goodness of Fit Statistics

Suppose we have just fitted a model and want to assess how well it fits the
data. A measure of discrepancy between observed and fitted values is the
deviance statistic, which is given by

D = 2
∑

{yi log(
yi
µ̂i

) + (ni − yi) log(
ni − yi
ni − µ̂i

)}, (3.13)

where yi is the observed and µ̂i is the fitted value for the i-th observation.
Note that this statistic is twice a sum of ‘observed times log of observed over
expected’, where the sum is over both successes and failures (i.e. we compare
both yi and ni − yi with their expected values). In a perfect fit the ratio
observed over expected is one and its logarithm is zero, so the deviance is
zero.

In Appendix B we show that this statistic may be constructed as a likeli-
hood ratio test that compares the model of interest with a saturated model
that has one parameter for each observation.

With grouped data, the distribution of the deviance statistic as the group
sizes ni → ∞ for all i, converges to a chi-squared distribution with n − p
d.f., where n is the number of groups and p is the number of parameters
in the model, including the constant. Thus, for reasonably large groups,
the deviance provides a goodness of fit test for the model. With individual
data the distribution of the deviance does not converge to a chi-squared
(or any other known) distribution, and cannot be used as a goodness of fit
test. We will, however, consider other diagnostic tools that can be used with
individual data.

An alternative measure of goodness of fit is Pearson’s chi-squared statis-

tic, which for binomial data can be written as

χ2
P =

∑

i

ni(yi − µ̂i)
2

µ̂i(ni − µ̂i)
. (3.14)

Note that each term in the sum is the squared difference between observed
and fitted values yi and µ̂i, divided by the variance of yi, which is µi(ni −
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µi)/ni, estimated using µ̂i for µi. This statistic can also be derived as a sum
of ‘observed minus expected squared over expected’, where the sum is over
both successes and failures.

With grouped data Pearson’s statistic has approximately in large samples
a chi-squared distribution with n−p d.f., and is asymptotically equivalent to
the deviance or likelihood-ratio chi-squared statistic. The statistic can not
be used as a goodness of fit test with individual data, but provides a basis
for calculating residuals, as we shall see when we discuss logistic regression
diagnostics.

3.2.3 Tests of Hypotheses

Let us consider the problem of testing hypotheses in logit models. As usual,
we can calculate Wald tests based on the large-sample distribution of the
m.l.e., which is approximately normal with mean β and variance-covariance
matrix as given in Equation 3.12.

In particular, we can test the hypothesis

H0 : βj = 0

concerning the significance of a single coefficient by calculating the ratio of
the estimate to its standard error

z =
β̂j

√

v̂ar(β̂j)
.

This statistic has approximately a standard normal distribution in large sam-
ples. Alternatively, we can treat the square of this statistic as approximately
a chi-squared with one d.f.

The Wald test can be use to calculate a confidence interval for βj . We
can assert with 100(1 − α)% confidence that the true parameter lies in the
interval with boundaries

β̂j ± z1−α/2

√

v̂ar(β̂j),

where z1−α/2 is the normal critical value for a two-sided test of size α. Confi-
dence intervals for effects in the logit scale can be translated into confidence
intervals for odds ratios by exponentiating the boundaries.

The Wald test can be applied to tests hypotheses concerning several
coefficients by calculating the usual quadratic form. This test can also be
inverted to obtain confidence regions for vector-value parameters, but we
will not consider this extension.
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For more general problems we consider the likelihood ratio test. A key
to construct these tests is the deviance statistic introduced in the previous
subsection. In a nutshell, the likelihood ratio test to compare two nested
models is based on the difference between their deviances.

To fix ideas, consider partitioning the model matrix and the vector of
coefficients into two components

X = (X1,X2) and β =

(

β1

β2

)

with p1 and p2 elements, respectively. Consider testing the hypothesis

H0 : β2 = 0,

that the variables in X2 have no effect on the response, i.e. the joint signifi-
cance of the coefficients in β2.

LetD(X1) denote the deviance of a model that includes only the variables
in X1 and let D(X1 +X2) denote the deviance of a model that includes all
variables in X. Then the difference

χ2 = D(X1)−D(X1 +X2)

has approximately in large samples a chi-squared distribution with p2 d.f.
Note that p2 is the difference in the number of parameters between the two
models being compared.

The deviance plays a role similar to the residual sum of squares. In fact,
in Appendix B we show that in models for normally distributed data the
deviance is the residual sum of squares. Likelihood ratio tests in general-
ized linear models are based on scaled deviances, obtained by dividing the
deviance by a scale factor. In linear models the scale factor was σ2, and we
had to divide the RSS’s (or their difference) by an estimate of σ2 in order to
calculate the test criterion. With binomial data the scale factor is one, and
there is no need to scale the deviances.

The Pearson chi-squared statistic in the previous subsection, while pro-
viding an alternative goodness of fit test for grouped data, cannot be used
in general to compare nested models. In particular, differences in deviances
have chi-squared distributions but differences in Pearson chi-squared statis-
tics do not. This is the main reason why in statistical modelling we use
the deviance or likelihood ratio chi-squared statistic rather than the more
traditional Pearson chi-squared of elementary statistics.
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3.3 The Comparison of Two Groups

We start our applications of logit regression with the simplest possible ex-
ample: a two by two table. We study a binary outcome in two groups, and
introduce the odds ratio and the logit analogue of the two-sample t test.

3.3.1 A 2-by-2 Table

We will use the contraceptive use data classified by desire for more children,
as summarized in Table 3.2

Table 3.2: Contraceptive Use by Desire for More Children

Desires Using Not Using All
i yi ni − yi ni

Yes 219 753 972
No 288 347 635

All 507 1100 1607

We treat the counts of users yi as realizations of independent random
variables Yi having binomial distributions B(ni, πi) for i = 1, 2, and consider
models for the logits of the probabilities.

3.3.2 Testing Homogeneity

There are only two possible models we can entertain for these data. The
first one is the null model. This model assumes homogeneity, so the two
groups have the same probability and therefore the same logit

logit(πi) = η.

The m.l.e. of the common logit is −0.775, which happens to be the logit of the
sample proportion 507/1607 = 0.316. The standard error of the estimate is
0.054. This value can be used to obtain an approximate 95% confidence limit
for the logit with boundaries (−0.880,−0.669). Calculating the antilogit of
these values, we obtain a 95% confidence interval for the overall probability
of using contraception of (0.293, 0.339).

The deviance for the null model happens to be 91.7 on one d.f. (two
groups minus one parameter). This value is highly significant, indicating
that this model does not fit the data, i.e. the two groups classified by desire
for more children do not have the same probability of using contraception.
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The value of the deviance is easily verified by hand. The estimated
probability of 0.316, applied to the sample sizes in Table 3.2, leads us to ex-
pect 306.7 and 200.3 users of contraception in the two groups, and therefore
665.3 and 434.7 non-users . Comparing the observed and expected numbers
of users and non-users in the two groups using Equation 3.13 gives 91.7.

You can also compare the observed and expected frequencies using Pear-
son’s chi-squared statistic from Equation 3.14. The result is 92.6 on one d.f.,
and provides an alternative test of the goodness of fit of the null model.

3.3.3 The Odds Ratio

The other model that we can entertain for the two-by-two table is the one-

factor model, where we write

logit(πi) = η + αi,

where η is an overall logit and αi is the effect of group i on the logit. Just as
in the one-way anova model, we need to introduce a restriction to identify
this model. We use the reference cell method, and set α1 = 0. The model
can then be written

logit(πi) =

{

η i = 1
η + α2 i = 2

so that η becomes the logit of the reference cell, and α2 is the effect of level
two of the factor compared to level one, or more simply the difference in
logits between level two and the reference cell. Table 3.3 shows parameter
estimates and standard errors for this model.

Table 3.3: Parameter Estimates for Logit Model of
Contraceptive Use by Desire for More Children

Parameter Symbol Estimate Std. Error z-ratio

Constant η −1.235 0.077 −16.09
Desire α2 1.049 0.111 9.48

The estimate of η is, as you might expect, the logit of the observed
proportion using contraception among women who desire more children,
logit(219/972) = −1.235. The estimate of α2 is the difference between the
logits of the two groups, logit(288/635)− logit(219/972) = 1.049.
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Exponentiating the additive logit model we obtain a multiplicative model
for the odds:

πi
1− πi

=

{

eη i = 1
eηeα2 i = 2

so that eη becomes the odds for the reference cell and eα2 is the ratio of
the odds for level 2 of the factor to the odds for the reference cell. Not
surprisingly, eα2 is called the odds ratio.

In our example, the effect of 1.049 in the logit scale translates into an
odds ratio of 2.85. Thus, the odds of using contraception among women who
want no more children are nearly three times as high as the odds for women
who desire more children.

From the estimated logit effect of 1.049 and its standard error we can
calculate a 95% confidence interval with boundaries (0.831, 1.267). Exponen-
tiating these boundaries we obtain a 95% confidence interval for the odds
ratio of (2.30, 3.55). Thus, we conclude with 95% confidence that the odds of
using contraception among women who want no more children are between
two and three-and-a-half times the corresponding odds for women who want
more children.

The estimate of the odds ratio can be calculated directly as the cross-
product of the frequencies in the two-by-two table. If we let fij denote the
frequency in cell i, j then the estimated odds ratio is

f11f22
f12f21

.

The deviance of this model is zero, because the model is saturated: it
has two parameters to represent two groups, so it has to do a perfect job.
The reduction in deviance of 91.7 from the null model down to zero can be
interpreted as a test of

H0 : α2 = 0,

the significance of the effect of desire for more children.
An alternative test of this effect is obtained from the m.l.e of 1.049 and

its standard error of 0.111, and gives a z-ratio of 9.47. Squaring this value we
obtain a chi-squared of 89.8 on one d.f. Note that the Wald test is similar,
but not identical, to the likelihood ratio test. Recall that in linear models
the two tests were identical. In logit models they are only asymptotically
equivalent.

The logit of the observed proportion pi = yi/ni has large-sample variance

var(logit(pi)) =
1

µi
+

1

ni − µi
,
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which can be estimated using yi to estimate µi for i = 1, 2. Since the two
groups are independent samples, the variance of the difference in logits is
the sum of the individual variances. You may use these results to verify the
Wald test given above.

3.3.4 The Conventional Analysis

It might be instructive to compare the results obtained here with the conven-
tional analysis of this type of data, which focuses on the sample proportions
and their difference. In our example, the proportions using contraception are
0.225 among women who want another child and 0.453 among those who do
not. The difference of 0.228 has a standard error of 0.024 (calculated using
the pooled estimate of the proportion). The corresponding z-ratio is 9.62
and is equivalent to a chi-squared of 92.6 on one d.f.

Note that the result coincides with the Pearson chi-squared statistic test-
ing the goodness of fit of the null model. In fact, Pearson’s chi-squared and
the conventional test for equality of two proportions are one and the same.

In the case of two samples it is debatable whether the group effect is
best measured in terms of a difference in probabilities, the odds-ratio, or even
some other measures such as the relative difference proposed by Sheps (1961).
For arguments on all sides of this issue see Fleiss (1973).

3.4 The Comparison of Several Groups

Let us take a more general look at logistic regression models with a single
predictor by considering the comparison of k groups. This will help us
illustrate the logit analogues of one-way analysis of variance and simple
linear regression models.

3.4.1 A k-by-Two Table

Consider a cross-tabulation of contraceptive use by age, as summarized in
Table 3.4. The structure of the data is the same as in the previous section,
except that we now have four groups rather than two.

The analysis of this table proceeds along the same lines as in the two-
by-two case. The null model yields exactly the same estimate of the overall
logit and its standard error as before. The deviance, however, is now 79.2
on three d.f. This value is highly significant, indicating that the assumption
of a common probability of using contraception for the four age groups is
not tenable.
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Table 3.4: Contraceptive Use by Age

Age Using Not Using Total
i yi ni − yi ni

<25 72 325 397
25–29 105 299 404
30–39 237 375 612
40–49 93 101 194

Total 507 1100 1607

3.4.2 The One-Factor Model

Consider now a one-factor model, where we allow each group or level of the
discrete factor to have its own logit. We write the model as

logit(πi) = η + αi.

To avoid redundancy we adopt the reference cell method and set α1 = 0,
as before. Then η is the logit of the reference group, and αi measures the
difference in logits between level i of the factor and the reference level. This
model is exactly analogous to an analysis of variance model. The model
matrix X consists of a column of ones representing the constant and k − 1
columns of dummy variables representing levels two to k of the factor.

Fitting this model to Table 3.4 leads to the parameter estimates and
standard errors in Table 3.5. The deviance for this model is of course zero
because the model is saturated: it uses four parameters to model four groups.

Table 3.5: Estimates and Standard Errors for Logit Model
of Contraceptive Use by Age in Groups

Parameter Symbol Estimate Std. Error z-ratio

Constant η −1.507 0.130 −11.57
Age 25–29 α2 0.461 0.173 2.67

30–39 α3 1.048 0.154 6.79
40–49 α4 1.425 0.194 7.35

The baseline logit of −1.51 for women under age 25 corresponds to odds
of 0.22. Exponentiating the age coefficients we obtain odds ratios of 1.59,
2.85 and 4.16. Thus, the odds of using contraception increase by 59% and
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185% as we move to ages 25–29 and 30–39, and are quadrupled for ages
40–49, all compared to women under age 25.

All of these estimates can be obtained directly from the frequencies in
Table 3.4 in terms of the logits of the observed proportions. For example
the constant is logit(72/397) = −1.507, and the effect for women 25–29 is
logit(105/404) minus the constant.

To test the hypothesis of no age effects we can compare this model with
the null model. Since the present model is saturated, the difference in de-
viances is exactly the same as the deviance of the null model, which was 79.2
on three d.f. and is highly significant. An alternative test of

H0 : α2 = α3 = α4 = 0

is based on the estimates and their variance-covariance matrix. Let α =
(α2, α3, α4)

′. Then

α̂ =







0.461
1.048
1.425






and v̂ar(α̂) =







0.030 0.017 0.017
0.017 0.024 0.017
0.017 0.017 0.038






,

and the Wald statistic is

W = α̂′ v̂ar−1(α̂) α̂ = 74.4

on three d.f. Again, the Wald test gives results similar to the likelihood ratio
test.

3.4.3 A One-Variate Model

Note that the estimated logits in Table 3.5 (and therefore the odds and
probabilities) increase monotonically with age. In fact, the logits seem to
increase by approximately the same amount as we move from one age group
to the next. This suggests that the effect of age may actually be linear in
the logit scale.

To explore this idea we treat age as a variate rather than a factor. A
thorough exploration would use the individual data with age in single years
(or equivalently, a 35 by two table of contraceptive use by age in single
years from 15 to 49). However, we can obtain a quick idea of whether the
model would be adequate by keeping age grouped into four categories but
representing these by themid-points of the age groups. We therefore consider
a model analogous to simple linear regression, where

logit(πi) = α+ βxi,
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where xi takes the values 20, 27.5, 35 and 45, respectively, for the four age
groups. This model fits into our general framework, and corresponds to
the special case where the model matrix X has two columns, a column of
ones representing the constant and a column with the mid-points of the age
groups, representing the linear effect of age.

Fitting this model gives a deviance of 2.40 on two d.f. , which indicates
a very good fit. The parameter estimates and standard errors are shown in
Table 3.6. Incidentally, there is no explicit formula for the estimates of the
constant and slope in this model, so we must rely on iterative procedures to
obtain the estimates.

Table 3.6: Estimates and Standard Errors for Logit Model
of Contraceptive Use with a Linear Effect of Age

Parameter Symbol Estimate Std. Error z-ratio

Constant α −2.673 0.233 −11.46
Age (linear) β 0.061 0.007 8.54

The slope indicates that the logit of the probability of using contraception
increases 0.061 for every year of age. Exponentiating this value we note that
the odds of using contraception are multiplied by 1.063—that is, increase
6.3%—for every year of age. Note, by the way, that eβ ≈ 1 + β for small
|β|. Thus, when the logit coefficient is small in magnitude, 100β provides
a quick approximation to the percent change in the odds associated with
a unit change in the predictor. In this example the effect is 6.3% and the
approximation is 6.1%.

To test the significance of the slope we can use the Wald test, which
gives a z statistic of 8.54 or equivalently a chi-squared of 73.9 on one d.f.
Alternatively, we can construct a likelihood ratio test by comparing this
model with the null model. The difference in deviances is 76.8 on one d.f.
Comparing these results with those in the previous subsection shows that
we have captured most of the age effect using a single degree of freedom.

Adding the estimated constant to the product of the slope by the mid-
points of the age groups gives estimated logits at each age, and these may be
compared with the logits of the observed proportions using contraception.
The results of this exercise appear in Figure 3.2. The visual impression of the
graph confirms that the fit is quite good. In this example the assumption of
linear effects on the logit scale leads to a simple and parsimonious model. It
would probably be worthwhile to re-estimate this model using the individual
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Figure 3.2: Observed and Fitted Logits for Model of
Contraceptive Use with a Linear Effect of Age

ages.

3.5 Models With Two Predictors

We now consider models involving two predictors, and discuss the binary
data analogues of two-way analysis of variance, multiple regression with
dummy variables, and analysis of covariance models. An important element
of the discussion concerns the key concepts of main effects and interactions.

3.5.1 Age and Preferences

Consider the distribution of contraceptive use by age and desire for more
children, as summarized in Table 3.7. We have a total of eight groups,
which will be indexed by a pair of subscripts i, j, with i = 1, 2, 3, 4 referring
to the four age groups and j = 1, 2 denoting the two categories of desire for
more children. We let yij denote the number of women using contraception
and nij the total number of women in age group i and category j of desire
for more children.

We now analyze these data under the usual assumption of a binomial
error structure, so the yij are viewed as realizations of independent random
variables Yij ∼ B(nij , πij).
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Table 3.7: Contraceptive Use by Age and Desire for More Children

Age Desires Using Not Using All
i j yij nij − yij nij

<25 Yes 58 265 323
No 14 60 74

25–29 Yes 68 215 283
No 37 84 121

30–39 Yes 79 230 309
No 158 145 303

40–49 Yes 14 43 57
No 79 58 137

Total 507 1100 1607

3.5.2 The Deviance Table

There are five basic models of interest for the systematic structure of these
data, ranging from the null to the saturated model. These models are listed
in Table 3.8, which includes the name of the model, a descriptive notation,
the formula for the linear predictor, the deviance or goodness of fit likelihood
ratio chi-squared statistic, and the degrees of freedom.

Note first that the null model does not fit the data: the deviance of 145.7
on 7 d.f. is much greater than 14.1, the 95-th percentile of the chi-squared
distribution with 7 d.f. This result is not surprising, since we already knew
that contraceptive use depends on desire for more children and varies by age.

Table 3.8: Deviance Table for Models of Contraceptive Use
by Age (Grouped) and Desire for More Children

Model Notation logit(πij) Deviance d.f.

Null φ η 145.7 7
Age A η + αi 66.5 4
Desire D η + βj 54.0 6
Additive A+D η + αi + βj 16.8 3
Saturated AD η + αi + βj + (αβ)ij 0 0

Introducing age in the model reduces the deviance to 66.5 on four d.f.
The difference in deviances between the null model and the age model pro-
vides a test for the gross effect of age. The difference is 79.2 on three d.f.,
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and is highly significant. This value is exactly the same that we obtained in
the previous section, when we tested for an age effect using the data clas-
sified by age only. Moreover, the estimated age effects based on fitting the
age model to the three-way classification in Table 3.7 would be exactly the
same as those estimated in the previous section, and have the property of
reproducing exactly the proportions using contraception in each age group.

This equivalence illustrate an important property of binomial models.
All information concerning the gross effect of age on contraceptive use is
contained in the marginal distribution of contraceptive use by age. We can
work with the data classified by age only, by age and desire for more children,
by age, education and desire for more children, or even with the individual
data. In all cases the estimated effects, standard errors, and likelihood ratio
tests based on differences between deviances will be the same.

The deviances themselves will vary, however, because they depend on
the context. In the previous section the deviance of the age model was
zero, because treating age as a factor reproduces exactly the proportions
using contraception by age. In this section the deviance of the age model is
66.5 on four d.f. and is highly significant, because the age model does not
reproduce well the table of contraceptive use by both age and preferences.
In both cases, however, the difference in deviances between the age model
and the null model is 79.2 on three d.f.

The next model in Table 3.8 is the model with a main effect of desire
for more children, and has a deviance of 54.0 on six d.f. Comparison of
this value with the deviance of the null model shows a gain of 97.1 at the
expense of one d.f., indicating a highly significant gross effect of desire for
more children. This is, of course, the same result that we obtained in Section
3.3, when we first looked at contraceptive use by desire for more children.
Note also that this model does not fit the data, as it own deviance is highly
significant.

The fact that the effect of desire for more children has a chi-squared
statistic of 91.7 with only one d.f., whereas age gives 79.2 on three d.f.,
suggests that desire for more children has a stronger effect on contraceptive
use than age does. Note, however, that the comparison is informal; the
models are not nested, and therefore we cannot construct a significance test
from their deviances.

3.5.3 The Additive Model

Consider now the two-factor additive model, denoted A+D in Table 3.8. In
this model the logit of the probability of using contraception in age group i
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and in category j of desire for more children is

logit(πij) = η + αi + βj ,

where η is a constant, the αi are age effects and the βj are effects of desire
for more children. To avoid redundant parameters we adopt the reference
cell method and set α1 = β1 = 0. The parameters may then be interpreted
as follows:

η is the logit of the probability of using contraception for women under
25 who want more children, who serve as the reference cell,

αi for i = 2, 3, 4 represents the net effect of ages 25–29, 30–39 and 40–49,
compared to women under age 25 in the same category of desire for
more children,

β2 represents the net effect of wanting no more children, compared to
women who want more children in the same age group.

The model is additive in the logit scale, in the usual sense that the effect
of one variable does not depend on the value of the other. For example,
the effect of desiring no more children is β2 in all four age groups. (This
assumption must obviously be tested, and we shall see that it is not consistent
with the data.)

The deviance of the additive model is 16.8 on three d.f. With this value
we can calculate three different tests of interest, all of which involve com-
parisons between nested models.

• As we move from model D to A + D the deviance decreases by 37.2
while we lose three d.f. This statistic tests the hypothesis H0 : αi = 0
for all i, concerning the net effect of age after adjusting for desire for
more children, and is highly significant.

• As we move from model A to A+D we reduce the deviance by 49.7 at
the expense of one d.f. This chi-squared statistic tests the hypothesis
H0 : β2 = 0 concerning the net effect of desire for more children after
adjusting for age. This value is highly significant, so we reject the
hypothesis of no net effects.

• Finally, the deviance of 16.8 on three d.f. is a measure of goodness of
fit of the additive model: it compares this model with the saturated
model, which adds an interaction between the two factors. Since the
deviance exceeds 11.3, the one-percent critical value in the chi-squared
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distribution for three d.f., we conclude that the additive model fails to
fit the data.

Table 3.9 shows parameter estimates for the additive model. We show
briefly how they would be interpreted, although we have evidence that the
additive model does not fit the data.

Table 3.9: Parameter Estimates for Additive Logit Model of
Contraceptive Use by Age (Grouped) and Desire for Children

Parameter Symbol Estimate Std. Error z-ratio

Constant η −1.694 0.135 −12.53
Age 25–29 α2 0.368 0.175 2.10

30–39 α3 0.808 0.160 5.06
40–49 α4 1.023 0.204 5.01

Desire No β2 0.824 0.117 7.04

The estimates of the αj ’s show a monotonic effect of age on contracep-
tive use. Although there is evidence that this effect may vary depending on
whether women desire more children, on average the odds of using contracep-
tion among women age 40 or higher are nearly three times the corresponding
odds among women under age 25 in the same category of desire for another
child.

Similarly, the estimate of β2 shows a strong effect of wanting no more
children. Although there is evidence that this effect may depend on the
woman’s age, on average the odds of using contraception among women who
desire no more children are more than double the corresponding odds among
women in the same age group who desire another child.

3.5.4 A Model With Interactions

We now consider a model which includes an interaction of age and desire for
more children, denoted AD in Table 3.8. The model is

logit(πij) = η + αi + βj + (αβ)ij ,

where η is a constant, the αi and βj are the main effects of age and desire,
and (αβ)ij is the interaction effect. To avoid redundancies we follow the
reference cell method and set to zero all parameters involving the first cell,
so that α1 = β1 = 0, (αβ)1j = 0 for all j and (αβ)i1 = 0 for all i. The
remaining parameters may be interpreted as follows:
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η is the logit of the reference group: women under age 25 who desire more
children.

αi for i = 2, 3, 4 are the effects of the age groups 25–29, 30–39 and 40–49,
compared to ages under 25, for women who want another child.

β2 is the effect of desiring no more children, compared to wanting another
child, for women under age 25.

(αβ)i2 for i = 2, 3, 4 is the additional effect of desiring no more children,
compared to wanting another child, for women in age group i rather
than under age 25. (This parameter is also the additional effect of age
group i, compared to ages under 25, for women who desire no more
children rather than those who want more.)

One way to simplify the presentation of results involving interactions is
to combine the interaction terms with one of the main effects, and present
them as effects of one factor within categories or levels of the other. In our
example, we can combine the interactions (αβ)i2 with the main effects of
desire β2, so that

β2 + (αβ)i2 is the effect of desiring no more children, compared to wanting
another child, for women in age group i.

Of course, we could also combine the interactions with the main effects
of age, and speak of age effects which are specific to women in each category
of desire for more children. The two formulations are statistically equivalent,
but the one chosen here seems demographically more sensible.

To obtain estimates based on this parameterization of the model we have
to define the columns of the model matrix as follows. Let ai be a dummy
variable representing age group i, for i = 2, 3, 4, and let d take the value one
for women who want no more children and zero otherwise. Then the model
matrix X should have a column of ones to represent the constant or reference
cell, the age dummies a2, a3 and a4 to represent the age effects for women
in the reference cell, and then the dummy d and the products a2d, a3d and
a4d, to represent the effect of wanting no more children at ages < 25, 25–29,
30–39 and 40–49, respectively. The resulting estimates and standard errors
are shown in Table 3.10.

The results indicate that contraceptive use among women who desire
more children varies little by age, increasing up to age 35–39 and then de-
clining somewhat. On the other hand, the effect of wanting no more children
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Table 3.10: Parameter Estimates for Model of Contraceptive Use With an
Interaction Between Age (Grouped) and Desire for More Children

Parameter Estimate Std. Error z-ratio

Constant −1.519 0.145 −10.481
Age 25–29 0.368 0.201 1.832

30–39 0.451 0.195 2.311
40–49 0.397 0.340 1.168

Desires <25 0.064 0.330 0.194
No More 25–29 0.331 0.241 1.372
at Age 30–39 1.154 0.174 6.640

40–49 1.431 0.353 4.057

increases dramatically with age, from no effect among women below age 25
to an odds ratio of 4.18 at ages 40–49. Thus, in the older cohort the odds
of using contraception among women who want no more children are four
times the corresponding odds among women who desire more children. The
results can also be summarized by noting that contraceptive use for spacing
(i.e. among women who desire more children) does not vary much by age,
but contraceptive use for limiting fertility (i.e among women who want no
more children) increases sharply with age.

3.5.5 Analysis of Covariance Models

Since the model with an age by desire interaction is saturated, we have
essentially reproduced the observed data. We now consider whether we
could attain a more parsimonious fit by treating age as a variate and desire
for more children as a factor, in the spirit of covariance analysis models.

Table 3.11 shows deviances for three models that include a linear effect
of age using, as before, the midpoints of the age groups. To emphasize this
point we use X rather than A to denote age.

The first model assumes that the logits are linear functions of age. This
model fails to fit the data, which is not surprising because it ignores desire
for more children, a factor that has a large effect on contraceptive use.

The next model, denoted X +D, is analogous to the two-factor additive
model. It allows for an effect of desire for more children which is the same
at all ages. This common effect is modelled by allowing each category of
desire for more children to have its own constant, and results in two parallel
lines. The common slope is the effect of age within categories of desire for
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Table 3.11: Deviance Table for Models of Contraceptive Use
by Age (Linear) and Desire for More Children

Model Notation logit(πij) Deviance d.f.

One Line X α+ βxi 68.88 6
Parallel Lines X +D αj + βxi 18.99 5
Two Lines XD αj + βjxi 9.14 4

more children. The reduction in deviance of 39.9 on one d.f. indicates that
desire for no more children has a strong effect on contraceptive use after
controlling for a linear effect of age. However, the attained deviance of 19.0
on five d.f. is significant, indicating that the assumption of two parallel lines
is not consistent with the data.

The last model in the table, denotedXD, includes an interaction between
the linear effect of age and desire, and thus allows the effect of desire for
more children to vary by age. This variation is modelled by allowing each
category of desire for more children to have its own slope in addition to its
own constant, and results in two regression lines. The reduction in deviance
of 9.9 on one d.f. is a test of the hypothesis of parallelism or common slope
H0 : β1 = β2, which is rejected with a P-value of 0.002. The model deviance
of 9.14 on four d.f. is just below the five percent critical value of the chi-
squared distribution with four d.f., which is 9.49. Thus, we have no evidence
against the assumption of two straight lines.

Before we present parameter estimates we need to discuss briefly the
choice of parameterization. Direct application of the reference cell method
leads us to use four variables: a dummy variable always equal to one, a
variable x with the mid-points of the age groups, a dummy variable d which
takes the value one for women who want no more children, and a variable dx
equal to the product of this dummy by the mid-points of the age groups. This
choice leads to parameters representing the constant and slope for women
who want another child, and parameters representing the difference in con-
stants and slopes for women who want no more children.

An alternative is to simply report the constants and slopes for the two
groups defined by desire for more children. This parameterization can be
easily obtained by omitting the constant and using the following four vari-
ables: d and 1 − d to represent the two constants and dx and (1 − d)x to
represent the two slopes. One could, of course, obtain the constant and slope
for women who want no more children from the previous parameterization
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simply by adding the main effect and the interaction. The simplest way to
obtain the standard errors, however, is to change parameterization.

In both cases the constants represent effects at age zero and are not
very meaningful. To obtain parameters that are more directly interpretable,
we can center age around the sample mean, which is 30.6 years. Table
3.12 shows parameter estimates obtained under the two parameterizations
discussed above, using the mid-points of the age groups minus the mean.

Table 3.12: Parameter Estimates for Model of Contraceptive Use With an
Interaction Between Age (Linear) and Desire for More Children

Desire Age Symbol Estimate Std. Error z-ratio

More Constant α1 −1.1944 0.0786 −15.20
Slope β1 0.0218 0.0104 2.11

No More Constant α2 −0.4369 0.0931 −4.69
Slope β2 0.0698 0.0114 6.10

Difference Constant α2 − α1 0.7575 0.1218 6.22
Slope β2 − β1 0.0480 0.0154 3.11

Thus, we find that contraceptive use increases with age, but at a faster
rate among women who want no more children. The estimated slopes corre-
spond to increases in the odds of two and seven percent per year of age for
women who want and do not want more children, respectively. The differ-
ence of the slopes is significant by a likelihood ratio test or by Wald’s test,
with a z-ratio of 3.11.

Similarly, the effect of wanting no more children increases with age. The
odds ratio around age 30.6—which we obtain by exponentiating the differ-
ence in constants–is 2.13, so not wanting more children at this age is asso-
ciated with a doubling of the odds of using contraception. The difference in
slopes of 0.048 indicates that this differential increases five percent per year
of age.

The parameter estimates in Table 3.12 may be used to produce fitted
logits for each age group and category of desire for more children. In turn,
these can be compared with the empirical logits for the original eight groups,
to obtain a visual impression of the nature of the relationships studied and
the quality of the fit. The comparison appears in Figure 3.3, with the solid
line representing the linear age effects (the dotted lines are discussed below).
The graph shows clearly how the effect of wanting no more children increases
with age (or, alternatively, how age has much stronger effects among limiters
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than among spacers).
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Figure 3.3: Observed and Fitted Logits for Models of Contraceptive Use
With Effects of Age (Linear and Quadratic), Desire for More Children

and a Linear Age by Desire Interaction.

The graph also shows that the assumption of linearity of age effects, while
providing a reasonably parsimonious description of the data, is somewhat
suspect, particularly at higher ages. We can improve the fit by adding higher-
order terms on age. In particular

• Introducing a quadratic term on age yields an excellent fit, with a
deviance of 2.34 on three d.f. This model consists of two parabolas,
one for each category of desire for more children, but with the same
curvature.

• Adding a quadratic age by desire interaction further reduces the de-
viance to 1.74 on two d.f. This model allows for two separate parabolas
tracing contraceptive use by age, one for each category of desire.

Although the linear model passes the goodness of fit test, the fact that we can
reduce the deviance by 6.79 at the expense of one d.f. indicates significant
curvature. The dotted line in Figure 3.3 shows the intermediate model,
where the curvature by age is the same for the two groups. While the fit is
much better, the overall substantive conclusions do not change.
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3.6 Multi-factor Models: Model Selection

Let us consider a full analysis of the contraceptive use data in Table 3.1,
including all three predictors: age, education and desire for more children.

We use three subscripts to reflect the structure of the data, so πijk is the
probability of using contraception in the (i, j, k)-th group, where i = 1, 2, 3, 4
indexes the age groups, j = 1, 2 the levels of education and k = 1, 2 the
categories of desire for more children.

3.6.1 Deviances for One and Two-Factor Models

There are 19 basic models of interest for these data, which are listed for
completeness in Table 3.13. Not all of these models would be of interest in
any given analysis. The table shows the model in abbreviated notation, the
formula for the linear predictor, the deviance and its degrees of freedom.

Note first that the null model does not fit the data. The assumption of
a common probability of using contraception for all 16 groups of women is
clearly untenable.

Next in the table we find the three possible one-factor models. Com-
parison of these models with the null model provides evidence of significant
gross effects of age and desire for more children, but not of education. The
likelihood ratio chi-squared tests are 91.7 on one d.f. for desire, 79.2 on three
d.f. for age, and 0.7 on one d.f. for education.

Proceeding down the table we find the six possible two-factor models,
starting with the additive ones. Here we find evidence of significant net

effects of age and desire for more children after controlling for one other
factor. For example the test for an effect of desire net of age is a chi-squared
of 49.7 on one d.f., obtained by comparing the additive model A + D on
age and desire the one-factor model A with age alone. Education has a
significant effect net of age, but not net of desire for more children. For
example the test for the net effect of education controlling for age is 6.2 on
one d.f., and follows from the comparison of the A+E model with A. None
of the additive models fits the data, but the closest one to a reasonable fit
is A+D.

Next come the models involving interactions between two factors. We
use the notation ED to denote the model with the main effects of E and D
as well as the E ×D interaction. Comparing each of these models with the
corresponding additive model on the same two factors we obtain a test of the
interaction effect. For example comparing the model ED with the additive
model E+D we can test whether the effect of desire for more children varies
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Table 3.13: Deviance Table for Logit Models of Contraceptive Use
by Age, Education and Desire for More Children

Model logit(πijk) Dev. d.f.

Null η 165.77 15

One Factor

Age η+αi 86.58 12
Education η +βj 165.07 14
Desire η +γk 74.10 14

Two Factors

A+ E η+αi+βj 80.42 11
A+D η+αi +γk 36.89 11
E +D η +βj+γk 73.87 13
AE η+αi+βj +(αβ)ij 73.03 8
AD η+αi +γk +(αγ)ik 20.10 8
ED η +βj+γk +(βγ)jk 67.64 12

Three Factors

A+ E +D η+αi+βj+γk 29.92 10
AE +D η+αi+βj+γk+(αβ)ij 23.15 7
AD + E η+αi+βj+γk +(αγ)ik 12.63 7
A+ ED η+αi+βj+γk +(βγ)jk 23.02 9
AE +AD η+αi+βj+γk+(αβ)ij+(αγ)ik 5.80 4
AE + ED η+αi+βj+γk+(αβ)ij +(βγ)jk 13.76 6
AD + ED η+αi+βj+γk +(αγ)ik+(βγ)jk 10.82 6
AE +AD + ED η+αi+βj+γk+(αβ)ij+(αγ)ik+(βγ)jk 2.44 3

with education. Making these comparisons we find evidence of interactions
between age and desire for more children (χ2 = 16.8 on three d.f.), and
between education and desire for more children (χ2 = 6.23 on one d.f.), but
not between age and education (χ2 = 7.39 on three d.f.).

All of the results described so far could be obtained from two-dimensional
tables of the type analyzed in the previous sections. The new results begin
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to appear as we consider the nine possible three-factor models.

3.6.2 Deviances for Three-Factor Models

The first entry is the additivemodel A+E+D, with a deviance of 29.9 on ten
d.f. This value represents a significant improvement over any of the additive
models on two factors. Thus, we have evidence that there are significant
net effects of age, education and desire for more children, considering each
factor after controlling the other two. For example the test for a net effect
of education controlling the other two variables compares the three-factor
additive model A+E+D with the model without education, namely A+D.
The difference of 6.97 on one d.f. is significant, with a P-value of 0.008.
However, the three-factor additive model does not fit the data.

The next step is to add one interaction between two of the factors. For
example the model AE + D includes the main effects of A, E and D and
the A × E interaction. The interactions of desire for more children with
age and with education produce significant gains over the additive model
(χ2 = 17.3 on three d.f. and χ2 = 6.90 on one d.f., respectively), whereas
the interaction between age and education is not significant (χ2 = 6.77 with
three d.f.). These tests for interactions differ from those based on two-factor
models in that they take into account the third factor. The best of these
models is clearly the one with an interaction between age and desire for more
children, AD+E. This is also the first model in our list that actually passes
the goodness of fit test, with a deviance of 12.6 on seven d.f.

Does this mean that we can stop our search for an adequate model?
Unfortunately, it does not. The goodness of fit test is a joint test for all
terms omitted in the model. In this case we are testing for the AE, ED
and AED interactions simultaneously, a total of seven parameters. This
type of omnibus test lacks power against specific alternatives. It is possible
that one of the omitted terms (or perhaps some particular contrast) would
be significant by itself, but its effect may not stand out in the aggregate.
At issue is whether the remaining deviance of 12.6 is spread out uniformly
over the remaining d.f. or is concentrated in a few d.f. If you wanted to
be absolutely sure of not missing anything you might want to aim for a
deviance below 3.84, which is the five percent critical value for one d.f., but
this strategy would lead to over-fitting if followed blindly.

Let us consider the models involving two interactions between two fac-
tors, of which there are three. Since the AD interaction seemed important
we restrict attention to models that include this term, so we start from
AD + E, the best model so far. Adding the age by education interaction
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AE to this model reduces the deviance by 6.83 at the expense of three d.f.
A formal test concludes that this interaction is not significant. If we add
instead the education by desire interaction ED we reduce the deviance by
only 1.81 at the expense of one d.f. This interaction is clearly not significant.
A model-building strategy based on forward selection of variables would stop
here and choose AD + E as the best model on grounds of parsimony and
goodness of fit.

An alternative approach is to start with the saturated model and impose
progressive simplification. Deleting the three-factor interaction yields the
model AE + AD + ED with three two-factor interactions, which fits the
data rather well, with a deviance of just 2.44 on three d.f. If we were to
delete the AD interaction the deviance would rise by 11.32 on three d.f.,
a significant loss. Similarly, removing the AE interaction would incur a
significant loss of 8.38 on 3 d.f. We can, however, drop the ED interaction
with a non-significant increase in deviance of 3.36 on one d.f. At this point
we can also eliminate the AE interaction, which is no longer significant, with
a further loss of 6.83 on three d.f. Thus, a backward elimination strategy
ends up choosing the same model as forward selection.

Although you may find these results reassuring, there is a fact that both
approaches overlook: the AE and DE interactions are jointly significant!
The change in deviance as we move from AD+E to the model with three two-
factor interactions is 10.2 on four d.f., and exceeds (although not by much)
the five percent critical value of 9.5. This result indicates that we need to
consider the more complicated model with all three two-factor interactions.
Before we do that, however, we need to discuss parameter estimates for
selected models.

3.6.3 The Additive Model: Gross and Net Effects

Consider first Table 3.14, where we adopt an approach similar to multiple
classification analysis to compare the gross and net effects of all three factors.
We use the reference cell method, and include the omitted category for each
factor (with a dash where the estimated effect would be) to help the reader
identify the baseline.

The gross or unadjusted effects are based on the single-factor models A,
E and D. These effects represent overall differences between levels of each
factor, and as such they have descriptive value even if the one-factor models
do not tell the whole story. The results can easily be translated into odds
ratios. For example not wanting another child is associated with an increase
in the odds of using contraception of 185%. Having upper primary or higher
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Table 3.14: Gross and Net Effects of Age, Education and Desire
for More Children on Current Use of Contraception

Variable and Gross Net
category effect effect

Constant – −1.966
Age <25 – –

25–29 0.461 0.389
30–39 1.048 0.909
40–49 1.425 1.189

Education
Lower – –
Upper -0.093 0.325

Desires More
Yes – –
No 1.049 0.833

education rather than lower primary or less appears to reduce the odds of
using contraception by almost 10%.

The net or adjusted effects are based on the three-factor additive model
A+E+D. This model assumes that the effect of each factor is the same for
all categories of the others. We know, however, that this is not the case—
particularly with desire for more children, which has an effect that varies by
age—so we have to interpret the results carefully. The net effect of desire
for more children shown in Table 3.14 represents an average effect across all
age groups and may not be representative of the effect at any particular age.
Having said that, we note that desire for no more children has an important
effect net of age and education: on the average, it is associated with an
increase in the odds of using contraception of 130%.

The result for education is particularly interesting. Having upper pri-
mary or higher education is associated with an increase in the odds or using
contraception of 38%, compared to having lower primary or less, after we
control for age and desire for more children. The gross effect was close to
zero. To understand this result bear in mind that contraceptive use in Fiji
occurs mostly among older women who want no more children. Education
has no effect when considered by itself because in Fiji more educated women
are likely to be younger than less educated women, and thus at a stage of
their lives when they are less likely to have reached their desired family size,
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even though they may want fewer children. Once we adjust for their age,
calculating the net effect, we obtain the expected association. In this ex-
ample age is said to act as a suppressor variable, masking the association
between education and contraceptive use.

We could easily add columns to Table 3.14 to trace the effects of one
factor after controlling for one or both of the other factors. We could, for
example, examine the effect of education adjusted for age, the effect adjusted
for desire for more children, and finally the effect adjusted for both factors.
This type of analysis can yield useful insights into the confounding influences
of other variables.

3.6.4 The Model with One Interaction Effect

Let us now examine parameter estimates for the model with an age by desire
for more children interaction AD + E, where

logit(πijk) = η + αi + βj + γj + (αγ)ik.

The parameter estimates depend on the restrictions used in estimation. We
use the reference cell method, so that α1 = β1 = γ1 = 0, and (αγ)ik = 0
when either i = 1 or k = 1.

In this model η is the logit of the probability of using contraception
in the reference cell, that is, for women under 25 with lower primary or
less education who want another child. On the other hand β2 is the effect
of upper primary or higher education, compared to lower primary or less,
for women in any age group or category of desire for another child. The
presence of an interaction makes interpretation of the estimates for age and
desire somewhat more involved:

αi represents the effect of age group i, compared to age < 25, for women
who want more children.

γ2 represents the effect of wanting no more children, compared to desiring
more, for women under age 25.

(αγ)i2, the interaction term, can be interpreted as the additional effect of
wanting no more children among women in age group i, compared to
women under age 25.

It is possible to simplify slightly the presentation of the results by combin-
ing the interactions with some of the main effects. In the present example, it
is convenient to present the estimates of αi as the age effects for women who
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Table 3.15: The Estimates

Variable Category Symbol Estimate Std. Err z-ratio

Constant η −1.803 0.180 −10.01
Age 25–29 α2 0.395 0.201 1.96

30–39 α3 0.547 0.198 2.76
40–49 α4 0.580 0.347 1.67

Education Upper β2 0.341 0.126 2.71
Desires <25 γ2 0.066 0.331 0.20
no more 25–29 γ2 + (αγ)22 0.325 0.242 1.35
at age 30–39 γ2 + (αγ)32 1.179 0.175 6.74

40–49 γ2 + (αγ)42 1.428 0.354 4.04

want another child, and to present γ2 + (αγ)i2 as the effect of not wanting
another child for women in age group i.

Calculation of the necessary dummy variables proceeds exactly as in
Section 3.5. This strategy leads to the parameter estimates in Table 3.15.

To aid in interpretation as well as model criticism, Figure 3.4 plots ob-
served logits based on the original data in Table 3.1, and fitted logits based
on the model with an age by desire interaction.

The graph shows four curves tracing contraceptive use by age for groups
defined by education and desire for more children. The curves are labelled
using L and U for lower and upper education, and Y and N for desire for
more children. The lowest curve labelled LY corresponds to women with
lower primary education or less who want more children, and shows a slight
increase in contraceptive use up to age 35–39 and then a small decline. The
next curve labelled UY is for women with upper primary education or more
who also want more children. This curve is parallel to the previous one
because the effect of education is additive on age. The constant difference
between these two curves corresponds to a 41% increase in the odds ratio as
we move from lower to upper primary education. The third curve, labelled
LN , is for women with lower primary education or less who want no more
children. The distance between this curve and the first one represents the
effect of wanting no more children at different ages. This effect increases
sharply with age, reaching an odds ratio of four by age 40–49. The fourth
curve, labelled UN , is for women with upper primary education or more who
want no more children. The distance between this curve and the previous
one is the effect of education, which is the same whether women want more
children or not, and is also the same at every age.
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Figure 3.4: Logit Model of Contraceptive Use By Age, Education and
Desire for Children, With Age by Desire Interaction

The graph also shows the observed logits, plotted using different symbols
for each of the four groups defined by education and desire. Comparison of
observed and fitted logits shows clearly the strengths and weaknesses of
this model: it does a fairly reasonable job reproducing the logits of the
proportions using contraception in each group except for ages 40–49 (and
to a lesser extend the group < 25), where it seems to underestimate the
educational differential. There is also some indication that this failure may
be more pronounced for women who want more children.

3.6.5 Best Fitting and Parsimonious Models

How can we improve the model of the last section? The most obvious solution
is to move to the model with all three two-factor interactions, AE + AD +
ED, which has a deviance of 2.44 on three d.f. and therefore fits the data
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Figure 3.5: Observed and Fitted Logits of Contraceptive Use
Based on Model with Three Two-Factor Interactions

extremely well. This model implies that the effect of each factor depends on
the levels of the other two, but not on the combination of levels of the other
two. Interpretation of the coefficients in this model is not as simple as it
would be in an additive model, or in a model involving only one interaction.
The best strategy in this case is to plot the fitted model and inspect the
resulting curves.

Figure 3.5 shows fitted values based on the more complex model. The
plot tells a simple story. Contraceptive use for spacing increases slightly up
to age 35 and then declines for the less educated but continues to increase for
the more educated. Contraceptive use for limiting increases sharply with age
up to age 35 and then levels off for the less educated, but continues to increase
for the more educated. The figure shows that the effect of wanting no more
children increases with age, and appears to do so for both educational groups
in the same way (look at the distance between the LY and LN curves, and
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between the UY and UN curves). On the other hand, the effect of education
is clearly more pronounced at ages 40–49 than at earlier ages, and also seems
slightly larger for women who want more children than for those who do not
(look at the distance between the LY and UY curves, and between the LN
and UN curves).

One can use this knowledge to propose improved models that fit the data
without having to use all three two-factor interactions. One approach would
note that all interactions with age involve contrasts between ages 40–49 and
the other age groups, so one could collapse age into only two categories for
purposes of modelling the interactions. A simplified version of this approach
is to start from the model AD + E and add one d.f. to model the larger
educational effect for ages 40–49. This can be done by adding a dummy
variable that takes the value one for women aged 40–49 who have upper
primary or more education. The resulting model has a deviance of 6.12 on
six d.f., indicating a good fit. Comparing this value with the deviance of 12.6
on seven d.f. for the AD + E model, we see that we reduced the deviance
by 6.5 at the expense of a single d.f. The model AD+AE includes all three
d.f. for the age by education interaction, and has a deviance of 5.8 on four
d.f. Thus, the total contribution of the AE interaction is 6.8 on three d.f.
Our one-d.f. improvement has captured roughly 90% of this interaction.

An alternative approach is to model the effects of education and desire
for no more children as smooth functions of age. The logit of the probability
of using contraception is very close to a linear function of age for women with
upper primary education who want no more children, who could serve as a
new reference cell. The effect of wanting more children could be modelled as
a linear function of age, and the effect of education could be modelled as a
quadratic function of age. Let Lijk take the value one for lower primary or
less education and zero otherwise, and let Mijk be a dummy variable that
takes the value one for women who want more children and zero otherwise.
Then the proposed model can be written as

logit(πijk) = α+ βxijk + (αE + βExijk + γEx
2
ijk)Lijk + (αD + βDxijk)Mijk.

Fitting this model, which requires only seven parameters, gives a deviance
of 7.68 on nine d.f. The only weakness of the model is that it assumes equal
effects of education on use for limiting and use for spacing, but these effects
are not well-determined. Further exploration of these models is left as an
exercise.
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3.7 Other Choices of Link

All the models considered so far use the logit transformation of the prob-
abilities, but other choices are possible. In fact, any transformation that
maps probabilities into the real line could be used to produce a generalized
linear model, as long as the transformation is one-to-one, continuous and
differentiable.

In particular, suppose F (.) is the cumulative distribution function (c.d.f.)
of a random variable defined on the real line, and write

πi = F (ηi),

for −∞ < ηi < ∞. Then we could use the inverse transformation

ηi = F−1(πi),

for 0 < πi < 1 as the link function.

Popular choices of c.d.f.’s in this context are the normal, logistic and ex-
treme value distributions. In this section we motivate this general approach
by introducing models for binary data in terms of latent variables.

3.7.1 A Latent Variable Formulation

Let Yi denote a random variable representing a binary response coded zero
and one, as usual. We will call Yi the manifest response. Suppose that
there is an unobservable continuous random variable Y ∗

i which can take any
value in the real line, and such that Yi takes the value one if an only if Y ∗

i

exceeds a certain threshold θ. We will call Y ∗

i the latent response. Figure 3.6
shows the relationship between the latent variable and the response when
the threshold is zero.

The interpretation of Yi and Y ∗

i depends on the context. An economist,
for example, may view Yi as a binary choice, such as purchasing or renting a
home, and Y ∗

i as the difference in the utilities of purchasing and renting. A
psychologist may view Yi as a response to an item in an attitude scale, such
as agreeing or disagreeing with school vouchers, and Y ∗

i as the underlying
attitude. Biometricians often view Y ∗

i as a dose and Yi as a response, hence
the name dose-response models.

Since a positive outcome occurs only when the latent response exceeds
the threshold, we can write the probability πi of a positive outcome as

πi = Pr{Yi = 1} = Pr{Y ∗

i > θ}.
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Figure 3.6: Latent Variable and Manifest Response

As often happens with latent variables, the location and scale of Y ∗

i are arbi-
trary. We can add a constant a to both Y ∗

i and the threshold θ, or multiply
both by a constant c, without changing the probability of a positive outcome.
To identify the model we take the threshold to be zero, and standardize Y ∗

i

to have standard deviation one (or any other fixed value).

Suppose now that the outcome depends on a vector of covariates x.
To model this dependence we use an ordinary linear model for the latent

variable, writing

Y ∗

i = x
′

iβ + Ui, (3.15)

where β is a vector of coefficients of the covariates xi and Ui is the error
term, assumed to have a distribution with c.d.f. F (u), not necessarily the
normal distribution.

Under this model, the probability πi of observing a positive outcome is

πi = Pr{Yi > 0}
= Pr{Ui > −ηi}
= 1− F (−ηi),

where ηi = x
′

iβ is the linear predictor. If the distribution of the error term
Ui is symmetric about zero, so F (u) = 1− F (−u), we can write

πi = F (ηi)
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This expression defines a generalized linear model with Bernoulli response
and link

ηi = F−1(πi). (3.16)

In the more general case where the distribution of the error term is not
necessarily symmetric, we still have a generalized linear model with link

ηi = −F−1(1− πi). (3.17)

We now consider some specific distributions.

3.7.2 Probit Analysis

The obvious choice of an error distribution is the normal. Assuming that
the error term has a standard normal distribution Ui ∼ N(0, 1), the results
of the previous section lead to

πi = Φ(ηi),

where Φ is the standard normal c.d.f. The inverse transformation, which
gives the linear predictor as a function of the probability

ηi = Φ−1(πi),

is called the probit.
It is instructive to consider the more general case where the error term

Ui ∼ N(0, σ2) has a normal distribution with variance σ2. Following the
same steps as before we find that

πi = Pr{Y ∗

i > 0}
= Pr{Ui > −x

′

iβ} = Pr{Ui/σ > −x
′

iβ/σ}
= 1− Φ(−x

′

iβ/σ) = Φ(x′

iβ/σ),

where we have divided by σ to obtain a standard normal variate, and used
the symmetry of the normal distribution to obtain the last result.

This development shows that we cannot identify β and σ separately,
because the probability depends on them only through their ratio β/σ. This
is another way of saying that the scale of the latent variable is not identified.
We therefore take σ = 1, or equivalently interpret the β’s in units of standard
deviation of the latent variable.

As a simple example, consider fitting a probit model to the contraceptive
use data by age and desire for more children. In view of the results in Section
3.5, we introduce a main effect of wanting no more children, a linear effect
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Table 3.16: Estimates for Probit Model of Contraceptive Use
With a Linear Age by Desire Interaction

Parameter Symbol Estimate Std. Error z-ratio

Constant α1 −0.7297 0.0460 −15.85
Age β1 0.0129 0.0061 2.13
Desire α2 − α1 0.4572 0.0731 6.26
Age × Desire β2 − β1 0.0305 0.0092 3.32

of age, and a linear age by desire interaction. Fitting this model gives a
deviance of 8.91 on four d.f. Estimates of the parameters and standard
errors appear in Table 3.16

To interpret these results we imagine a latent continuous variable repre-
senting the woman’s motivation to use contraception (or the utility of using
contraception, compared to not using). At the average age of 30.6, not want-
ing more children increases the motivation to use contraception by almost
half a standard deviation. Each year of age is associated with an increase in
motivation of 0.01 standard deviations if she wants more children and 0.03
standard deviations more (for a total of 0.04) if she does not. In the next
section we compare these results with logit estimates.

A slight disadvantage of using the normal distribution as a link for binary
response models is that the c.d.f. does not have a closed form, although ex-
cellent numerical approximations and computer algorithms are available for
computing both the normal probability integral and its inverse, the probit.

3.7.3 Logistic Regression

An alternative to the normal distribution is the standard logistic distribu-
tion, whose shape is remarkably similar to the normal distribution but has
the advantage of a closed form expression

πi = F (ηi) =
eηi

1 + eηi
,

for −∞ < ηi < ∞. The standard logistic distribution is symmetric, has
mean zero, and has variance π2/3. The shape is very close to the normal,
except that it has heavier tails. The inverse transformation, which can be
obtained solving for ηi in the expression above is

ηi = F−1(πi) = log
πi

1− πi
,
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our good old friend, the logit.

Thus, coefficients in a logit regression model can be interpret not only in
terms of log-odds, but also as effects of the covariates on a latent variable
that follows a linear model with logistic errors.

The logit and probit transformations are almost linear functions of each
other for values of πi in the range from 0.1 to 0.9, and therefore tend to give
very similar results. Comparison of probit and logit coefficients should take
into account the fact that the standard normal and the standard logistic
distributions have different variances. Recall that with binary data we can
only estimate the ratio β/σ. In probit analysis we have implicitly set σ = 1.
In a logit model, by using a standard logistic error term, we have effectively
set σ = π/

√
3. Thus, coefficients in a logit model should be standardized

dividing by π/
√
3 before comparing them with probit coefficients.
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Figure 3.7: The Standardized Probit, Logit and C-Log-Log Links

Figure 3.7 compares the logit and probit links (and a third link discussed
below) after standardizing the logits to unit variance. The solid line is the
probit and the dotted line is the logit divided by π/

√
3. As you can see, they

are barely distinguishable.

To illustrate the similarity of these links in practice, consider our models
of contraceptive use by age and desire for more children in Tables 3.10 and
3.16. The deviance of 9.14 for the logit model is very similar to the deviance
of 8.91 for the probit model, indicating an acceptable fit. The Wald tests of
individual coefficients are also very similar, for example the test for the effect
of wanting no more children at age 30.6 is 6.22 in the logit model and 6.26
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in the probit model. The coefficients themselves look somewhat different,
but of course they are not standardized. The effect of wanting no more
children at the average age is 0.758 in the logit scale. Dividing by π/

√
3, the

standard deviation of the underlying logistic distribution, we find this effect
equivalent to an increase in the latent variable of 0.417 standard deviations.
The probit analysis estimates the effect as 0.457 standard deviations.

3.7.4 The Complementary Log-Log Transformation

A third choice of link is the complementary log-log transformation

ηi = log(− log(1− πi)),

which is the inverse of the c.d.f. of the extreme value (or log-Weibull) distri-
bution, with c.d.f.

F (ηi) = 1− e−eηi .

For small values of πi the complementary log-log transformation is close
to the logit. As the probability increases, the transformation approaches
infinity more slowly that either the probit or logit.

This particular choice of link function can also be obtained from our
general latent variable formulation if we assume that −Ui (note the minus
sign) has a standard extreme value distribution, so the error term itself has
a reverse extreme value distribution, with c.d.f.

F (Ui) = e−e−Ui .

The reverse extreme value distribution is asymmetric, with a long tail to the
right. It has mean equal to Euler’s constant 0.577 and variance π2/6 = 1.645.
The median is − log log 2 = 0.367 and the quartiles are −0.327 and 1.246.

Inverting the reverse extreme value c.d.f. and applying Equation 3.17,
which is valid for both symmetric and asymmetric distributions, we find
that the link corresponding to this error distribution is the complementary
log-log.

Thus, coefficients in a generalized linear model with binary response and
a complementary log-log link can be interpreted as effects of the covariates
on a latent variable which follows a linear model with reverse extreme value
errors.

To compare these coefficients with estimates based on a probit analysis
we should standardize them, dividing by π/

√
6. To compare coefficients with

logit analysis we should divide by
√
2, or standardize both c-log-log and logit

coefficients.
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Figure 3.7 compares the c-log-log link with the probit and logit after
standardizing it to have mean zero and variance one. Although the c-log-log
link differs from the other two, one would need extremely large sample sizes
to be able to discriminate empirically between these links.

The complementary log-log transformation has a direct interpretation in
terms of hazard ratios, and thus has practical applications in terms of hazard
models, as we shall see later in the sequel.

3.8 Regression Diagnostics for Binary Data

Model checking is just as important in logistic regression and probit analysis
as it is in classical linear models. The raw materials are again the residuals,
or differences between observed and fitted values. Unlike the case of linear
models, however, we now have to make allowance for the fact that the obser-
vations have different variances. There are two types of residuals in common
use.

3.8.1 Pearson Residuals

A very simple approach to the calculation of residuals is to take the difference
between observed and fitted values and divide by an estimate of the standard
deviation of the observed value. The resulting residual has the form

pi =
yi − µ̂i

√

µ̂i(ni − µ̂i)/ni
, (3.18)

where µ̂i is the fitted value and the denominator follows from the fact that
var(yi) = niπi(1− πi).

The result is called the Pearson residual because the square of pi is the
contribution of the i-th observation to Pearson’s chi-squared statistic, which
was introduced in Section 3.2.2, Equation 3.14.

With grouped data the Pearson residuals are approximately normally
distributed, but this is not the case with individual data. In both cases,
however, observations with a Pearson residual exceeding two in absolute
value may be worth a closer look.
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3.8.2 Deviance Residuals

An alternative residual is based on the deviance or likelihood ratio chi-
squared statistic. The deviance residual is defined as

di =

√

2[yi log(
yi
µ̂i

) + (ni − yi) log(
ni − yi
ni − µ̂i

)], (3.19)

with the same sign as the raw residual yi − ŷi. Squaring these residuals and
summing over all observations yields the deviance statistic. Observations
with a deviance residual in excess of two may indicate lack of fit.

3.8.3 Studentized Residuals

The residuals defined so far are not fully standardized. They take into
account the fact that different observations have different variances, but
they make no allowance for additional variation arising from estimation of
the parameters, in the way studentized residuals in classical linear models
do.

Pregibon (1981) has extended to logit models some of the standard re-
gression diagnostics. A key in this development is the weighted hat matrix

H = W
1/2

X(X′
WX)−1

X
′
W

1/2,

where W is the diagonal matrix of iteration weights from Section 3.2.1, with
entries wii = µi(ni − µi)/ni, evaluated at the m.l.e.’s. Using this expression
it can be shown that the variance of the raw residual is, to a first-order
approximation,

var(yi − µ̂i) ≈ (1− hii)var(yi),

where hii is the leverage or diagonal element of the weighted hat matrix.
Thus, an internally studentized residual can be obtained dividing the Pearson
residual by the square root of 1− hii, to obtain

si =
pi√

1− hii
=

yi − µ̂i
√

(1− hii)µ̂i(ni − µ̂i)/ni
.

A similar standardization can be applied to deviance residuals. In both
cases the standardized residuals have the same variance only approximately
because the correction is first order, unlike the case of linear models where
the correction was exact.

Consider now calculating jack-knifed residuals by omitting one observa-
tion. Since estimation relies on iterative procedures, this calculation would
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be expensive. Suppose, however, that we start from the final estimates and
do only one iteration of the IRLS procedure. Since this step is a standard
weighted least squares calculation, we can apply the standard regression
updating formulas to obtain the new coefficients and thus the predictive
residuals. Thus, we can calculate a jack-knifed residual as a function of the
standardized residual using the same formula as in linear models

ti = si

√

n− p− 1

n− p− s2i

and view the result as a one-step approximation to the true jack-knifed
residual.

3.8.4 Leverage and Influence

The diagonal elements of the hat matrix can be interpreted as leverages just
as in linear models. To measure actual rather than potential influence we
could calculate Cook’s distance, comparing β̂ with β̂(i), the m.l.e.’s of the
coefficients with and without the i-th observation. Calculation of the later
would be expensive if we iterated to convergence. Pregibon (1981), however,
has shown that we can use the standard linear models formula

Di = s2i
hii

(1− hii)p
,

and view the result as a one-step approximation to Cook’s distance, based
on doing one iteration of the IRLS algorithm towards β̂(i) starting from the

complete data estimate β̂.

3.8.5 Testing Goodness of Fit

With grouped data we can assess goodness of fit by looking directly at the
deviance, which has approximately a chi-squared distribution for large ni. A
common rule of thumb is to require all expected frequencies (both expected
successes µ̂i and failures ni − µ̂i) to exceed one, and 80% of them to exceed
five.

With individual data this test is not available, but one can always group
the data according to their covariate patterns. If the number of possible
combinations of values of the covariates is not too large relative to the total
sample size, it may be possible to group the data and conduct a formal
goodness of fit test. Even when the number of covariate patterns is large, it is
possible that a few patterns will account for most of the observations. In this
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case one could compare observed and fitted counts at least for these common
patterns, using either the deviance or Pearson’s chi-squared statistic.

Hosmer and Lemeshow (1980, 1989) have proposed an alternative pro-
cedure that can be used with individual data even if there are no common
covariate patterns. The basic idea is to use predicted probabilities to create
groups. These authors recommend forming ten groups, with predicted prob-
abilities of 0–0.1, 0.1–0.2, and so on, with the last group being 0.9–1. One
can then compute expected counts of successes (and failures) for each group
by summing the predicted values (and their complements), and compare
these with observed values using Pearson’s chi-squared statistic. Simulation
studies show that the resulting statistic has approximately in large samples
the usual chi-squared distribution, with degrees of freedom equal to g − 2,
where g is the number of groups, usually ten. It seems reasonable to as-
sume that this result would also apply if one used the deviance rather than
Pearson’s chi-squared.

Another measure that has been proposed in the literature is a pseudo-
R2, based on the proportion of deviance explained by a model. This is a
direct extension of the calculations based on RSS’s for linear models. These
measures compare a given model with the null model, and as such do not
necessarily measure goodness of fit. A more direct measure of goodness of
fit would compare a given model with the saturated model, which brings us
back again to the deviance.

Yet another approach to assessing goodness of fit is based on prediction
errors. Suppose we were to use the fitted model to predict ‘success’ if the
fitted probability exceeds 0.5 and ‘failure’ otherwise. We could then crosstab-
ulate the observed and predicted responses, and calculate the proportion of
cases predicted correctly. While intuitively appealing, one problem with this
approach is that a model that fits the data may not necessarily predict well,
since this depends on how predictable the outcome is. If prediction was the
main objective of the analysis, however, the proportion classified correctly
would be an ideal criterion for model comparison.



Chapter 4

Poisson Models for Count

Data

In this chapter we study log-linear models for count data under the assump-
tion of a Poisson error structure. These models have many applications, not
only to the analysis of counts of events, but also in the context of models for
contingency tables and the analysis of survival data.

4.1 Introduction to Poisson Regression

As usual, we start by introducing an example that will serve to illustrative
regression models for count data. We then introduce the Poisson distribution
and discuss the rationale for modeling the logarithm of the mean as a linear
function of observed covariates. The result is a generalized linear model with
Poisson response and link log.

4.1.1 The Children Ever Born Data

Table 4.1, adapted from Little (1978), comes from the Fiji Fertility Survey
and is typical of the sort of table published in the reports of the World
Fertility Survey. The table shows data on the number of children ever born
to married women of the Indian race classified by duration since their first
marriage (grouped in six categories), type of place of residence (Suva, other
urban and rural), and educational level (classified in four categories: none,
lower primary, upper primary, and secondary or higher). Each cell in the
table shows the mean, the variance and the number of observations.

In our analysis of these data we will treat the number of children ever

G. Rodŕıguez. Revised September, 2007
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Table 4.1: Number of Children Ever Born to Women of Indian Race
By Marital Duration, Type of Place of Residence and Educational Level

(Each cell shows the mean, variance and sample size)

Marr. Suva Urban Rural
Dur. N LP UP S+ N LP UP S+ N LP UP S+
0–4 0.50 1.14 0.90 0.73 1.17 0.85 1.05 0.69 0.97 0.96 0.97 0.74

1.14 0.73 0.67 0.48 1.06 1.59 0.73 0.54 0.88 0.81 0.80 0.59
8 21 42 51 12 27 39 51 62 102 107 47

5–9 3.10 2.67 2.04 1.73 4.54 2.65 2.68 2.29 2.44 2.71 2.47 2.24
1.66 0.99 1.87 0.68 3.44 1.51 0.97 0.81 1.93 1.36 1.30 1.19
10 30 24 22 13 37 44 21 70 117 81 21

10–14 4.08 3.67 2.90 2.00 4.17 3.33 3.62 3.33 4.14 4.14 3.94 3.33
1.72 2.31 1.57 1.82 2.97 2.99 1.96 1.52 3.52 3.31 3.28 2.50
12 27 20 12 18 43 29 15 88 132 50 9

15–19 4.21 4.94 3.15 2.75 4.70 5.36 4.60 3.80 5.06 5.59 4.50 2.00
2.03 1.46 0.81 0.92 7.40 2.97 3.83 0.70 4.91 3.23 3.29 –
14 31 13 4 23 42 20 5 114 86 30 1

20–24 5.62 5.06 3.92 2.60 5.36 5.88 5.00 5.33 6.46 6.34 5.74 2.50
4.15 4.64 4.08 4.30 7.19 4.44 4.33 0.33 8.20 5.72 5.20 0.50
21 18 12 5 22 25 13 3 117 68 23 2

25–29 6.60 6.74 5.38 2.00 6.52 7.51 7.54 – 7.48 7.81 5.80 –
12.40 11.66 4.27 – 11.45 10.53 12.60 – 11.34 7.57 7.07 –

47 27 8 1 46 45 13 – 195 59 10 –

born to each woman as the response, and her marriage duration, type of place
of residence and level of education as three discrete predictors or factors.

4.1.2 The Poisson Distribution

A random variable Y is said to have a Poisson distribution with parameter
µ if it takes integer values y = 0, 1, 2, . . . with probability

Pr{Y = y} =
e−µµy

y!
(4.1)

for µ > 0. The mean and variance of this distribution can be shown to be

E(Y ) = var(Y ) = µ.

Since the mean is equal to the variance, any factor that affects one will also
affect the other. Thus, the usual assumption of homoscedasticity would not
be appropriate for Poisson data.
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The classic text on probability theory by Feller (1957) includes a number
of examples of observations fitting the Poisson distribution, including data
on the number of flying-bomb hits in the south of London during World
War II. The city was divided into 576 small areas of one-quarter square
kilometers each, and the number of areas hit exactly k times was counted.
There were a total of 537 hits, so the average number of hits per area was
0.9323. The observed frequencies in Table 4.2 are remarkably close to a
Poisson distribution with mean µ = 0.9323. Other examples of events that
fit this distribution are radioactive disintegrations, chromosome interchanges
in cells, the number of telephone connections to a wrong number, and the
number of bacteria in different areas of a Petri plate.

Table 4.2: Flying-bomb Hits on London During World War II

Hits 0 1 2 3 4 5+

Observed 229 211 93 35 7 1
Expected 226.7 211.4 98.6 30.6 7.1 1.6

The Poisson distribution can be derived as a limiting form of the binomial
distribution if you consider the distribution of the number of successes in a
very large number of Bernoulli trials with a small probability of success in
each trial. Specifically, if Y ∼ B(n, π) then the distribution of Y as n → ∞
and π → 0 with µ = nπ remaining fixed approaches a Poisson distribution
with mean µ. Thus, the Poisson distribution provides an approximation to
the binomial for the analysis of rare events, where π is small and n is large.

In the flying-bomb example, we can think of each day as one of a large
number of trials where each specific area has only a small probability of
being hit. Assuming independence across days would lead to a binomial
distribution which is well approximated by the Poisson.

An alternative derivation of the Poisson distribution is in terms of a
stochastic process described somewhat informally as follows. Suppose events
occur randomly in time in such a way that the following conditions obtain:

• The probability of at least one occurrence of the event in a given time
interval is proportional to the length of the interval.

• The probability of two or more occurrences of the event in a very small
time interval is negligible.

• The numbers of occurrences of the event in disjoint time intervals are
mutually independent.
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Then the probability distribution of the number of occurrences of the event
in a fixed time interval is Poisson with mean µ = λt, where λ is the rate
of occurrence of the event per unit of time and t is the length of the time
interval. A process satisfying the three assumptions listed above is called a
Poisson process.

In the flying bomb example these conditions are not unreasonable. The
longer the war lasts, the greater the chance that a given area will be hit
at least once. Also, the probability that the same area will be hit twice the
same day is, fortunately, very small. Perhaps less obviously, whether an area
is hit on any given day is independent of what happens in neighboring areas,
contradicting a common belief that bomb hits tend to cluster.

The most important motivation for the Poisson distribution from the
point of view of statistical estimation, however, lies in the relationship be-
tween the mean and the variance. We will stress this point when we discuss
our example, where the assumptions of a limiting binomial or a Poisson pro-
cess are not particularly realistic, but the Poisson model captures very well
the fact that, as is often the case with count data, the variance tends to
increase with the mean.

A useful property of the Poisson distribution is that the sum of indepen-
dent Poisson random variables is also Poisson. Specifically, if Y1 and Y2 are
independent with Yi ∼ P (µi) for i = 1, 2 then

Y1 + Y2 ∼ P (µ1 + µ2).

This result generalizes in an obvious way to the sum of more than two Poisson
observations.

An important practical consequence of this result is that we can analyze
individual or grouped data with equivalent results. Specifically, suppose
we have a group of ni individuals with identical covariate values. Let Yij
denote the number of events experienced by the j-th unit in the i-th group,
and let Yi denote the total number of events in group i. Then, under the
usual assumption of independence, if Yij ∼ P (µi) for j = 1, 2, . . . , ni, then
Yi ∼ P (niµi). In words, if the individual counts Yij are Poisson with mean
µi, the group total Yi is Poisson with mean niµi. In terms of estimation, we
obtain exactly the same likelihood function if we work with the individual
counts Yij or the group counts Yi.

4.1.3 Log-Linear Models

Suppose that we have a sample of n observations y1, y2, . . . , yn which can
be treated as realizations of independent Poisson random variables, with
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Yi ∼ P (µi), and suppose that we want to let the mean µi (and therefore the
variance!) depend on a vector of explanatory variables xi.

We could entertain a simple linear model of the form

µi = x′

iβ,

but this model has the disadvantage that the linear predictor on the right
hand side can assume any real value, whereas the Poisson mean on the left
hand side, which represents an expected count, has to be non-negative.

A straightforward solution to this problem is to model instead the log-

arithm of the mean using a linear model. Thus, we take logs calculating
ηi = log(µi) and assume that the transformed mean follows a linear model
ηi = x′

iβ. Thus, we consider a generalized linear model with link log. Com-
bining these two steps in one we can write the log-linear model as

log(µi) = x′

iβ. (4.2)

In this model the regression coefficient βj represents the expected change
in the log of the mean per unit change in the predictor xj . In other words
increasing xj by one unit is associated with an increase of βj in the log of
the mean.

Exponentiating Equation 4.2 we obtain a multiplicative model for the
mean itself:

µi = exp{x′

iβ}.

In this model, an exponentiated regression coefficient exp{βj} represents a
multiplicative effect of the j-th predictor on the mean. Increasing xj by one
unit multiplies the mean by a factor exp{βj}.

A further advantage of using the log link stems from the empirical obser-
vation that with count data the effects of predictors are often multiplicative
rather than additive. That is, one typically observes small effects for small
counts, and large effects for large counts. If the effect is in fact proportional
to the count, working in the log scale leads to a much simpler model.

4.2 Estimation and Testing

The log-linear Poisson model described in the previous section is a gener-
alized linear model with Poisson error and link log. Maximum likelihood
estimation and testing follows immediately from the general results in Ap-
pendix B. In this section we review a few key results.
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4.2.1 Maximum Likelihood Estimation

The likelihood function for n independent Poisson observations is a product
of probabilities given by Equation 4.1. Taking logs and ignoring a constant
involving log(yi!), we find that the log-likelihood function is

logL(β) =
∑

{yi log(µi)− µi},

where µi depends on the covariates xi and a vector of p parameters β through
the log link of Equation 4.2.

It is interesting to note that the log is the canonical link for the Poisson
distribution. Taking derivatives of the log-likelihood function with respect
to the elements of β, and setting the derivatives to zero, it can be shown
that the maximum likelihood estimates in log-linear Poisson models satisfy
the estimating equations

X′y = X′µ̂, (4.3)

where X is the model matrix, with one row for each observation and one
column for each predictor, including the constant (if any), y is the response
vector, and µ̂ is a vector of fitted values, calculated from the m.l.e.’s β̂ by
exponentiating the linear predictor η = X′β̂. This estimating equation arises
not only in Poisson log-linear models, but more generally in any generalized
linear model with canonical link, including linear models for normal data and
logistic regression models for binomial counts. It is not satisfied, however,
by estimates in probit models for binary data.

To understand equation 4.3 it helps to consider a couple of special cases.
If the model includes a constant, then one of the columns of the model matrix
X is a column of ones. Multiplying this column by the response vector y

produces the sum of the observations. Similarly, multiplying this column by
the fitted values µ̂ produces the sum of the fitted values. Thus, in models
with a constant one of the estimating equations matches the sum of observed
and fitted values. In terms of the example introduced at the beginning of
this chapter, fitting a model with a constant would match the total number
of children ever born to all women.

As a second example suppose the model includes a discrete factor repre-
sented by a series of dummy variables taking the value one for observations
at a given level of the factor and zero otherwise. Multiplying this dummy
variable by the response vector y produces the sum of observations at that
level of the factor. When this is done for all levels we obtain the so-called
marginal total. Similarly, multiplying the dummy variable by the fitted val-
ues µ̂ produces the sum of the expected or fitted counts at that level. Thus,
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in models with a discrete factor the estimating equations match the observed
and fitted marginals for the factor. In terms of the example introduced at
the outset, if we fit a model that treats marital duration as a discrete factor
we would match the observed and fitted total number of children ever born
in each category of duration since first marriage.

This result generalizes to higher order terms. Suppose we entertain mod-
els with two discrete factors, say A and B. The additive model A+B would
reproduce exactly the marginal totals by A or by B. The model with an
interaction effect AB would, in addition, match the totals in each combina-
tion of categories of A and B, or the AB margin. This result, which will be
important in the sequel, is the basis of an estimation algorithm known as
iterative proportional fitting.

In general, however, we will use the iteratively-reweighted least squares
(IRLS) algorithm discussed in Appendix B. For Poisson data with link log,
the working dependent variable z has elements

zi = η̂i +
yi − µ̂i

µ̂i

,

and the diagonal matrix W of iterative weights has elements

wii = µ̂i,

where µ̂i denotes the fitted values based on the current parameter estimates.

Initial values can be obtained by applying the link to the data, that
is taking the log of the response, and regressing it on the predictors using
OLS. To avoid problems with counts of 0, one can add a small constant to
all responses. The procedure usually converges in a few iterations.

4.2.2 Goodness of Fit

A measure of discrepancy between observed and fitted values is the deviance.
In Appendix B we show that for Poisson responses the deviance takes the
form

D = 2
∑

{yi log(
yi

µ̂i

)− (yi − µ̂i)}.

The first term is identical to the binomial deviance, representing ‘twice a
sum of observed times log of observed over fitted’. The second term, a sum
of differences between observed and fitted values, is usually zero, because
m.l.e.’s in Poisson models have the property of reproducing marginal totals,
as noted above.



8 CHAPTER 4. POISSON MODELS FOR COUNT DATA

For large samples the distribution of the deviance is approximately a chi-
squared with n−p degrees of freedom, where n is the number of observations
and p the number of parameters. Thus, the deviance can be used directly
to test the goodness of fit of the model.

An alternative measure of goodness of fit is Pearson’s chi-squared statis-
tic, which is defined as

χ2

p =
∑ (yi − µ̂i)

2

µ̂i

.

The numerator is the squared difference between observed and fitted values,
and the denominator is the variance of the observed value. The Pearson
statistic has the same form for Poisson and binomial data, namely a ‘sum of
squared observed minus expected over expected’.

In large samples the distribution of Pearson’s statistic is also approx-
imately chi-squared with n − p d.f. One advantage of the deviance over
Pearson’s chi-squared is that it can be used to compare nested models, as
noted below.

4.2.3 Tests of Hypotheses

Likelihood ratio tests for log-linear models can easily be constructed in terms
of deviances, just as we did in logistic regression models. In general, the
difference in deviances between two nested models has approximately in
large samples a chi-squared distribution with degrees of freedom equal to
the difference in the number of parameters between the models, under the
assumption that the smaller model is correct.

One can also construct Wald tests as we have done before, based on the
fact that the maximum likelihood estimator β̂ has approximately in large
samples a multivariate normal distribution with mean equal to the true
parameter value β and variance-covariance matrix var(β̂) = X′WX, where
X is the model matrix and W is the diagonal matrix of estimation weights
described earlier.

4.3 A Model for Heteroscedastic Counts

Let us consider the data on children ever born from Table 4.1. The unit of
analysis here is the individual woman, the response is the number of children
she has borne, and the predictors are the duration since her first marriage,
the type of place where she resides, and her educational level, classified in
four categories.
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4.3.1 The Mean-Variance Relation

Data such as these have traditionally been analyzed using ordinary linear
models with normal errors. You might think that since the response is a
discrete count that typically takes values such as 0, 2 or six, it couldn’t
possibly have a normal distribution. The key concern, however, is not the
normality of the errors but rather the assumption of constant variance.
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Figure 4.1: The Mean-variance Relationship for the CEB Data

In Figure 4.1 we explore the form of the mean-variance relationship for
these data by plotting the variance versus the mean for all cells in the table
with at least 20 observations. For convenience we use a log-log scale. Clearly,
the assumption of constant variance is not valid. Although the variance is
not exactly equal to the mean, it is not far from being proportional to it.
Thus, we conclude that we can do far more justice to the data by fitting
Poisson regression models than by clinging to ordinary linear models.

4.3.2 Grouped Data and the Offset

At this point you may wonder whether we need the individual observations
to be able to proceed further. The answer is no; all the information we need
is available in Table 4.1. To see this point let Yijkl denote the number of
children borne by the l-th woman in the (i, j, k)-th group, where i denotes
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marital duration, j residence and k education, and let Yijk =
∑

l Yijkl denote
the group total. If each of the observations in this group is a realization of
an independent Poisson variate with mean µijk, then the group total will
be a realization of a Poisson variate with mean nijkµijk, where nijk is the
number of observations in the (i, j, k)-th cell.

Suppose now that you postulate a log-linear model for the individual
means, say

log E(Yijkl) = log(µijk) = x′

ijkβ,

where xijk is a vector of covariates. Then the log of the expected value of
the group total is

log E(Yijk) = log(nijkµijk) = log(nijk) + x′

ijkβ.

Thus, the group totals follow a log-linear model with exactly the same coeffi-
cients β as the individual means, except for the fact that the linear predictor
includes the term log(nijk). This term, which is known beforehand, is called
an offset, and is a frequent feature of log-linear models for counts of events.
Often, when the response is a count of events the offset represents the log of
some measure of exposure, in our case the number of women.

Thus, we can analyze the data by fitting log-linear models to the indi-
vidual counts, or to the group totals. In the latter case we treat the log of
the number of women in each cell as an offset. The parameter estimates and
standard errors will be exactly the same. The deviances of course, will be
different, because they measure goodness of fit to different sets of counts.
Differences of deviances between nested models, however, are exactly the
same whether one works with individual or grouped data. The situation is
analogous to the case of individual and grouped binary data discussed in
the previous chapter, with the offset playing a role similar to that of the
binomial denominator.

4.3.3 The Deviance Table

Table 4.3 shows the results of fitting a variety of Poisson models to the
children ever-born data. The null model has a deviance of 3732 on 69 degrees
of freedom (d.f.) and does not fit the data, so we reject the hypothesis that
the expected number of children is the same for all these groups.

Introducing marital duration reduces the deviance to 165.8 on 64 d.f.
The substantial reduction of 3566 at the expense of only five d.f. reflects the
trivial fact that the (cumulative) number of children ever born to a woman
depends on the total amount of time she has been exposed to childbearing,
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Table 4.3: Deviances for Poisson Log-linear Models Fitted to
the Data on CEB by Marriage Duration, Residence and Education

Model Deviance d.f.

Null 3731.52 69
One-factor Models

Duration 165.84 64
Residence 3659.23 67
Education 2661.00 66
Two-factor Models

D +R 120.68 62
D + E 100.01 61
DR 108.84 52
DE 84.46 46
Three-factor Models

D +R+ E 70.65 59
D +RE 59.89 53
E +DR 57.06 49
R+DE 54.91 44
DR+RE 44.27 43
DE +RE 44.60 38
DR+DE 42.72 34
DR+DE +RE 30.95 28

as measured by the duration since her first marriage. Clearly it would not
make sense to consider any model that does not include this variable as a
necessary control.

At this stage one could add to the model type of place of residence,
education, or both. The additive model with effects of duration, residence
and education has a deviance of 70.65 on 59 d.f. (an average of 1.2 per d.f.)
and provides a reasonable description of the data. The associated P-value
under the assumption of a Poisson distribution is 0.14, so the model passes
the goodness-of-fit test. In the next subsection we consider the interpretation
of parameter estimates for this model.

The deviances in Table 4.3 can be used to test the significance of gross
and net effects as usual. To test the gross effect of education one could
compare the one-factor model with education to the null model, obtaining a
remarkable chi-squared statistic of 1071 on three d.f. In this example it really
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doesn’t make sense to exclude marital duration, which is an essential control
for exposure time. A better test of the effect of education would therefore
compare the additive model D+E with both duration and education to the
one-factor model D with duration only. This gives a more reasonable chi-
squared statistic of 65.8 on three d.f., still highly significant. Since educated
women tend to be younger, the previous test overstated the educational
differential.

We can also test the net effect of education controlling for type of place of
residence, by comparing the three-factor additive model D+R+E with the
two-factor model D + R with duration and residence only. The difference
in deviances of 50.1 on three d.f. is highly significant. The fact that the
chi-squared statistic for the net effect is somewhat smaller than the test
controlling duration only indicates that part of the effect of education may
be attributed to the fact that more educated women tend to live in Suva or
in other urban areas.

The question of interactions remains to be raised. Does education make
more of a difference in rural areas than in urban areas? To answer this
question we move from the additive model to the model that adds an inter-
action between residence and education. The reduction in deviance is 10.8
on six d.f. and is not significant, with a P-value of 0.096. Does the effect of
education increase with marital duration? Adding an education by duration
interaction to the additive model reduces the deviance by 15.7 at the expense
of 15 d.f., hardly a bargain. A similar remark applies to the residence by
duration interaction. Thus, we conclude that the additive model is adequate
for these data.

4.3.4 The Additive Model

Table 4.4 shows parameter estimates and standard errors for the additive
model of children ever born (CEB) by marital duration, type of place of
residence and education.

The constant represents the log of the mean number of children for the
reference cell, which in this case is Suvanese women with no education who
have been married 0–4 years. Since exp{−0.1173} = 0.89, we see that on the
average these women have 0.89 children at this time in their lives. The dura-
tion parameters trace the increase in CEB with duration for any residence-
education group. As we move from duration 0–4 to 5–9 the log of the mean
increases by almost one, which means that the number of CEB gets multi-
plied by exp{0.9977} = 2.71. By duration 25–29, women in each category of
residence and education have exp{1.977} = 7.22 times as many children as
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Table 4.4: Estimates for Additive Log-Linear Model of Children Ever Born
by Marital Duration, Type of Place of Residence and Educational Level

Parameter Estimate Std. Error z-ratio

Constant −0.1173 0.0549 −2.14
Duration 0–4 –

5–9 0.9977 0.0528 18.91
10–14 1.3705 0.0511 26.83
15–19 1.6142 0.0512 31.52
20–24 1.7855 0.0512 34.86
25–29 1.9768 0.0500 39.50

Residence Suva –
Urban 0.1123 0.0325 3.46
Rural 0.1512 0.0283 5.34

Education None –
Lower 0.0231 0.0227 1.02
Upper -0.1017 0.0310 -3.28
Sec+ -0.3096 0.0552 -5.61

they did at duration 0–4.

The effects of residence show that Suvanese women have the lowest fertil-
ity. At any given duration since first marriage, women living in other urban
areas have 12% larger families (exp{0.1123} = 1.12) than Suvanese women
with the same level of education. Similarly, at any fixed duration, women
who live in rural areas have 16% more children (exp{0.1512} = 1.16), than
Suvanese women with the same level of education.

Finally, we see that higher education is associated with smaller family
sizes net of duration and residence. At any given duration of marriage,
women with upper primary education have 10% fewer kids, and women with
secondary or higher education have 27% fewer kids, than women with no
education who live in the same type of place of residence. (The last figure
follows from the fact that 1− exp{−0.3096} = 0.27.)

In our discussion of interactions in the previous subsection we noted
that the additive model fits reasonably well, so we have no evidence that
the effect of a variable depends on the values of other predictors. It is
important to note, however, that the model is additive in the log scale. In
the original scale the model is multiplicative, and postulates relative effects
which translate into different absolute effects depending on the values of the
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other predictors. To clarify this point we consider the effect of education.
Women with secondary or higher education have 27% fewer kids than women
with no education. Table 4.5 shows the predicted number of children at each
duration of marriage for Suvanese women with secondary education and with
no education, as well as the difference between these two groups.

Table 4.5: Fitted Values for Suvanese Women with No Education
and with Secondary or Higher Education

Marital Duration 0–4 5–9 10–14 15–19 20–24 25+

No Education 0.89 2.41 3.50 4.47 5.30 6.42
Secondary+ 0.65 1.77 2.57 3.28 3.89 4.71
Difference 0.24 0.64 0.93 1.19 1.41 1.71

The educational differential of 27% between these two groups translates
into a quarter of a child at durations 0–4, increases to about one child around
duration 15, and reaches almost one and a quarter children by duration
25+. Thus, the (absolute) effect of education measured in the original scale
increases with marital duration.

If we had used an ordinary linear regression model for these data we
would have ended up with a large number of interaction effects to accom-
modate the fact that residence and educational differentials increase with
marital duration. In addition, we would have faced a substantial problem of
heteroscedasticity. Taking logs of the response would ameliorate the prob-
lem, but would have required special treatment of women with no children.
The Poisson log-linear model solves the two problems separately, allowing
the variance to depend on the mean, and modeling the log of the mean as a
linear function of the covariates.



Chapter 5

Log-Linear Models for

Contingency Tables

In this chapter we study the application of Poisson regression models to
the analysis of contingency tables. This is perhaps one of the most popular
applications of log-linear models, and is based on the existence of a very
close relationship between the multinomial and Poisson distributions.

5.1 Models for Two-dimensional Tables

We start by considering the simplest possible contingency table: a two-by-
two table. However, the concepts to be introduced apply equally well to
more general two-way tables where we study the joint distribution of two
categorical variables.

5.1.1 The Heart Disease Data

Table 5.1 was taken from the Framingham longitudinal study of coronary
heart disease (Cornfield, 1962; see also Fienberg, 1977). It shows 1329 pa-
tients cross-classified by the level or their serum cholesterol (below or above
260) and the presence or absence of heart disease.

There are various sampling schemes that could have led to these data,
with consequences for the probability model one would use, the types of
questions one would ask, and the analytic techniques that would be em-
ployed. Yet, all schemes lead to equivalent analyses. We now explore several
approaches to the analysis of these data.

G. Rodŕıguez. Revised November, 2001; minor corrections August 2010
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Table 5.1: Serum Cholesterol and Heart Disease

Serum Heart Disease
Total

Cholesterol Present Absent

< 260 51 992 1043
260+ 41 245 286

Total 92 1237 1329

5.1.2 The Multinomial Model

Our first approach will assume that the data were collected by sampling 1329
patients who were then classified according to cholesterol and heart disease.
We view these variables as two responses, and we are interested in their joint
distribution. In this approach the total sample size is assumed fixed, and all
other quantities are considered random.

We will develop the random structure of the data in terms of the row and
column variables, and then note what this implies for the counts themselves.
Let C denote serum cholesterol and D denote heart disease, both discrete
factors with two levels. More generally, we can imagine a row factor with I
levels indexed by i and a column factor with J levels indexed by j, forming
an I × J table. In our example I = J = 2.

To describe the joint distribution of these two variables we let πij denote
the probability that an observation falls in row i and column j of the table.
In our example words, πij is the probability that serum cholesterol C takes
the value i and heart disease D takes the value j. In symbols,

πij = Pr{C = i,D = j}, (5.1)

for i = 1, 2, . . . , I and j = 1, 2, . . . , J . These probabilities completely describe
the joint distribution of the two variables.

We can also consider the marginal distribution of each variable. Let πi.
denote the probability that the row variable takes the value i, and let π.j
denote the probability that the column variable takes the value j. In our
example πi. and π.j represent the marginal distributions of serum cholesterol
and heart disease. In symbols,

πi. = Pr{C = i} and π.j = Pr{D = j}. (5.2)

Note that we use a dot as a placeholder for the omitted subscript.
The main hypothesis of interest with two responses is whether they are

independent. By definition, two variables are independent if (and only if)
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their joint distribution is the product of the marginals. Thus, we can write
the hypothesis of independence as

H0 : πij = πi.π.j (5.3)

for all i = 1, . . . , I and j = 1, . . . , J . The question now is how to estimate
the parameters and how to test the hypothesis of independence.

The traditional approach to testing this hypothesis calculates expected
counts under independence and compares observed and expected counts us-
ing Pearson’s chi-squared statistic. We adopt a more formal approach that
relies on maximum likelihood estimation and likelihood ratio tests. In order
to implement this approach we consider the distribution of the counts in the
table.

Suppose each of n observations is classified independently in one of the
IJ cells in the table, and suppose the probability that an observation falls
in the (i, j)-th cell is πij . Let Yij denote a random variable representing
the number of observations in row i and column j of the table, and let yij
denote its observed value. The joint distribution of the counts is then the
multinomial distribution, with

Pr{Y = y} =
n!

y11!y12!y21!y22!
πy11
11

πy12
12

πy21
21

πy22
22

, (5.4)

where Y is a random vector collecting all four counts and y is a vector
of observed values. The term to the right of the fraction represents the
probability of obtaining y11 observations in cell (1,1), y12 in cell (1,2), and
so on. The fraction itself is a combinatorial term representing the number
of ways of obtaining y11 observations in cell (1,1), y12 in cell (1,2), and so
on, out of a total of n. The multinomial distribution is a direct extension
of the binomial distribution to more than two response categories. In the
present case we have four categories, which happen to represent a two-by-
two structure. In the special case of only two categories the multinomial
distribution reduces to the familiar binomial.

Taking logs and ignoring the combinatorial term, which does not depend
on the parameters, we obtain the multinomial log-likelihood function, which
for a general I × J table has the form

logL =
I
∑

i=1

J
∑

j=1

yij log(πij). (5.5)

To estimate the parameters we need to take derivatives of the log-likelihood
function with respect to the probabilities, but in doing so we must take into
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account the fact that the probabilities add up to one over the entire table.
This restriction may be imposed by adding a Lagrange multiplier, or more
simply by writing the last probability as the complement of all others. In
either case, we find the unrestricted maximum likelihood estimate to be the
sample proportion:

π̂ij =
yij
n
.

Substituting these estimates into the log-likelihood function gives its unre-
stricted maximum.

Under the hypothesis of independence in Equation 5.3, the joint proba-
bilities depend on the margins. Taking derivatives with respect to πi. and
π.j , and noting that these are also constrained to add up to one over the
rows and columns, respectively, we find the m.l.e.’s

π̂i. =
yi.
n

and π̂.j =
y.j
n
,

where yi. =
∑

j yij denotes the row totals and y.j denotes the column totals.
Combining these estimates and multiplying by n to obtain expected counts
gives

µ̂ij =
yi.y.j
n

,

which is the familiar result from introductory statistics. In our example, the
expected frequencies are

µ̂ij =

(

72.2 970.8
19.8 266.2

)

.

Substituting these estimates into the log-likelihood function gives its maxi-
mum under the restrictions implied by the hypothesis of independence. To
test this hypothesis, we calculate twice the difference between the unre-
stricted and restricted maxima of the log-likelihood function, to obtain the
deviance or likelihood ratio test statistic

D = 2
∑

i

∑

j

yij log(
yij
µ̂ij

). (5.6)

Note that the numerator and denominator inside the log can be written in
terms of estimated probabilities or counts, because the sample size n cancels
out. Under the hypothesis of independence, this statistic has approximately
in large samples a chi-squared distribution with (I − 1)(J − 1) d.f.

Going through these calculations for our example we obtain a deviance
of 26.43 with one d.f. Comparison of observed and fitted counts in terms of
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Pearson’s chi-squared statistic gives 31.08 with one d.f. Clearly, we reject
the hypothesis of independence, concluding that heart disease and serum
cholesterol level are associated.

5.1.3 The Poisson Model

An alternative model for the data in Table 5.1 is to treat the four counts as
realizations of independent Poisson random variables. A possible physical
model is to imagine that there are four groups of people, one for each cell in
the table, and that members from each group arrive randomly at a hospital
or medical center over a period of time, say for a health check. In this model
the total sample size is not fixed in advance, and all counts are therefore
random.

Under the assumption that the observations are independent, the joint
distribution of the four counts is a product of Poisson distributions

Pr{Y = y} =
∏

i

∏

j

µ
yij
ij e−µij

yij !
. (5.7)

Taking logs we obtain the usual Poisson log-likelihood from Chapter 4.
In terms of the systematic structure of the model, we could consider three

log-linear models for the expected counts: the null model, the additive model
and the saturated model. The null model would assume that all four kinds
of patients arrive at the hospital or health center in the same numbers. The
additive model would postulate that the arrival rates depend on the level
of cholesterol and the presence or absence of heart disease, but not on the
combination of the two. The saturated model would say that each group has
its own rate or expected number of arrivals.

At this point you may try fitting the Poisson additive model to the four
counts in Table 5.1, treating cholesterol and heart disease as factors or dis-
crete predictors. You will discover that the deviance is 26.43 on one d.f. (four
observations minus three parameters, the constant and the coefficients of two
dummies representing cholesterol and heart disease). If you print the fitted
values you will discover that they are exactly the same as in the previous
subsection.

This result, of course, is not a coincidence. Testing the hypothesis of

independence in the multinomial model is exactly equivalent to testing the

goodness of fit of the Poisson additive model. A rigorous proof of this result
is beyond the scope of these notes, but we can provide enough information
to show that the result is intuitively reasonable and to understand when it
can be used.
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First, note that if the four counts have independent Poisson distributions,
their sum is distributed Poisson with mean equal to the sum of the means.
In symbols, if Yij ∼ P (µij) then the total Y.. =

∑

i

∑

j Yij is distributed
Poisson with mean µ.. =

∑

i

∑

j µij . Further, the conditional distribution of
the four counts given their total is multinomial with probabilities

πij = µij/n,

where we have used n for the observed total y.. =
∑

i,j yij . This result
follows directly from the fact that the conditional distribution of the counts
Y given their total Y.. can be obtained as the ratio of the joint distribution
of the counts and the total (which is the same as the joint distribution of
the counts, which imply the total) to the marginal distribution of the total.
Dividing the joint distribution given in Equation 5.7 by the marginal, which
is Poisson with mean µ.., leads directly to the multinomial distribution in
Equation 5.4.

Second, note that the systematic structure of the two models is the same.
In the model of independence the joint probability is the product of the
marginals, so taking logs we obtain

log πij = log πi. + log π.j ,

which is exactly the structure of the additive Poisson model

log µij = η + αi + βj .

In both cases the log of the expected count depends on the row and the
column but not the combination of the two. In fact, it is only the constraints
that differ between the two models. The multinomial model restricts the
joint and marginal probabilities to add to one. The Poisson model uses the
reference cell method and sets α1 = β1 = 0.

If the systematic and random structure of the two models are the same,
then it should come as no surprise that they produce the same fitted values
and lead to the same tests of hypotheses. There is only one aspect that we
glossed over: the equivalence of the two distributions holds conditional on n,
but in the Poisson analysis the total n is random and we have not conditioned
on its value. Recall, however, that the Poisson model, by including the
constant, reproduces exactly the sample total. It turns out that we don’t
need to condition on n because the model reproduces its exact value anyway.

The morale of this long-winded story is that we do not need to bother
with multinomial models and can always resort to the equivalent Poisson
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model. While the gain is trivial in the case of a two-by-two table, it can be
very significant as we move to cross-classifications involving three or more
variables, particularly as we don’t have to worry about maximizing the multi-
nomial likelihood under constraints. The only trick we need to learn is how
to translate the questions of independence that arise in the multinomial
context into the corresponding log-linear models in the Poisson context.

5.1.4 The Product Binomial*

(On first reading you may wish to skip this subsection and the next and
proceed directly to the discussion of three-dimensional tables in Section 5.2.)

There is a third sampling scheme that may lead to data such as Table 5.1.
Suppose that a decision had been made to draw a sample of 1043 patients
with low serum cholesterol and an independent sample of 286 patients with
high serum cholesterol, and then examine the presence or absence of heart
disease in each group.

Interest would then focus on the conditional distribution of heart disease
given serum cholesterol level. Let πi denote the probability of heart disease
at level i of serum cholesterol. In the notation of the previous subsections,

πi = Pr{D = 1|C = i} =
πi1
πi.

,

where we have used the fact that the conditional probability of falling in
column one given that you are in row i is the ratio of the joint probability
πi1 of being in cell (i,1) to the marginal probability πi. of being in row i.

Under this scheme the row margin would be fixed in advance, so we would
have n1 observations with low cholesterol and n2 with high. The number of
cases with heart disease in category y of cholesterol, denoted Yi1, would then
have a binomial distribution with parameters πi and ni independently for
i = 1, 2. The likelihood function would then be a product of two binomials:

Pr{Y = y} =
n1!

y11!y12!
πy11
1

(1− π1)
y12

n2!

y21!y22!
πy21
2

(1− π2)
y22 , (5.8)

where we have retained double subscripts and written yi1 and yi2 instead of
the more familiar yi and ni − yi to facilitate comparison with Equations 5.4
and 5.7.

The main hypothesis of interest would be the hypothesis of homogeneity,
where the probability of heart disease is the same in the two groups:

Ho : π1 = π2.
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To test this hypothesis you might consider fitting logistic regression models
to the data, treating heart disease as the response and serum cholesterol
as the predictor, and working with two observations representing the two
groups. If you try this, you will discover that the deviance for the null
model, which can be interpreted as a likelihood ratio test of the hypothesis
of homogeneity, is 26.43 with one d.f., and coincides with the multinomial
and Poisson deviances of the previous two subsections.

Again, this is no coincidence, because the random and systematic com-
ponents of the models are equivalent. The product binomial distribution in
Equation 5.8 can be obtained starting from the assumption that the four
counts Yij are independent Poisson with means µij , and then conditioning
on the totals Yi. =

∑

j Yij , which are Poisson with means µi. =
∑

j µij ,
for i = 1, 2. Taking the ratio of the joint distribution of the counts to
the marginal distribution of the two totals leads to the product binomial in
Equation 5.8 with πi = µi1/µi..

Similarly, the hypothesis of homogeneity turns out to be equivalent to
the hypothesis of independence and hence the additive log-linear model. To
see this point note that if two variables are independent, then the conditional
distribution of one given the other is the same as its marginal distribution.
In symbols, if πij = πi.π.j then the conditional probability, which in general
is πj|i = πij/πi., simplifies to πj|i = π.j , which does not depend on i. In
terms of our example, under independence or homogeneity the conditional
probability of heart disease is the same for the two cholesterol groups.

Again, note that the binomial and Poisson models are equivalent condi-
tioning on the row margin, but in fitting the additive log-linear model we
did not impose any conditions. Recall, however, that the Poisson model, by
treating serum cholesterol as a factor, reproduces exactly the row margin of
the table. Thus, it does not matter that we do not condition on the margin
because the model reproduces its exact value anyway.

The importance of this result is that the results of our analyses are in
fact independent of the sampling scheme.

• If the row margin is fixed in advance we can treat the row factor as
a predictor and the column factor as a response and fit a model of
homogeneity using the product binomial likelihood.

• If the total is fixed in advance we can treat both the row and column
factors as responses and test the hypothesis of independence using the
multinomial likelihood.

• Or we can treat all counts as random and fit an additive log-linear



5.1. MODELS FOR TWO-DIMENSIONAL TABLES 9

model using the Poisson likelihood.

Reassuringly, the results will be identical in all three cases, both in terms of
fitted counts and in terms of the likelihood ratio statistic.

Note that if the total is fixed and the sampling scheme is multinomial
we can always condition on a margin and use binomial models, the choice
being up to the investigator. This choice will usually depend on whether
one wishes to treat the two variables symmetrically, assuming they are both
responses and studying their correlation, or asymmetrically, treating one as
a predictor and the other as a response in a regression framework.

If the row margin is fixed and the sampling scheme is binomial then we
must use the product binomial model, because we can not estimate the joint
distribution of the two variables without further information.

5.1.5 The Hypergeometric Distribution*

There is a fourth distribution that could apply to the data in Table 5.1,
namely the hypergeometric distribution. This distribution arises from treat-
ing both the row and column margins as fixed. I find it hard to imagine a
sampling scheme that would lead to fixed margins, but one could use the
following conditioning argument.

Suppose that the central purpose of the enquiry is the possible association
between cholesterol and heart disease, as measured, for example, by the odds
ratio. Clearly, the total sample size has no information about the odds ratio,
so it would make sense to condition on it. Perhaps less obviously, the row and
column margins carry very little information about the association between
cholesterol and heart disease as measured by the odds ratio. It can therefore
be argued that it makes good statistical sense to condition on both margins.

If we start from the assumption that the four counts are independent
Poisson with means µij , and then condition on the margins Yi. and Y.j as well
as the total Y.. (being careful to use Y1., Y.1 and Y.. to maintain independence)
we obtain the hypergeometric distribution, where

Pr{Y = y} =
y.1!

y11!y21!

y.2!

y21!y22!
/

n!

y1.!y2.!
.

In small samples this distribution is the basis of the so-called Fisher’s exact
test for the two-by-two table. McCullagh and Nelder (1989, Sections 7.3–7.4)
discuss a conditional likelihood ratio test that differs from the unconditional
one. The question of whether one should use conditional or unconditional
tests is still a matter of controversy, see for example Yates (1934, 1984). We
will not consider the hypergeometric distribution further.
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5.2 Models for Three-Dimensional Tables

We now consider in more detail linear models for three-way contingency ta-
bles, focusing on testing various forms of complete and partial independence
using the equivalent Poisson models.

5.2.1 Educational Aspirations in Wisconsin

Table 5.2 classifies 4991 Wisconsin male high school seniors according to
socio-economic status (low, lower middle, upper middle, and high), the de-
gree of parental encouragement they receive (low and high) and whether or
not they have plans to attend college (no, yes). This is part of a larger table
found in Fienberg (1977, p. 101).

Table 5.2: Socio-economic Status, Parental Encouragement and
Educational Aspirations of High School Seniors

Social Parental College Plans
Total

Stratum Encouragement No Yes

Lower Low 749 35 784
High 233 133 366

Lower Middle Low 627 38 665
High 330 303 633

Upper Middle Low 420 37 457
High 374 467 841

Higher Low 153 26 179
High 266 800 1066

Total 3152 1938 4991

In our analysis of these data we will view all three variables as responses,
and we will study the extent to which they are associated. In this process
we will test various hypotheses of complete and partial independence.

Let us first introduce some notation. We will use three subscripts to
identify the cells in an I×J×K table, with i indexing the I rows, j indexing
the J columns and k indexing the K layers. In our example I = 4, J = 2,
and K = 2 for a total of 16 cells.

Let πijk denote the probability that an observation falls in cell (i, j, k).
In our example, this cell represents category i of socio-economic status (S),
category j of parental encouragement (E) and category k of college plans
(P). These probabilities define the joint distribution of the three variables.
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We also let yijk denote the observed count in cell (i, j, k), which we treat
as a realization of a random variable Yijk having a multinomial or Poisson
distribution.

We will also use the dot convention to indicate summing over a subscript,
so πi.. is the marginal probability that an observation falls in row i and
yi.. is the number of observations in row i. The notation extends to two
dimensions, so πij. is the marginal probability that an observation falls in
row i and columnj and yij. is the corresponding count.

5.2.2 Deviances for Poisson Models

In practice we will treat the Yijk as independent Poisson random variables
with means µijk = nπijk, and we will fit log-linear models to the expected
counts.

Table 5.3 lists all possible models of interest in the Poisson context that
include all three variables, starting with the three-factor additive model
S + E + P on status, encouragement and plans, and moving up towards
the saturated model SEP . For each model we list the abbreviated model
formula, the deviance and the degrees of freedom.

Table 5.3: Deviances for Log-linear Models
Fitted to Educational Aspirations Data

Model Deviance d.f.

S + E + P 2714.0 10
SE + P 1877.4 7
SP + E 1920.4 7
S + EP 1092.0 9
SE + SP 1083.8 4
SE + EP 255.5 6
SP + EP 298.5 6
SE + SP + EP 1.575 3

We now switch to a multinomial context, where we focus on the joint dis-
tribution of the three variables S, E and P . We consider four different types
of models that may be of interest in this case, and discuss their equivalence
to one of the above Poisson models.
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5.2.3 Complete Independence

The simplest possible model of interest in the multinomial context is the
model of complete independence, where the joint distribution of the three
variables is the product of the marginals. The corresponding hypothesis is

H0 : πijk = πi..π.j.π..k, (5.9)

where πi.. is the marginal probability that an observation falls in row i, and
π.j. and π..k are the corresponding column and layer margins.

Under this model the logarithms of the expected cell counts are given by

logµijk = log n+ log πi.. + log π.j. + log π..k,

and can be seen to depend only on quantities indexed by i, j and k but none
of the combinations (such as ij, jk or ik). The notation is reminiscent of
the Poisson additive model, where

logµijk = η + αi + βj + γk,

and in fact the two formulations can be shown to be equivalent, differing
only on the choice of constraints: the marginal probabilities add up to one,
whereas the main effects in the log-linear model satisfy the reference cell
restrictions.

The m.l.e.’s of the probabilities under the model of complete indepen-
dence turn out to be, as you might expect, the products of the marginal
proportions. Therefore, the m.l.e.’s of the expected counts under complete
independence are

µ̂ijk = yi..y.j.y..k/n
2.

Note that the estimates depend only on row, column and layer totals, as one
would expect from considerations of marginal sufficiency.

To test the hypothesis of complete independence we compare the max-
imized multinomial log-likelihoods under the model of independence and
under the saturated model. Because of the equivalence between multino-
mial and Poisson models, however, the resulting likelihood ratio statistic is
exactly the same as the deviance for the Poisson additive model.

In our example the deviance of the additive model is 2714 with 10 d.f.,
and is highly significant. We therefore conclude that the hypothesis that
social status, parental encouragement and college plans are completely in-
dependent is clearly untenable.
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5.2.4 Block Independence

The next three log-linear models in Table 5.3 involve one of the two-factor
interaction terms. As you might expect from our analysis of a two-by-two ta-
ble, the presence of an interaction term indicates the existence of association
between those two variables.

For example the model SE + P indicates that S and E are associated,
but are jointly independent of P . In terms of our example this hypothesis
would state that social status and parental encouragement are associated
with each other, and are jointly independent of college plans.

Under this hypothesis the joint distribution of the three variables factors
into the product of two blocks, representing S and E on one hand and P on
the other. Specifically, the hypothesis of block independence is

H0 : πijk = πij.π..k. (5.10)

The m.l.e.’s of the cell probabilities turn out to be the product of the SE
and P marginal probabilities and can be calculated directly. The m.l.e.’s of
the expected counts under block independence are then

µ̂ijk = yij.y..k/n.

Note the similarity between the structure of the probabilities and that of the
estimates, depending on the combination of levels of S and E on the one
hand, and levels of P on the other.

To test the hypothesis of block independence we compare the maxi-
mized multinomial log-likelihood under the restrictions imposed by Equation
5.10 with the maximized log-likelihood for the saturated model. Because of
the equivalence between multinomial and Poisson models, however, the test
statistic would be exactly the same as the deviance for the model SE + P .

In our example the deviance for the model with the SE interaction and
a main effect of P is 1877.4 on 7 d.f., and is highly significant. We therefore
reject the hypothesis that college plans are independent of social status and
parental encouragement.

There are two other models with one interaction term. The model SP+E
has a deviance of 1920.4 on 7 d.f., so we reject the hypothesis that parental
encouragement is independent of social status and college plans. The model
EP + S is the best fitting of this lot, but the deviance of 1092.0 on 9 d.f. is
highly significant, so we reject the hypothesis that parental encouragement
and college plans are associated but are jointly independent of social status.
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5.2.5 Partial Independence

The next three log-linear models in Table 5.3 involve two of the three possible
two-factor interactions, and thus correspond to cases where two pairs of
categorical variables are associated. For example the log-linear model SE +
SP corresponds to the case where S and E are associated and so are S
and P . In terms of our example we would assume that social status affects
both parental encouragement and college plans. The figure below shows this
model in path diagram form.

S ✟
✟

✟
✟

✟
✟✯

❍
❍

❍
❍

❍
❍❥

E

P

Note that we have assumed no direct link between E and P , that is, the
model assumes that parental encouragement has no direct effect on college
plans. In a two-way crosstabulation these two variables would appear to be
associated because of their common dependency on social status S. However,
conditional on social status S, parental encouragement E and college plans
P would be independent.

Thus, the model assumes a form of partial or conditional independence,
where the joint conditional distribution of EP given S is the product of the
marginal conditional distributions of E given S and P given S. In symbols,

Pr{E = j, P = k|S = i} = Pr{E = j|S = i}Pr{P = k|S = i}.

To translate this statement into unconditional probabilities we write the con-
ditional distributions as the product of the joint and marginal distributions,
so that the above equation becomes

Pr{E = j, P = k, S = i}

Pr{S = i}
=

Pr{E = j, S = i}

Pr{S = i}

Pr{P = k, S = i}

Pr{S = i}
,

from which we see that

Pr{S = i, E = j, P = k} =
Pr{S = i, E = j}Pr{S = i, P = k}

Pr{S = i}
,

or, in our usual notation,

πijk =
πij.πi.k
πi..

. (5.11)



5.2. MODELS FOR THREE-DIMENSIONAL TABLES 15

The m.l.e.’s of the expected cell counts have a similar structure and depend
only on the SE and SP margins:

µ̂ijk =
yij.yi.k
yi..

.

To test the hypothesis of partial independence we need to compare the multi-
nomial log-likelihood maximized under the constraints implied by Equation
5.11 with the unconstrained maximum. Because of the equivalence between
multinomial and Poisson models, however, the resulting likelihood ratio test
statistic is the same as the deviance of the model SE + SP .

In terms of our example, the deviance of the model with SE and SP
interactions is 1083.8 on 4 d.f., and is highly significant. We therefore reject
the hypothesis that parental encouragement and college plans are indepen-
dent within each social stratum.

There are two other models with two interaction terms. Although both
of them have smaller deviances than any of the models considered so far,
they still show significant lack of fit. The model SP +EP has a deviance of
298.5 on 6 d.f., so we reject the hypothesis that given college plans P social
status S and parental encouragement E are mutually independent. The best
way to view this model in causal terms is by assuming that S and E are
unrelated and both have effects on P , as shown in the path diagram below.

S ❍
❍

❍
❍

❍
❍❥

E ✟
✟

✟
✟

✟
✟✯ P

The model SE + EP has a deviance of 255.5 on 6 d.f., and leads us to
reject the hypothesis that given parental encouragement E, social class S
and college plans P are independent. In causal terms one might interpret
this model as postulating that social class affects parental encouragement
which in turn affects college plans, with no direct effect of social class on
college plans.

S

❄

E ✟
✟

✟
✟

✟
✟✯ P

Note that all models consider so far have had explicit formulas for the m.l.e.’s,
so no iteration has been necessary and we could have calculated all test
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statistics using the multinomial likelihood directly. An interesting property
of the iterative proportional fitting algorithm mentioned earlier, and which is
used by software specializing in contingency tables, is that it converges in one
cycle in all these cases. The same is not true of the iteratively re-weighted
least squares algorithm used in Poisson regression, which will usually require
a few iterations.

5.2.6 Uniform Association

The only log-linear model remaining in Table 5.3 short of the saturated model
is the model involving all three two-factor interactions. In this model we have
a form of association between all pairs of variables, S and E, S and P , as well
as E and P . Thus, social class is associated with parental encouragement
and with college plans, and in addition parental encouragement has a direct
effect on college plans.

How do we interpret the lack of a three-factor interaction? To answer
this question we start from what we know about interaction effects in general
and adapt it to the present context, where interaction terms in models for
counts represent association between the underlying classification criteria.
The conclusion is that in this model the association between any two of the
variables is the same at all levels of the third.

This model has no simple interpretation in terms of independence, and
as a result we cannot write the structure of the joint probabilities in terms
of the two-way margins. In particular

πijk is not
πij.πi.kπ.jk
πi..π.j.π..k

,

nor any other simple function of the marginal probabilities.

A consequence of this fact is that the m.l.e.’s cannot be written in closed
form and must be calculated using an iterative procedure. They do, however,
depend only on the three two-way margins SE, SP and EP .

In terms of our example, the model SP + SE + EP has a deviance
of 1.6 on three d.f., and therefore fits the data quite well. We conclude
that we have no evidence against the hypothesis that all three variables are
associated, but the association between any two is the same at all levels of the
third. In particular, we may conclude that the association between parental
encouragement E and college plans P is the same in all social strata.

To further appreciate the nature of this model, we give the fitted values
in Table 5.4. Comparison of the estimated expected counts in this table with
the observed counts in Table 5.2 highlights the goodness of fit of the model.
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Table 5.4: Fitted Values for Educational Aspirations Data
Based on Model of Uniform Association SE + SP + EP

Social Parental College Plans
Stratum Encouragement No Yes

Lower Low 753.1 30.9
High 228.9 137.1

Lower Middle Low 626.0 39.0
High 331.0 302.0

Upper Middle Low 420.9 36.1
High 373.1 467.9

Higher Low 149.0 30.0
High 270.0 796.0

We can also use the fitted values to calculate measures of association
between parental encouragement E and college plans P for each social stra-
tum. For the lowest group, the odds of making college plans are barely one
to 24.4 with low parental encouragement, but increase to one to 1.67 with
high encouragement, giving an odds ratio of 14.6. If you repeat the calcula-
tion for any of the other three social classes you will find exactly the same
ratio of 14.6.

We can verify that this result follows directly from the lack of a three-
factor interaction in the model. The logs of the expected counts in this
model are

logµijk = η + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk.

The log-odds of making college plans in social stratum i with parental en-
couragement j are obtained by calculating the difference in expected counts
between k = 2 and k = 1, which is

log(µij2/µij1) = γ2 − γ1 + (αγ)i2 − (iαγ)i1 + (βγ)j2 − (βγ)j1,

because all terms involving only i, j or ij cancel out. Consider now the
difference in log-odds between high and low encouragement, i.e. when j = 2
and j = 1:

log(
µi22/µi21

µi12/µi11

) = (βγ)22 − (βγ)21 − (βγ)12 + (βγ)11,

which does not depend on i. Thus, we see that the log of the odds ratio is
the same at all levels of S. Furthermore, under the reference cell restrictions
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all interaction terms involving level one of any of the factors would be set to
zero, so the log of the odds ratio in question is simply (βγ)22. For the model
with no three-factor interaction the estimate of this parameter is 2.683 and
exponentiating this value gives 14.6.

5.2.7 Binomial Logits Revisited

Our analysis so far has treated the three classification criteria as responses,
and has focused on their correlation structure. An alternative approach
would treat one of the variables as a response and the other two as predic-
tors in a regression framework. We now compare these two approaches in
terms of our example on educational aspirations, treating college plans as
a dichotomous response and socio-economic status and parental encourage-
ment as discrete predictors.

To this end, we treat each of the 16 rows in Table 5.2 as a group. Let Yij
denote the number of high school seniors who plan to attend college out of the
nij seniors in category i of socio-economic status and category j of parental
encouragement. We assume that these 16 counts are independent and have
binomial distributions with Yij ∼ B(nij , πij), where πij is the probability of
making college plans We can then fit logistic regression models to study how
the probabilities depend on social stratum and parental encouragement.

Table 5.5: Deviances for Logistic Regression Models
Fitted to the Educational Aspirations Data

Model Deviance d.f.

Null 1877.4 7
S 1083.8 4
E 255.5 6
S + E 1.575 3

Table 5.5 shows the results of fitting four possible logit models of in-
terest, ranging from the null model to the additive model on socioeconomic
status (S) and parental encouragement (E). It is clear from these results that
both social class and encouragement have significant gross and net effects
on the probability of making college plans. The best fitting model is the
two-factor additive model, with a deviance of 1.6 on three d.f. Table 5.6
shows parameter estimates for the additive model.

Exponentiating the estimates we see that the odds of making college
plans increase five-fold as we move from low to high socio-economic status.
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Table 5.6: Parameter Estimates for Additive Logit Model
Fitted to the Educational Aspirations Data

Variable Category Estimate Std. Err.

Constant −3.195 0.119
Socio-economic low –
status lower middle 0.420 0.118

upper middle 0.739 0.114
high 1.593 0.115

Parental low –
encouragement high 2.683 0.099

Furthermore, in each social stratum, the odds of making college plans among
high school seniors with high parental encouragement are 14.6 times the odds
among seniors with low parental encouragement.

The conclusions of this analysis are consistent with those from the previ-
ous subsection, except that this time we do not study the association between
social stratification and parental encouragement, but focus on their effect on
making college plans. In fact it is not just the conclusions, but all esti-
mates and tests of significance, that agree. A comparison of the binomial
deviances in Table 5.5 with the Poisson deviances in Table 5.3 shows the
following ‘coincidences’:

log-linear model logit model

SE + P Null
SE + SP S
SE + EP E
SE + SP + EP S + E

The models listed as equivalent have similar interpretations if you translate
from the language of correlation analysis to the language of regression anal-
ysis. Note that all the log-linear models include the SE interaction, so they
allow for association between the two predictors. Also, all of them include
a main effect of the response P , allowing it to have a non-uniform distribu-
tion. The log-linear model with just these two terms assumes no association
between P and either S or E, and is thus equivalent to the null logit model.

The log-linear model with an SP interaction allows for an association
between S and P , and is therefore equivalent to the logit model where the
response depends only on S. A similar remark applies to the log-linear
model with an EP interaction. Finally, the log-linear model with all three
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two-factor interactions allows for associations between S and P , and between
E and P , and assumes that in each case the strength of association does not
depend on the other variable. But this is exactly what the additive logit
model assumes: the response depends on both S and E, and the effect of
each factor is the same at all levels of the other predictor.

In general, log-linear and logit models are equivalent as long as the log-
linear model

• is saturated on all factors treated as predictors in the logit model,
including all possible main effects and interactions among predictors
(in our example SE),

• includes a main effect for the factor treated as response (in our example
P ), and

• includes a two-factor (or higher order) interaction between a predictor
and the response for each main effect (or interaction) included in the
logit model (in our example it includes SP for the main effect of S,
and son on).

This equivalence extends to parameter estimates as well as tests of sig-
nificance. For example, multiplying the fitted probabilities based on the
additive logit model S + E by the sample sizes in each category of social
status and parental encouragement leads to the same expected counts that
we obtained earlier from the log-linear model SE+SP +EP . An interesting
consequence of this fact is that one can use parameter estimates based on a
log-linear model to calculate logits, as we did in Section 5.2.6, and obtain the
same results as in logistic regression. For example the log of the odds ratio
summarizing the effect of parental encouragement on college plans within
each social stratum was estimated as 2.683 in the previous subsection, and
this value agrees exactly with the estimate on Table 5.6.

In our example the equivalence depends crucially on the fact that the log-
linear models include the SE interaction, and therefore reproduce exactly
the binomial denominators used in the logistic regression. But what would
have happened if the SE interaction had turned out to be not significant?
There appear to be two schools of thought on this matter.

Bishop et al. (1975), in a classic boook on the multivariate analysis of
qualitative data, emphasize log-linear models because they provide a richer
analysis of the structure of association among all factors, not just between
the predictors and the response. If the SE interaction had turned out to be
not significant they would probably leave it out of the model. They would
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still be able to translate their parameter estimates into fitted logits, but
the results would not coincide exactly with the logistic regression analysis
(although they would be rather similar if the omitted interaction is small.)

Cox (1972), in a classic book on the analysis of binary data, emphasizes
logit models. He argues that if your main interest is on the effects of two
variables, say S and E on a third factor, say P , then you should condition
on the SE margin. This means that if you are fitting log-linear models
with the intention of understanding effects on P , you would include the SE
interaction even if it is not significant. In that case you would get exactly
the same results as a logistic regression analysis, which is probably what you
should have done in the first place if you wanted to study specifically how
the response depends on the predictors.



Chapter 6

Multinomial Response
Models

We now turn our attention to regression models for the analysis of categorical
dependent variables with more than two response categories. Several of
the models that we will study may be considered generalizations of logistic
regression analysis to polychotomous data. We first consider models that
may be used with purely qualitative or nominal data, and then move on to
models for ordinal data, where the response categories are ordered.

6.1 The Nature of Multinomial Data

Let me start by introducing a simple dataset that will be used to illustrate
the multinomial distribution and multinomial response models.

6.1.1 The Contraceptive Use Data

Table 6.1 was reconstructed from weighted percents found in Table 4.7 of
the final report of the Demographic and Health Survey conducted in El
Salvador in 1985 (FESAL-1985). The table shows 3165 currently married
women classified by age, grouped in five-year intervals, and current use of
contraception, classified as sterilization, other methods, and no method.

A fairly standard approach to the analysis of data of this type could
treat the two variables as responses and proceed to investigate the question
of independence. For these data the hypothesis of independence is soundly
rejected, with a likelihood ratio χ2 of 521.1 on 12 d.f.

G. Rodŕıguez. Revised September, 2007
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Table 6.1: Current Use of Contraception By Age
Currently Married Women. El Salvador, 1985

Age
Contraceptive Method

All
Ster. Other None

15–19 3 61 232 296
20–24 80 137 400 617
25–29 216 131 301 648
30–34 268 76 203 547
35–39 197 50 188 435
40–44 150 24 164 338
45–49 91 10 183 284

All 1005 489 1671 3165

In this chapter we will view contraceptive use as the response and age as
a predictor. Instead of looking at the joint distribution of the two variables,
we will look at the conditional distribution of the response, contraceptive use,
given the predictor, age. As it turns out, the two approaches are intimately
related.

6.1.2 The Multinomial Distribution

Let us review briefly the multinomial distribution that we first encountered
in Chapter 5. Consider a random variable Yi that may take one of several
discrete values, which we index 1, 2, . . . , J . In the example the response is
contraceptive use and it takes the values ‘sterilization’, ‘other method’ and
‘no method’, which we index 1, 2 and 3. Let

πij = Pr{Yi = j} (6.1)

denote the probability that the i-th response falls in the j-th category. In
the example πi1 is the probability that the i-th respondent is ‘sterilized’.

Assuming that the response categories are mutually exclusive and ex-
haustive, we have

∑J
j=1 πij = 1 for each i, i.e. the probabilities add up to

one for each individual, and we have only J − 1 parameters. In the exam-
ple, once we know the probability of ‘sterilized’ and of ‘other method’ we
automatically know by subtraction the probability of ‘no method’.

For grouped data it will be convenient to introduce auxiliary random
variables representing counts of responses in the various categories. Let ni

denote the number of cases in the i-th group and let Yij denote the number
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of responses from the i-th group that fall in the j-th category, with observed
value yij .

In our example i represents age groups, ni is the number of women in
the i-th age group, and yi1, yi2, and yi3 are the numbers of women steril-
ized, using another method, and using no method, respectively, in the i-th
age group. Note that

∑

j yij = ni, i.e. the counts in the various response
categories add up to the number of cases in each age group.

For individual data ni = 1 and Yij becomes an indicator (or dummy)
variable that takes the value 1 if the i-th response falls in the j-th category
and 0 otherwise, and

∑

j yij = 1, since one and only one of the indicators
yij can be ‘on’ for each case. In our example we could work with the 3165
records in the individual data file and let yi1 be one if the i-th woman is
sterilized and 0 otherwise.

The probability distribution of the counts Yij given the total ni is given
by the multinomial distribution

Pr{Yi1 = yi1, . . . , YiJ = yiJ} =

(

ni

yi1, . . . , yiJ

)

πyi1
i1 . . . πyiJ

iJ (6.2)

The special case where J = 2 and we have only two response categories is
the binomial distribution of Chapter 3. To verify this fact equate yi1 = yi,
yi2 = ni − yi, πi1 = πi, and πi2 = 1− πi.

6.2 The Multinomial Logit Model

We now consider models for the probabilities πij . In particular, we would
like to consider models where these probabilities depend on a vector xi of
covariates associated with the i-th individual or group. In terms of our
example, we would like to model how the probabilities of being sterilized,
using another method or using no method at all depend on the woman’s age.

6.2.1 Multinomial Logits

Perhaps the simplest approach to multinomial data is to nominate one of
the response categories as a baseline or reference cell, calculate log-odds for
all other categories relative to the baseline, and then let the log-odds be a
linear function of the predictors.

Typically we pick the last category as a baseline and calculate the odds
that a member of group i falls in category j as opposed to the baseline as
πi1/πiJ . In our example we could look at the odds of being sterilized rather
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than using no method, and the odds of using another method rather than
no method. For women aged 45–49 these odds are 91:183 (or roughly 1 to
2) and 10:183 (or 1 to 18).
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Figure 6.1: Log-Odds of Sterilization vs. No Method and
Other Method vs. No Method, by Age

Figure 6.1 shows the empirical log-odds of sterilization and other method
(using no method as the reference category) plotted against the mid-points
of the age groups. (Ignore for now the solid lines.) Note how the log-odds
of sterilization increase rapidly with age to reach a maximum at 30–34 and
then decline slightly. The log-odds of using other methods rise gently up to
age 25–29 and then decline rapidly.

6.2.2 Modeling the Logits

In the multinomial logit model we assume that the log-odds of each response
follow a linear model

ηij = log
πij
πiJ

= αj + x
′

iβj , (6.3)

where αj is a constant and βj is a vector of regression coefficients, for j =
1, 2, . . . , J − 1. Note that we have written the constant explicitly, so we will
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assume henceforth that the model matrix X does not include a column of
ones.

This model is analogous to a logistic regression model, except that the
probability distribution of the response is multinomial instead of binomial
and we have J − 1 equations instead of one. The J − 1 multinomial logit
equations contrast each of categories 1, 2, . . . J − 1 with category J , whereas
the single logistic regression equation is a contrast between successes and
failures. If J = 2 the multinomial logit model reduces to the usual logistic
regression model.

Note that we need only J − 1 equations to describe a variable with J
response categories and that it really makes no difference which category we
pick as the reference cell, because we can always convert from one formulation
to another. In our example with J = 3 categories we contrast categories 1
versus 3 and 2 versus 3. The missing contrast between categories 1 and
2 can easily be obtained in terms of the other two, since log(πi1/πi2) =
log(πi1/πi3)− log(πi2/πi3).

Looking at Figure 6.1, it would appear that the logits are a quadratic
function of age. We will therefore entertain the model

ηij = αj + βjai + γja
2
i , (6.4)

where ai is the midpoint of the i-th age group and j = 1, 2 for sterilization
and other method, respectively.

6.2.3 Modeling the Probabilities

The multinomial logit model may also be written in terms of the original
probabilities πij rather than the log-odds. Starting from Equation 6.3 and
adopting the convention that ηiJ = 0, we can write

πij =
exp{ηij}

∑J
k=1 exp{ηik}

. (6.5)

for j = 1, . . . , J . To verify this result exponentiate Equation 6.3 to obtain
πij = πiJ exp{ηij}, and note that the convention ηiJ = 0 makes this formula
valid for all j. Next sum over j and use the fact that

∑

j πij = 1 to obtain
πiJ = 1/

∑

j exp{ηij}. Finally, use this result on the formula for πij .

Note that Equation 6.5 will automatically yield probabilities that add
up to one for each i.
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6.2.4 Maximum Likelihood Estimation

Estimation of the parameters of this model by maximum likelihood proceeds
by maximization of the multinomial likelihood (6.2) with the probabilities πij
viewed as functions of the αj and βj parameters in Equation 6.3. This usu-
ally requires numerical procedures, and Fisher scoring or Newton-Raphson
often work rather well. Most statistical packages include a multinomial logit
procedure.

In terms of our example, fitting the quadratic multinomial logit model
of Equation 6.4 leads to a deviance of 20.5 on 8 d.f. The associated P-value
is 0.009, so we have significant lack of fit.

The quadratic age effect has an associated likelihood-ratio χ2 of 500.6
on four d.f. (521.1− 20.5 = 500.6 and 12− 8 = 4), and is highly significant.
Note that we have accounted for 96% of the association between age and
method choice (500.6/521.1 = 0.96) using only four parameters.

Table 6.2: Parameter Estimates for Multinomial Logit Model
Fitted to Contraceptive Use Data

Parameter
Contrast

Ster. vs. None Other vs. None

Constant -12.62 -4.552
Linear 0.7097 0.2641
Quadratic -0.009733 -0.004758

Table 6.2 shows the parameter estimates for the two multinomial logit
equations. I used these values to calculate fitted logits for each age from 17.5
to 47.5, and plotted these together with the empirical logits in Figure 6.1.
The figure suggests that the lack of fit, though significant, is not a serious
problem, except possibly for the 15–19 age group, where we overestimate the
probability of sterilization.

Under these circumstances, I would probably stick with the quadratic
model because it does a reasonable job using very few parameters. However,
I urge you to go the extra mile and try a cubic term. The model should pass
the goodness of fit test. Are the fitted values reasonable?

6.2.5 The Equivalent Log-Linear Model*

Multinomial logit models may also be fit by maximum likelihood working
with an equivalent log-linear model and the Poisson likelihood. (This section
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will only be of interest to readers interested in the equivalence between these
models and may be omitted at first reading.)

Specifically, we treat the random counts Yij as Poisson random variables
with means µij satisfying the following log-linear model

logµij = η + θi + α∗

j + x
′

iβ
∗

j , (6.6)

where the parameters satisfy the usual constraints for identifiability. There
are three important features of this model:

First, the model includes a separate parameter θi for each multinomial
observation, i.e. each individual or group. This assures exact reproduction
of the multinomial denominators ni. Note that these denominators are fixed
known quantities in the multinomial likelihood, but are treated as random
in the Poisson likelihood. Making sure we get them right makes the issue of
conditioning moot.

Second, the model includes a separate parameter α∗

j for each response
category. This allows the counts to vary by response category, permitting
non-uniform margins.

Third, the model uses interaction terms x′

iβ
∗

j to represent the effects of
the covariates xi on the log-odds of response j. Once again we have a ‘step-
up’ situation, where main effects in a logistic model become interactions in
the equivalent log-linear model.

The log-odds that observation i will fall in response category j relative
to the last response category J can be calculated from Equation 6.6 as

log(µij/µiJ) = (α∗

j − α∗

J) + x
′

i(β
∗

j − β∗

J). (6.7)

This equation is identical to the multinomial logit Equation 6.3 with αj =
α∗

j − α∗

J and βj = β∗

j − β∗

J . Thus, the parameters in the multinomial logit
model may be obtained as differences between the parameters in the corre-
sponding log-linear model. Note that the θi cancel out, and the restrictions
needed for identification, namely ηiJ = 0, are satisfied automatically.

In terms of our example, we can treat the counts in the original 7×3 table
as 21 independent Poisson observations, and fit a log-linear model including
the main effect of age (treated as a factor), the main effect of contraceptive
use (treated as a factor) and the interactions between contraceptive use (a
factor) and the linear and quadratic components of age:

logµij = η + θi + α∗

j + β∗

j ai + γ∗j a
2
i (6.8)

In practical terms this requires including six dummy variables representing
the age groups, two dummy variables representing the method choice cat-
egories, and a total of four interaction terms, obtained as the products of
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the method choice dummies by the mid-point ai and the square of the mid-
point a2i of each age group. Details are left as an exercise. (But see the Stata
notes.)

6.3 The Conditional Logit Model

In this section I will describe an extension of the multinomial logit model that
is particularly appropriate in models of choice behavior, where the explana-
tory variables may include attributes of the choice alternatives (for example
cost) as well as characteristics of the individuals making the choices (such as
income). To motivate the extension I will first reintroduce the multinomial
logit model in terms of an underlying latent variable.

6.3.1 A General Model of Choice

Suppose that Yi represents a discrete choice among J alternatives. Let Uij

represent the value or utility of the j-th choice to the i-th individual. We will
treat the Uij as independent random variables with a systematic component
ηij and a random component ǫij such that

Uij = ηij + ǫij . (6.9)

We assume that individuals act in a rational way, maximizing their utility.
Thus, subject i will choose alternative j if Uij is the largest of Ui1, . . . , UiJ .
Note that the choice has a random component, since it depends on random
utilities. The probability that subject i will choose alternative j is

πij = Pr{Yi = j} = Pr{max(Ui1, . . . , UiJ) = Uij}. (6.10)

It can be shown that if the error terms ǫij have standard Type I extreme
value distributions with density

f(ǫ) = exp{−ǫ− exp{−ǫ}} (6.11)

then (see for example Maddala, 1983, pp 60–61)

πij =
exp{ηij}
∑

exp{ηik}
, (6.12)

which is the basic equation defining the multinomial logit model.
In the special case where J = 2, individual i will choose the first al-

ternative if Ui1 − Ui2 > 0. If the random utilities Uij have independent
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extreme value distributions, their difference can be shown to have a logistic
distribution, and we obtain the standard logistic regression model.

Luce (1959) derived Equation 6.12 starting from a simple requirement
that the odds of choosing alternative j over alternative k should be inde-
pendent of the choice set for all pairs j, k. This property is often referred to
as the axiom of independence from irrelevant alternatives. Whether or not
this assumption is reasonable (and other alternatives are indeed irrelevant)
depends very much on the nature of the choices.

A classical example where the multinomial logit model does not work
well is the so-called “red/blue bus” problem. Suppose you have a choice of
transportation between a train, a red bus and a blue bus. Suppose half the
people take the train and half take the bus. Suppose further that people
who take the bus are indifferent to the color, so they distribute themselves
equally between the red and the blue buses. The choice probabilities of π =
(.50, .25, .25) would be consistent with expected utilities of η = (log 2, 0, 0).

Suppose now the blue bus service is discontinued. You might expect that
all the people who used to take the blue bus would take the red bus instead,
leading to a 1:1 split between train and bus. On the basis of the expected
utilities of log 2 and 0, however, the multinomial logit model would predict
a 2:1 split.

Keep this caveat in mind as we consider modeling the expected utilities.

6.3.2 Multinomial Logits

In the usual multinomial logit model, the expected utilities ηij are modeled
in terms of characteristics of the individuals, so that

ηij = x
′

iβj .

Here the regression coefficients βj may be interpreted as reflecting the effects
of the covariates on the odds of making a given choice (as we did in the
previous section) or on the underlying utilities of the various choices.

A somewhat restrictive feature of the model is that the same attributes
xi are used to model the utilities of all J choices.

6.3.3 Conditional Logits

McFadden (1973) proposed modeling the expected utilities ηij in terms of
characteristics of the alternatives rather than attributes of the individuals.
If zj represents a vector of characteristics of the j-th alternative, then he
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postulated the model

ηij = z
′

jγ.

This model is called the conditional logit model, and turns out to be equiva-
lent to a log-linear model where the main effect of the response is represented
in terms of the covariates zj .

Note that with J response categories the response margin may be repro-
duced exactly using any J −1 linearly independent attributes of the choices.
Generally one would want the dimensionality of zj to be substantially less
than J . Consequently, conditional logit models are often used when the
number of possible choices is large.

6.3.4 Multinomial/Conditional Logits

A more general model may be obtained by combining the multinomial and
conditional logit formulations, so the underlying utilities ηij depend on char-
acteristics of the individuals as well as attributes of the choices, or even
variables defined for combinations of individuals and choices (such as an in-
dividual’s perception of the value of a choice). The general model is usually
written as

ηij = x
′

iβj + z
′

ijγ (6.13)

where xi represents characteristics of the individuals that are constant across
choices, and zij represents characteristics that vary across choices (whether
they vary by individual or not).

Some statistical packages have procedures for fitting conditional logit
models to datasets where each combination of individual and possible choice
is treated as a separate observation. These models may also be fit using any
package that does Poisson regression. If the last response category is used as
the baseline or reference cell, so that ηiJ = 0 for all i, then the zij should be
entered in the model as differences from the last category. In other words,
you should use z

∗

ij = zij − ziJ as the predictor.

6.3.5 Multinomial/Conditional Probits

Changing the distribution of the error term in Equation 6.9 leads to alterna-
tive models. A popular alternative to the logit models considered so far is to
assume that the ǫij have independent standard normal distributions for all
i, j. The resulting model is called the multinomial/conditional probit model,
and produces results very similar to the multinomial/conditional logit model
after standardization.
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A more attractive alternative is to retain independence across subjects
but allow dependence across alternatives, assuming that the vector ǫi =
(ǫi1, . . . , ǫiJ)

′ has a multivariate normal distribution with mean vector 0 and
arbitrary correlation matrix R. (As usual with latent variable formulations
of binary or discrete response models, the variance of the error term cannot
be separated from the regression coefficients. Setting the variances to one
means that we work with a correlation matrix rather than a covariance
matrix.)

The main advantage of this model is that it allows correlation between
the utilities that an individual assigns to the various alternatives. The main
difficulty is that fitting the model requires evaluating probabilities given
by multidimensional normal integrals, a limitation that effectively restricts
routine practical application of the model to problems involving no more
than three or four alternatives.

For further details on discrete choice models see Chapter 3 in Mad-
dala (1983).

6.4 The Hierarchical Logit Model

The strategy used in Section 6.2.1 to define logits for multinomial response
data, namely nominating one of the response categories as a baseline, is only
one of many possible approaches.

6.4.1 Nested Comparisons

An alternative strategy is to define a hierarchy of nested comparisons between
two subsets of responses, using an ordinary logit model for each comparison.
In terms of the contraceptive use example, we could consider (1) the odds of
using some form of contraception, as opposed to none, and (2) the odds of
being sterilized among users of contraception. For women aged 15–49 these
odds are 1494:1671 (or roughly one to one) and 1005:489 (or roughly two to
one).

The hierarchical or nested approach is very attractive if you assume that
individuals make their decisions in a sequential fashion. In terms of con-
traceptive use, for example, women may first decide whether or nor they
will use contraception. Those who decide to use then face the choice of a
method. This sequential approach may also provide a satisfactory model for
the “red/blue bus” choice.

Of course it is also possible that the decision to use contraception would
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be affected by the types of methods available. If that is the case, a multino-
mial logit model may be more appropriate.
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Figure 6.2: Log-Odds of Contraceptive Use vs. No Use and
Sterilization vs. Other Method, by Age.

Figure 6.2 shows the empirical log-odds of using any method rather than
no method, and of being sterilized rather than using another method among
users, by age. Note that contraceptive use increases up to age 35–39 and then
declines, whereas the odds of being sterilized among users increase almost
monotonically with age.

The data suggest that the hierarchical logits may be modeled as quadratic
functions of age, just as we did for the multinomial logits. We will therefore
consider the model

ηij = αj + βjai + γja
2
i , (6.14)

where ai is the mid-point of the i-th age group, j = 1 for the contraceptive
use equation and j = 2 for the method choice equation.

6.4.2 Maximum Likelihood Estimation

An important practical feature of the hierarchical logit model is that the
multinomial likelihood factors out into a product of binomial likelihoods,
which may then be maximized separately.
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I will illustrate using the contraceptive use data with 3 response cate-
gories, but the idea is obviously more general. The contribution of the i-th
individual or group to the multinomial likelihood (ignoring constants) has
the form

Li = πyi1
i1 πyi2

i2 πyi3
i3 , (6.15)

where the πij are the probabilities and the yij are the corresponding counts of
women sterilized, using other methods, and using no methods, respectively.

Multiply and divide this equation by (πi1+πi2)
yi1+yi2 , which is the prob-

ability of using contraception raised to the total number of users of contra-
ception, to obtain

Li =

(

πi1
πi1 + πi2

)yi1
(

πi2
πi1 + πi2

)yi2

(πi1 + πi2)
yi1+yi2πyi3

i3 . (6.16)

Let ρi1 = πi1 + πi2 denote the probability of using contraception in age
group i, and let ρi2 = πi1/(πi1 + πi2) denote the conditional probability
of being sterilized given that a woman is using contraception. Using this
notation we can rewrite the above equation as

Li = ρyi1i2 (1− ρi2)
yi2ρyi1+yi2

i1 (1− ρi1)
yi3 . (6.17)

The two right-most terms involving the probability of using contracep-
tion ρi1 may be recognized, except for constants, as a standard binomial
likelihood contrasting users and non-users. The two terms involving the
conditional probability of using sterilization ρi2 form, except for constants,
a standard binomial likelihood contrasting sterilized women with users of
other methods. As long as the parameters involved in the two equations are
distinct, we can maximize the two likelihoods separately.

In view of this result we turn to Table 6.1 and fit two separate models.
Fitting a standard logit model to the contraceptive use contrast (sterilization
or other method vs. no method) using linear and quadratic terms on age
gives a deviance of 6.12 on four d.f. and the parameter estimates shown in
the middle column of Table 6.3. Fitting a similar model to the method choice
contrast (sterilization vs. other method, restricted to users) gives a deviance
of 10.77 on four d.f. and the parameter estimates shown in the rightmost
column of Table 6.3.

The combined deviance is 16.89 on 8 d.f. (6.12+10.77 = 16.89 and 4+4 =
8). The associated P-value is 0.031, indicating lack of fit significant at the 5%
level. Note, however, that the hierarchical logit model provides a somewhat
better fit to these data than the multinomial logit model considered earlier,
which had a deviance of 20.5 on the same 8 d.f.
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Table 6.3: Parameter Estimates for Hierarchical Logit Model
Fitted to Contraceptive Use Data

Parameter Contrast
Use vs. No Use Ster. vs. Other

Constant -7.180 -8.869
Linear 0.4397 0.4942
Quadratic -0.006345 -0.005674

To look more closely at goodness of fit I used the parameter estimates
shown on Table 6.3 to calculate fitted logits and plotted these in Figure 6.2
against the observed logits. The quadratic model seems to do a reasonable
job with very few parameters, particularly for overall contraceptive use. The
method choice equation overestimates the odds of choosing sterilization for
the age group 15–19, a problem shared by the multinomial logit model.

The parameter estimates may also be used to calculate illustrative odds
of using contraception or sterilization at various ages. Going through these
calculations you will discover that the odds of using some form of contracep-
tion increase 80% between ages 25 and 35. On the other hand, the odds of
being sterilized among contraceptors increase three and a half times between
ages 25 and 35.

6.4.3 Choice of Contrasts

With three response categories the only possible set of nested comparisons
(aside from a simple reordering of the categories) is

{1,2} versus {3}, and
{1} versus {2}.

With four response categories there are two main alternatives. One is to
contrast

{1, 2} versus {3, 4},
{1} versus {2}, and
{3} versus {4}.

The other compares

{1} versus {2, 3, 4},
{2} versus {3, 4}, and
{3} versus {4}.
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The latter type of model, where one considers the odds of response Y = j
relative to responses Y ≥ j, is known as a continuation ratio model (see
Fienberg, 1980), and may be appropriate when the response categories are
ordered.

More generally, any set of J − 1 linearly independent contrasts can be
selected for modeling, but only orthogonal contrasts lead to a factorization
of the likelihood function. The choice of contrasts should in general be based
on the logic of the situation.

6.5 Models for Ordinal Response Data

Most of the models discussed so far are appropriate for the analysis of nom-
inal responses. They may be applied to ordinal data as well, but the models
make no explicit use of the fact that the response categories are ordered.
We now consider models designed specifically for the analysis of responses
measured on an ordinal scale. Our discussion follows closely McCullagh
(1980).

6.5.1 Housing Conditions in Copenhagen

We will illustrate the application of models for ordinal data using the data
in Table 6.4, which was first published by Madsen (1976) and was repro-
duced in Agresti (1990, p. 341). The table classifies 1681 residents of twelve
areas in Copenhagen in terms of the type of housing they had, their feeling
of influence on apartment management, their degree of contact with other
residents, and their satisfaction with housing conditions.

In our analysis of these data we will treat housing satisfaction as an
ordered response, with categories low, medium and high, and the other three
factors as explanatory variables.

6.5.2 Cumulative Link Models

All of the models to be considered in this section arise from focusing on
the cumulative distribution of the response. Let πij = Pr{Yi = j} denote
the probability that the response of an individual with characteristics xi

falls in the j-th category, and let γij denote the corresponding cumulative
probability

γij = Pr{Yi ≤ j} (6.18)
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Table 6.4: Housing Condition in Copenhagen

Housing Type Influence Contact
Satisfaction

low medium high

Tower block low low 21 21 28
high 14 19 37

medium low 34 22 36
high 17 23 40

high low 10 11 36
high 3 5 23

Apartments low low 61 23 17
high 78 46 43

medium low 43 35 40
high 48 45 86

high low 26 18 54
high 15 25 62

Atrium houses low low 13 9 10
high 20 23 20

medium low 8 8 12
high 10 22 24

high low 6 7 9
high 7 10 21

Terraced houses low low 18 6 7
high 57 23 13

medium low 15 13 13
high 31 21 13

high low 7 5 11
high 5 6 13

that the response falls in the j-th category or below, so

γij = πi1 + πi2 + . . .+ πij . (6.19)

Let g(.) denote a link function mapping probabilities to the real line.
Then the class of models that we will consider assumes that the transformed
cumulative probabilities are a linear function of the predictors, of the form

g(γij) = θj + x
′

iβ. (6.20)

In this formulation θj is a constant representing the baseline value of the
transformed cumulative probability for category j, and β represents the
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effect of the covariates on the transformed cumulative probabilities. Since
we write the constant explicitly, we assume that the predictors do not include
a column of ones. Note that there is just one equation: if xik increases by
one, then all transformed cumulative probabilities increase by βk. Thus, this
model is more parsimonious than a multinomial logit or a hierarchical logit
model; by focusing on the cumulative probabilities we can postulate a single
effect. We will return to the issue of interpretation when we consider specific
link functions.

These models can also be interpreted in terms of a latent variable. Specif-
ically, suppose that the manifest response Yi results from grouping an under-
lying continuous variable Y ∗

i using cut-points θ1 < θ2 < . . . < θJ−1, so that
Yi takes the value 1 if Y ∗

i is below θ1, the value 2 if Y ∗

i is between θ1 and θ2,
and so on, taking the value J if Y ∗

i is above θJ−1. Figure 6.3 illustrates this
idea for the case of five response categories.

1 2 3 4 5

Figure 6.3: An Ordered Response and its Latent Variable

Suppose further that the underlying continuous variable follows a linear
model of the form

Y ∗

i = x
′

iβ
∗ + ǫi, (6.21)

where the error term ǫi has c.d.f. F (ǫi). Then, the probability that the
response of the i-th individual will fall in the j-th category or below, given
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xi, satisfies the equation

γij = Pr{Y ∗

i < θj} = Pr{ǫi < θj − x
′

iβ
∗} = F (θj − x

′

iβ
∗) (6.22)

and therefore follows the general form in Equation (6.20) with link given by
the inverse of the c.d.f. of the error term

g(γij) = F−1(γij) = θj − x
′

iβ
∗ (6.23)

and coefficients β∗ = −β differing only in sign from the coefficients in the
cumulative link model. Note that in both formulations we assume that
the predictors xi do not include a column of ones because the constant is
absorbed in the cutpoints.

With grouped data the underlying continuous variable Y ∗ will have real
existence and the cutpoints θj will usually be known. For example income
data are often collected in broad categories, and all we known is the interval
where an observation falls, i.e. < $25,000, between $25,000 and $50,000, and
so on.

With ordinal categorical data the underlying continuous variable will
often represent a latent or unobservable trait, and the cutpoints will not
be known. This would be the case, for example, if respondents are asked
whether they support a balance budget amendment, and the response cate-
gories are strongly against, against, neutral, in favor, and strongly in favor.
We could imagine an underlying degree of support Y ∗

i and thresholds θ1 to
θ4, such that when the support is below θ1 one is strongly against, when the
support exceeds θ1 but not θ2 one is against, and so on, until the case where
the support exceeds θ4 and one is strongly for the amendment.

While the latent variable interpretation is convenient, it is not always
necessary, since some of the models can be interpreted directly in terms of
the transformation g(.) of the cumulative probabilities.

6.5.3 The Proportional Odds Model

The first model we will consider is a direct extension of the usual logistic
regression model. Instead of applying the logit transformation to the re-
sponse probabilities πij , however, we apply it to the cumulative response
probabilities γij , so that

logit(γij) = log
γij

1− γij
= θj + x

′

iβ. (6.24)

Some authors refer to this model as the ordered logit model, because it is a
generalization of the logit model to ordered response categories. McCullagh
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(1980) calls it the proportional odds model, for reasons that will be apparent
presently. Exponentiating (6.24) we find that the odds of Yij ≤ j, in words,
the odds of a response in category j or below, are

γij
1− γij

= λj exp{x′

iβ} (6.25)

where λj = exp{θj}. The λj may be interpreted as the baseline odds of a
response in category j or below when x = 0. The effect of the covariates
x is to raise or lower the odds of a response in category j or below by the
factor exp{x′

iβ}. Note that the effect is a proportionate change in the odds
of Yi ≤ j for all response categories j. If a certain combination of covariate
values doubles the odds of being in category 1, it also doubles the odds of
being in category 2 or below, or in category 3 or below. Hence the name
proportional odds.

This model may also be obtained from the latent variable formulation
assuming that the error term ǫi has a standard logistic distribution. In this
case the cdf is

F (η) =
exp{η}

1 + exp{η} (6.26)

and the inverse cdf is the logit transformation. The β∗ coefficients may then
be interpreted as linear effects on the underlying continuous variable Y ∗

i .
The proportional odds model is not a log-linear model, and therefore

it can not be fit using the standard Poisson trick. It is possible, however,
to use an iteratively re-weighted least squares algorithm very similar to the
standard algorithm for generalized linear models, for details see McCullagh
(1980).

We will illustrate this model applying it to the housing satisfaction data
in Table 6.4. Let us start by noting that the log-likelihood for a saturated
multinomial model that treats each of the 24 covariate patterns as a different
group is -1715.71. Fitting a proportional odds model with additive effects of
housing type, influence in management and contact with neighbors, yields a
log-likelihood of -1739.57, which corresponds to a deviance (compared to the
saturated multinomial model) of 47.73 on 40 d.f. To calculate the degrees
of freedom note that the saturated multinomial model has 48 parameters (2
for each of 24 groups), while the additive proportional odds model has only
8 (2 threshold parameters, 3 for housing type, 2 for influence and one for
contact). The 95% critical point of the χ2

40 distribution is 55.8, so you might
think that this model fits the data.

To be thorough, however, we should investigate interaction effects. The
models with one two-factor interaction have log-likelihoods of -1739.47 (in-
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cluding contact × influence), -1735.24 (including housing × contact), and
-1728.32 (including housing × influence), with corresponding deviance re-
ductions of 0.21, 8.67 and 22.51, at the expense of 2, 3 and 6 degrees of
freedom, respectively. Clearly the only interaction of note is that of housing
× influence, which has a P-value of 0.001. Adding this term gives a model
deviance of 25.22 on 34 d.f. and an excellent fit to the data.

Table 6.5 shows parameter estimates for the final model with all three
predictors and a housing × influence interaction. The table lists the cut-
points and the regression coefficients.

Table 6.5: Parameter Estimates for Ordered Logit Model
(Latent Variable Formulation)

Parameter Estimate Std. Error z-ratio

Apartments -1.1885 .1972 -6.026
Atrium house -.6067 .2446 -2.481
Terraced house -1.6062 .2410 -6.665
Influence medium -.1390 .2125 -0.654
Influence high .8689 .2743 3.167
Contact high .3721 .0960 3.876
Apart × Influence med 1.0809 .2658 4.066
Apart × Influence high .7198 .3287 2.190
Atrium × Influence med .6511 .3450 1.887
Atrium × Influence high -.1556 .4105 -0.379
Terrace × Influence med .8210 .3307 2.483
Terrace × Influence high .8446 .4303 1.963

Cutpoint 1 -.8881 .1672
Cutpoint 2 .3126 .1657

Note first the cutpoints: -.89 and .31, corresponding to cumulative odds
of 0.41 and 1.37, or to cumulative probabilities of 0.29 and 0.58, for the
reference cell. Considering residents of tower blocks with low influence in
management and low contact with neighbors, we estimate that 29% have low
satisfaction, 29% (58-29) have medium satisfaction, and 42% (100-58) have
high satisfaction. (These values are fairly close to the observed proportions.)

Before we discuss interpretation of the remaining coefficients, we must
note that I have reported the coefficients corresponding to the latent variable
formulation (the β∗’s) rather than the cumulative link coefficients (the β’s),
which have opposite sign. Thus, a positive coefficient is equivalent to a shift
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to the right on the latent scale, which increases the odds of being to the
right of a cutpoint. Equation (6.24) models the odds of being to the left of
a cutpoint, which would then decrease. I prefer the sign used here because
the interpretation is more straightforward. A positive coefficient increases
one’s underlying satisfaction, which makes a ‘high’ response more likely.

The coefficient of contact indicates that residents who have high contact
with their neighbors are generally more satisfied than those who have low
contact. The odds of high satisfaction (as opposed to medium or low), are
45% higher for high contact than for low contact, as are the odds of medium
or high satisfaction (as opposed to low). The fact that the effect of contact
on the odds is the same 45% for the two comparisons is a feature of the
model.

To interpret the effects of the next two variables, type of housing and
degree of influence, we have to allow for their interaction effect. One way
to do this is to consider the effect of type of housing when the residents feel
that they have low influence on management; then residents of apartments
and houses (particularly terraced houses) are less satisfied than residents of
tower blocks. Feeling that one has some influence on management generally
increases satisfaction; the effect of having high rather than low influence is to
increase the odds of medium or high satisfaction (as opposed to low) by 138%
for residents of tower blocks, 390% for apartment dwellers, 104% for residents
of atrium houses and 455% for those who live in terraced houses. Having
medium influence is generally better than having low influence (except for
tower clock residents), but not quite as good as having high influence (except
possibly for residents of atrium houses).

Although we have interpreted the results in terms of odds, we can also
interpret the coefficients in terms of a latent variable representing degree of
satisfaction. The effect of having high contact with the neighbors, as com-
pared to low contact, is to shift one’s position on the latent satisfaction scale
by 0.37 points. Similarly, having high influence on management, as com-
pared to low influence, shifts one’s position by an amount that varies from
0.71 for residents of atrium houses to 1.71 for residents of terraced houses.
Interpretation of these numbers must be done by reference to the standard
logistic distribution, which is depicted in Figure 6.3. This symmetric distri-
bution has mean 0 and standard deviation π/

√
3 = 1.81. The quartiles are

±1.1, and just over 90% of the area lies between -3 and 3.
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6.5.4 The Ordered Probit Model

The ordered probit model, first considered by Aitchison and Silvey (1957),
results from modeling the probit of the cumulative probabilities as a linear
function of the covariates, so that

Φ−1(γij) = θj + x
′

iβ (6.27)

where Φ() is the standard normal cdf. The model can also be obtained from
the latent-variable formulation assuming that the error term has a standard
normal distribution, and this is usually the way one would interpret the
parameters.

Estimates from the ordered probit model are usually very similar to es-
timates from the ordered logit model—as one would expect from the simi-
larity of the normal and the logistic distributions—provided one remembers
to standardize the coefficients to correct for the fact that the standard nor-
mal distribution has variance one, whereas the standard logistic has variance
π2/3.

For the Copenhagen data, the ordered probit model with an interaction
between housing type and influence has a log-likelihood of -1728.67, corre-
sponding to a deviance of 25.9 on 34 d.f., almost indistinguishable from the
deviance for the ordered logit model with the same terms. Table 6.6 shows
parameter estimates for this model.

The cutpoints can be interpreted in terms of z-scores: the boundary
between low and medium satisfaction is at z = −0.54 and the boundary
between medium and high satisfaction is at z = 0.19. These values leave
Φ(−.54) = 0.29 or 29% of the reference group in the low satisfaction category,
Φ(0.19)−Φ(−0.54) = 0.28 or 28% in the medium satisfaction category, and
1− Φ(0.19) = 0.42 or 42% in the high satisfaction category.

The remaining coefficients can be interpreted as in a linear regression
model. For example, having high contact with the neighbors, compared to
low contact, increases one’s position in the latent satisfaction scale by 0.23
standard deviations (or increases one’s z-score by 0.23), everything else being
equal.

Note that this coefficient is very similar to the equivalent value obtained
in the ordered logit model. A shift of 0.37 in a standard logistic distribution,
where σ = π/

√
3 = 1.81, is equivalent to a shift of 0.37/1.81 = 0.21 standard

deviations, which in turn is very similar to the ordered probit estimate of
0.23 standard deviations. A similar comment applies to the other coefficients.
You may also wish to compare the Wald tests for the individual coefficients
in Tables 6.5 and 6.6, which are practically identical.
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Table 6.6: Parameter Estimates for Ordered Probit Model
(Latent Variable Formulation)

Parameter Estimate Std. Error z-ratio

Apartments -.7281 .1205 -6.042
Atrium house -.3721 .1510 -2.464
Terraced house -.9790 .1456 -6.725
Influence medium -.0864 .1303 -0.663
Influence high .5165 .1639 3.150
Contact high .2285 .0583 3.918
Apart × Influence med .6600 .1626 4.060
Apart × Influence high .4479 .1971 2.273
Atrium × Influence med .4109 .2134 1.925
Atrium × Influence high -.0780 .2496 -0.312
Terrace × Influence med .4964 .2016 2.462
Terrace × Influence high .5217 .2587 2.016

Cutpoint 1 -.5440 .1023
Cutpoint 2 .1892 .1018

6.5.5 Proportional Hazards

A third possible choice of link is the complementary log-log link, which leads
to the model

log(− log(1− γij)) = θj + x
′

iβ (6.28)

This model may be interpreted in terms of a latent variable having a (re-
versed) extreme value (log Weibull) distribution, with cdf

F (η) = 1− exp{− exp{η}} (6.29)

This distribution is asymmetric, it has mean equal to negative Euler’s con-
stant −0.57722 and variance π2/6 = 1.6449. The median is log log 2 =
−0.3665 and the quartiles are -1.2459 and 0.3266. Note that the inverse cdf
is indeed, the complementary log-log transformation in Equation (6.28).

This model can also be interpreted in terms of a proportional hazards
model. The hazard function plays a central role in survival analysis, and
will be discussed in detail in the next Chapter.
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6.5.6 Extensions and Other Approaches

The general cumulative link model of Section 6.5.2 will work with any mono-
tone link function mapping probabilities to the real line, but the three choices
mentioned here, namely the logit, probit, and complementary log-log, are by
far the most popular ones. McCullagh (1980) has extended the basic model
by relaxing the assumption of constant variance for the latent continuous
variable. His most general model allows a separate scale parameter for each
multinomial observation, so that

g(γij) =
θj + x

′

iβ

τi
(6.30)

where the τi are unknown scale parameters. A constraint, such as τ1 = 0, is
required for identification. More generally, τi may be allowed to depend on
a vector of covariates.

An alternative approach to the analysis of ordinal data is to assign scores
to the response categories and then use linear regression to model the mean
score. Ordinary least squares procedures are not appropriate in this case,
but Grizzle et al. (1969) have proposed weighted least-squares procedures
that make proper allowances for the underlying independent multinomial
sampling scheme. For an excellent discussion of these models see Agresti
(1990, Section 9.6).

A similar approach, used often in two-way contingency tables correspond-
ing to one predictor and one response, is to assign scores to the rows and
columns of the table and to use these scores to model the interaction term in
the usual log-linear model. Often the scores assigned to the columns are the
integers 1, 2, . . . , J − 1, but other choices are possible. If integer scores are
used for both rows and columns, then the resulting model has an interesting
property, which has been referred to as uniform association. Consider cal-
culating an odds ratio for adjacent rows i and i+1, across adjacent columns
or response categories j and j + 1, that is

ρij =
πi,j/πi,j+1

πi+1,j/πi+1,j+1

(6.31)

Under the additive log-linear model of independence, this ratio is unity for all
i and j. Introducing an interaction term based on integer scores, of the form
(αβ)ij = γij, makes the odds ratio constant across adjacent categories. This
model often produces fits similar to the proportional odds model, but the
parameters are not so easily interpreted. For further details see Haberman
(1974), Goodman (1979) or Agresti (1990, Section 8.1).
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A fourth family of models for ordinal responses follows from introducing
constraints in the multinomial logit model. Let βj denote the vector of
coefficients for the j-th equation, comparing the j-th category with the last
category, for j = 1, 2, . . . , J − 1. The most restrictive model assumes that
these coefficients are the same for all contrasts, so βj = β for all j. A less
restrictive assumption is that the coefficients have a linear trend over the
categories, so that βj = jβ. Anderson (1984) has proposed a model termed
the stereotypemodel where the coefficients are proportional across categories,
so βj = γjβ, with unknown proportionality factors given by scalars γj .

One advantage of the cumulative link models considered here is that
the parameter estimates refer to the cumulative distribution of the manifest
response (or the distribution of the underlying latent variable) and therefore
are not heavily dependent on the actual categories (or cutpoints) used. In
particular, we would not expect the results to change much if we were to
combine two adjacent categories, or if we recoded the response using fewer
categories. If the cumulative odds are indeed proportional before collapsing
categories, the argument goes, they should continue to be so afterwards.

In contrast, inferences based on log-linear or multinomial logit models
apply only to the actual categories used. It is quite possible, for example,
that odds ratios that are relatively constant across adjacent categories will
no longer exhibit this property if some of the categories are combined. These
considerations are particularly relevant if the categories used are somewhat
arbitrary.



Chapter 7

Survival Models

Our final chapter concerns models for the analysis of data which have three
main characteristics: (1) the dependent variable or response is the waiting
time until the occurrence of a well-defined event, (2) observations are cen-

sored, in the sense that for some units the event of interest has not occurred
at the time the data are analyzed, and (3) there are predictors or explanatory
variables whose effect on the waiting time we wish to assess or control. We
start with some basic definitions.

7.1 The Hazard and Survival Functions

Let T be a non-negative random variable representing the waiting time until
the occurrence of an event. For simplicity we will adopt the terminology
of survival analysis, referring to the event of interest as ‘death’ and to the
waiting time as ‘survival’ time, but the techniques to be studied have much
wider applicability. They can be used, for example, to study age at marriage,
the duration of marriage, the intervals between successive births to a woman,
the duration of stay in a city (or in a job), and the length of life. The
observant demographer will have noticed that these examples include the
fields of fertility, mortality and migration.

7.1.1 The Survival Function

We will assume for now that T is a continuous random variable with prob-
ability density function (p.d.f.) f(t) and cumulative distribution function
(c.d.f.) F (t) = Pr{T ≤ t}, giving the probability that the event has oc-
curred by duration t.

G. Rodŕıguez. Revised September, 2007
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It will often be convenient to work with the complement of the c.d.f, the
survival function

S(t) = Pr{T > t} = 1− F (t) =

∫ ∞

t
f(x)dx, (7.1)

which gives the probability of being alive at duration t, or more generally,
the probability that the event of interest has not occurred by duration t.

7.1.2 The Hazard Function

An alternative characterization of the distribution of T is given by the hazard
function, or instantaneous rate of occurrence of the event, defined as

λ(t) = lim
dt→0

Pr{t < T ≤ t+ dt|T > t}

dt
. (7.2)

The numerator of this expression is the conditional probability that the event
will occur in the interval (t, t+dt) given that it has not occurred before, and
the denominator is the width of the interval. Dividing one by the other we
obtain a rate of event occurrence per unit of time. Taking the limit as the
width of the interval goes down to zero, we obtain an instantaneous rate of
occurrence.

The conditional probability in the numerator may be written as the ratio
of the joint probability that T is in the interval (t, t+ dt) and T > t (which
is, of course, the same as the probability that t is in the interval), to the
probability of the condition T > t. The former may be written as f(t)dt for
small dt, while the latter is S(t) by definition. Dividing by dt and passing
to the limit gives the useful result

λ(t) =
f(t)

S(t)
, (7.3)

which some authors give as a definition of the hazard function. In words, the
rate of occurrence of the event at duration t equals the density of events at t,
divided by the probability of surviving to that duration without experiencing
the event.

Note from Equation 7.1 that −f(t) is the derivative of S(t). This suggests
rewriting Equation 7.3 as

λ(t) = −
d

dt
logS(t).

If we now integrate from 0 to t and introduce the boundary condition S(0) =
1 (since the event is sure not to have occurred by duration 0), we can solve
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the above expression to obtain a formula for the probability of surviving to
duration t as a function of the hazard at all durations up to t:

S(t) = exp{−

∫ t

0
λ(x)dx}. (7.4)

This expression should be familiar to demographers. The integral in curly
brackets in this equation is called the cumulative hazard ( or cumulative risk)
and is denoted

Λ(t) =

∫ t

0
λ(x)dx. (7.5)

You may think of Λ(t) as the sum of the risks you face going from duration
0 to t.

These results show that the survival and hazard functions provide alter-
native but equivalent characterizations of the distribution of T . Given the
survival function, we can always differentiate to obtain the density and then
calculate the hazard using Equation 7.3. Given the hazard, we can always
integrate to obtain the cumulative hazard and then exponentiate to obtain
the survival function using Equation 7.4. An example will help fix ideas.
Example: The simplest possible survival distribution is obtained by assuming
a constant risk over time, so the hazard is

λ(t) = λ

for all t. The corresponding survival function is

S(t) = exp{−λt}.

This distribution is called the exponential distribution with parameter λ.
The density may be obtained multiplying the survivor function by the hazard
to obtain

f(t) = λ exp{−λt}.

The mean turns out to be 1/λ. This distribution plays a central role in sur-
vival analysis, although it is probably too simple to be useful in applications
in its own right.✷

7.1.3 Expectation of Life

Let µ denote the mean or expected value of T . By definition, one would
calculate µ multiplying t by the density f(t) and integrating, so

µ =

∫ ∞

0
tf(t)dt.
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Integrating by parts, and making use of the fact that −f(t) is the derivative
of S(t), which has limits or boundary conditions S(0) = 1 and S(∞) = 0,
one can show that

µ =

∫ ∞

0
S(t)dt. (7.6)

In words, the mean is simply the integral of the survival function.

7.1.4 A Note on Improper Random Variables*

So far we have assumed implicitly that the event of interest is bound to occur,
so that S(∞) = 0. In words, given enough time the proportion surviving
goes down to zero. This condition implies that the cumulative hazard must
diverge, i.e. we must have Λ(∞) = ∞. Intuitively, the event will occur with
certainty only if the cumulative risk over a long period is sufficiently high.

There are, however, many events of possible interest that are not bound
to occur. Some men and women remain forever single, some birth intervals
never close, and some people are happy enough at their jobs that they never
leave. What can we do in these cases? There are two approaches one can
take.

One approach is to note that we can still calculate the hazard and survival
functions, which are well defined even if the event of interest is not bound
to occur. For example we can study marriage in the entire population,
which includes people who will never marry, and calculate marriage rates
and proportions single. In this example S(t) would represent the proportion
still single at age t and S(∞) would represent the proportion who never
marry.

One limitation of this approach is that if the event is not certain to
occur, then the waiting time T could be undefined (or infinite) and thus
not a proper random variable. Its density, which could be calculated from
the hazard and survival, would be improper, i.e. it would fail to integrate
to one. Obviously, the mean waiting time would not be defined. In terms
of our example, we cannot calculate mean age at marriage for the entire
population, simply because not everyone marries. But this limitation is of
no great consequence if interest centers on the hazard and survivor functions,
rather than the waiting time. In the marriage example we can even calculate
a median age at marriage, provided we define it as the age by which half the
population has married.

The alternative approach is to condition the analysis on the event actu-
ally occurring. In terms of our example, we could study marriage (perhaps
retrospectively) for people who eventually marry, since for this group the
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actual waiting time T is always well defined. In this case we can calculate
not just the conditional hazard and survivor functions, but also the mean.
In our marriage example, we could calculate the mean age at marriage for
those who marry. We could even calculate a conventional median, defined
as the age by which half the people who will eventually marry have done so.

It turns out that the conditional density, hazard and survivor function
for those who experience the event are related to the unconditional density,
hazard and survivor for the entire population. The conditional density is

f∗(t) =
f(t)

1− S(∞)
,

and it integrates to one. The conditional survivor function is

S∗(t) =
S(t)− S(∞)

1− S(∞)
,

and goes down to zero as t → ∞. Dividing the density by the survivor
function, we find the conditional hazard to be

λ∗(t) =
f∗(t)

S∗(t)
=

f(t)

S(t)− S(∞)
.

Derivation of the mean waiting time for those who experience the event is
left as an exercise for the reader.

Whichever approach is adopted, care must be exercised to specify clearly
which hazard or survival is being used. For example, the conditional hazard
for those who eventually experience the event is always higher than the
unconditional hazard for the entire population. Note also that in most cases
all we observe is whether or not the event has occurred. If the event has not
occurred, we may be unable to determine whether it will eventually occur.
In this context, only the unconditional hazard may be estimated from data,
but one can always translate the results into conditional expressions, if so
desired, using the results given above.

7.2 Censoring and The Likelihood Function

The second distinguishing feature of the field of survival analysis is censoring:
the fact that for some units the event of interest has occurred and therefore
we know the exact waiting time, whereas for others it has not occurred, and
all we know is that the waiting time exceeds the observation time.
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7.2.1 Censoring Mechanisms

There are several mechanisms that can lead to censored data. Under censor-
ing of Type I, a sample of n units is followed for a fixed time τ . The number
of units experiencing the event, or the number of ‘deaths’, is random, but
the total duration of the study is fixed. The fact that the duration is fixed
may be an important practical advantage in designing a follow-up study.

In a simple generalization of this scheme, called fixed censoring, each
unit has a potential maximum observation time τi for i = 1, . . . , n which
may differ from one case to the next but is nevertheless fixed in advance.
The probability that unit i will be alive at the end of her observation time
is S(τi), and the total number of deaths is again random.

Under censoring of Type II, a sample of n units is followed as long as
necessary until d units have experienced the event. In this design the number
of deaths d, which determines the precision of the study, is fixed in advance
and can be used as a design parameter. Unfortunately, the total duration of
the study is then random and cannot be known with certainty in advance.

In a more general scheme called random censoring, each unit has as-
sociated with it a potential censoring time Ci and a potential lifetime Ti,
which are assumed to the independent random variables. We observe Yi =
min{Ci, Ti}, the minimum of the censoring and life times, and an indicator
variable, often called di or δi, that tells us whether observation terminated
by death or by censoring.

All these schemes have in common the fact that the censoring mechanism
is non-informative and they all lead to essentially the same likelihood func-
tion. The weakest assumption required to obtain this common likelihood
is that the censoring of an observation should not provide any information
regarding the prospects of survival of that particular unit beyond the cen-
soring time. In fact, the basic assumption that we will make is simply this:
all we know for an observation censored at duration t is that the lifetime
exceeds t.

7.2.2 The Likelihood Function for Censored Data

Suppose then that we have n units with lifetimes governed by a survivor
function S(t) with associated density f(t) and hazard λ(t). Suppose unit
i is observed for a time ti. If the unit died at ti, its contribution to the
likelihood function is the density at that duration, which can be written as
the product of the survivor and hazard functions

Li = f(ti) = S(ti)λ(ti).
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If the unit is still alive at ti, all we know under non-informative censoring is
that the lifetime exceeds ti. The probability of this event is

Li = S(ti),

which becomes the contribution of a censored observation to the likelihood.
Note that both types of contribution share the survivor function S(ti),

because in both cases the unit lived up to time ti. A death multiplies this
contribution by the hazard λ(ti), but a censored observation does not. We
can write the two contributions in a single expression. To this end, let di
be a death indicator, taking the value one if unit i died and the value zero
otherwise. Then the likelihood function may be written as follows

L =
n
∏

i=1

Li =
∏

i

λ(ti)
diS(ti).

Taking logs, and recalling the expression linking the survival function S(t)
to the cumulative hazard function Λ(t), we obtain the log-likelihood function
for censored survival data

logL =
n
∑

i=1

{di log λ(ti)− Λ(ti)}. (7.7)

We now consider an example to reinforce these ideas.
Example: Suppose we have a sample of n censored observations from an
exponential distribution. Let ti be the observation time and di the death
indicator for unit i.

In the exponential distribution λ(t) = λ for all t. The cumulative risk
turns out to be the integral of a constant and is therefore Λ(t) = λt. Using
these two results on Equation 7.7 gives the log-likelihood function

logL =
∑

{di log λ− λti}.

LetD =
∑

di denote the total number of deaths, and let T =
∑

ti denote the
total observation (or exposure) time. Then we can rewrite the log-likelihood
as a function of these totals to obtain

logL = D log λ− λT. (7.8)

Differentiating this expression with respect to λ we obtain the score function

u(λ) =
D

λ
− T,
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and setting the score to zero gives the maximum likelihood estimator of the
hazard

λ̂ =
D

T
, (7.9)

the total number of deaths divided by the total exposure time. Demogra-
phers will recognize this expression as the general definition of a death rate.
Note that the estimator is optimal (in a maximum likelihood sense) only if
the risk is constant and does not depend on age.

We can also calculate the observed information by taking minus the sec-
ond derivative of the score, which is

I(λ) =
D

λ2
.

To obtain the expected information we need to calculate the expected num-
ber of deaths, but this depends on the censoring scheme. For example under
Type I censoring with fixed duration τ , one would expect n(1−S(τ)) deaths.
Under Type II censoring the number of deaths would have been fixed in ad-
vance. Under some schemes calculation of the expectation may be fairly
complicated if not impossible.

A simpler alternative is to use the observed information, estimated using
the m.l.e. of λ given in Equation 7.9. Using this approach, the large sample
variance of the m.l.e. of the hazard rate may be estimated as

v̂ar(λ̂) =
D

T 2
,

a result that leads to large-sample tests of hypotheses and confidence inter-
vals for λ.

If there are no censored cases, so that di = 1 for all i and D = n, then the
results obtained here reduce to standard maximum likelihood estimation for
the exponential distribution, and the m.l.e. of λ turns out to be the reciprocal
of the sample mean.

It may be interesting to note in passing that the log-likelihood for cen-
sored exponential data given in Equation 7.8 coincides exactly (except for
constants) with the log-likelihood that would be obtained by treating D as a
Poisson random variable with mean λT . To see this point, you should write
the Poisson log-likelihood when D ∼ P (λT ), and note that it differs from
Equation 7.8 only in the presence of a term D log(T ), which is a constant
depending on the data but not on the parameter λ.

Thus, treating the deaths as Poisson conditional on exposure time leads
to exactly the same estimates (and standard errors) as treating the exposure
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times as censored observations from an exponential distribution. This result
will be exploited below to link survival models to generalized linear models
with Poisson error structure.

7.3 Approaches to Survival Modeling

Up to this point we have been concerned with a homogeneous population,
where the lifetimes of all units are governed by the same survival function
S(t). We now introduce the third distinguishing characteristic of survival
models—the presence of a vector of covariates or explanatory variables that
may affect survival time—and consider the general problem of modeling
these effects.

7.3.1 Accelerated Life Models*

Let Ti be a random variable representing the (possibly unobserved) survival
time of the i-th unit. Since Ti must be non-negative, we might consider
modeling its logarithm using a conventional linear model, say

log Ti = x
′
iβ + ǫi,

where ǫi is a suitable error term, with a distribution to be specified. This
model specifies the distribution of log-survival for the i-th unit as a simple
shift of a standard or baseline distribution represented by the error term.

Exponentiating this equation, we obtain a model for the survival time
itself

Ti = exp{x′
iβ}T0i,

where we have written T0i for the exponentiated error term. It will also be
convenient to use γi as shorthand for the multiplicative effect exp{x′

iβ} of
the covariates.

Interpretation of the parameters follows along standard lines. Consider,
for example, a model with a constant and a dummy variable x representing a
factor with two levels, say groups one and zero. Suppose the corresponding
multiplicative effect is γ = 2, so the coefficient of x is β = log(2) = 0.6931.
Then we would conclude that people in group one live twice as long as people
in group zero.

There is an interesting alternative interpretation that explains the name
‘accelerated life’ used for this model. Let S0(t) denote the survivor function
in group zero, which will serve as a reference group, and let S1(t) denote the
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survivor function in group one. Under this model,

S1(t) = S0(t/γ).

In words, the probability that a member of group one will be alive at age t
is exactly the same as the probability that a member of group zero will be
alive at age t/γ. For γ = 2, this would be half the age, so the probability
that a member of group one would be alive at age 40 (or 60) would be the
same as the probability that a member of group zero would be alive at age
20 (or 30). Thus, we may think of γ as affecting the passage of time. In our
example, people in group zero age ‘twice as fast’.

For the record, the corresponding hazard functions are related by

λ1(t) = λ0(t/γ)/γ,

so if γ = 2, at any given age people in group one would be exposed to half
the risk of people in group zero half their age.

The name ‘accelerated life’ stems from industrial applications where
items are put to test under substantially worse conditions than they are
likely to encounter in real life, so that tests can be completed in a shorter
time.

Different kinds of parametric models are obtained by assuming different
distributions for the error term. If the ǫi are normally distributed, then we
obtain a log-normal model for the Ti. Estimation of this model for censored
data by maximum likelihood is known in the econometric literature as a
Tobit model.

Alternatively, if the ǫi have an extreme value distribution with p.d.f.

f(ǫ) = exp{ǫ− exp{ǫ}},

then T0i has an exponential distribution, and we obtain the exponential
regression model, where Ti is exponential with hazard λi satisfying the log-
linear model

log λi = x
′
iβ.

An example of a demographic model that belongs to the family of accelerated
life models is the Coale-McNeil model of first marriage frequencies, where
the proportion ever married at age a in a given population is written as

F (a) = cF0(
a− a0

k
),
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where F0 is a model schedule of proportions married by age, among women
who will ever marry, based on historical data from Sweden; c is the propor-
tion who will eventually marry, a0 is the age at which marriage starts, and
k is the pace at which marriage proceeds relative to the Swedish standard.

Accelerated life models are essentially standard regression models applied
to the log of survival time, and except for the fact that observations are
censored, pose no new estimation problems. Once the distribution of the
error term is chosen, estimation proceeds by maximizing the log-likelihood
for censored data described in the previous subsection. For further details,
see Kalbfleish and Prentice (1980).

7.3.2 Proportional Hazard Models

A large family of models introduced by Cox (1972) focuses directly on the
hazard function. The simplest member of the family is the proportional

hazards model, where the hazard at time t for an individual with covariates
xi (not including a constant) is assumed to be

λi(t|xi) = λ0(t) exp{x
′
iβ}. (7.10)

In this model λ0(t) is a baseline hazard function that describes the risk for
individuals with xi = 0, who serve as a reference cell or pivot, and exp{x′

iβ}
is the relative risk, a proportionate increase or reduction in risk, associated
with the set of characteristics xi. Note that the increase or reduction in risk
is the same at all durations t.

To fix ideas consider a two-sample problem where we have a dummy
variable x which serves to identify groups one and zero. Then the model is

λi(t|x) =

{

λ0(t) if x = 0,
λ0(t)e

β if x = 1.
.

Thus, λ0(t) represents the risk at time t in group zero, and γ = exp{β}
represents the ratio of the risk in group one relative to group zero at any
time t. If γ = 1 (or β = 0) then the risks are the same in the two groups. If
γ = 2 (or β = 0.6931), then the risk for an individual in group one at any
given age is twice the risk of a member of group zero who has the same age.

Note that the model separates clearly the effect of time from the effect
of the covariates. Taking logs, we find that the proportional hazards model
is a simple additive model for the log of the hazard, with

log λi(t|xi) = α0(t) + x
′
iβ,
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where α0(t) = log λ0(t) is the log of the baseline hazard. As in all additive
models, we assume that the effect of the covariates x is the same at all times
or ages t. The similarity between this expression and a standard analysis of
covariance model with parallel lines should not go unnoticed.

Returning to Equation 7.10, we can integrate both sides from 0 to t to
obtain the cumulative hazards

Λi(t|xi) = Λ0(t) exp{x
′
iβ},

which are also proportional. Changing signs and exponentiating we obtain
the survivor functions

Si(t|xi) = S0(t)
exp{x′

i
β}, (7.11)

where S0(t) = exp{−Λ0(t)} is a baseline survival function. Thus, the effect
of the covariate values xi on the survivor function is to raise it to a power
given by the relative risk exp{x′

iβ}.

In our two-group example with a relative risk of γ = 2, the probability
that a member of group one will be alive at any given age t is the square of
the probability that a member of group zero would be alive at the same age.

7.3.3 The Exponential and Weibull Models

Different kinds of proportional hazard models may be obtained by making
different assumptions about the baseline survival function, or equivalently,
the baseline hazard function. For example if the baseline risk is constant
over time, so λ0(t) = λ0, say, we obtain the exponential regression model,
where

λi(t,xi) = λ0 exp{x
′
iβ}.

Interestingly, the exponential regression model belongs to both the propor-
tional hazards and the accelerated life families. If the baseline risk is a
constant and you double or triple the risk, the new risk is still constant
(just higher). Perhaps less obviously, if the baseline risk is constant and you
imagine time flowing twice or three times as fast, the new risk is doubled
or tripled but is still constant over time, so we remain in the exponential
family.

You may be wondering whether there are other cases where the two
models coincide. The answer is yes, but not many. In fact, there is only one
distribution where they do, and it includes the exponential as a special case.
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The one case where the two families coincide is the Weibull distribution,
which has survival function

S(t) = exp{−(λt)p}

and hazard function
λ(t) = pλ(λt)p−1,

for parameters λ > 0 and p > 0. If p = 1, this model reduces to the
exponential and has constant risk over time. If p > 1, then the risk increases
over time. If p < 1, then the risk decreases over time. In fact, taking logs
in the expression for the hazard function, we see that the log of the Weibull
risk is a linear function of log time with slope p− 1.

If we pick the Weibull as a baseline risk and then multiply the hazard by
a constant γ in a proportional hazards framework, the resulting distribution
turns out to be still a Weibull, so the family is closed under proportionality
of hazards. If we pick the Weibull as a baseline survival and then speed
up the passage of time in an accelerated life framework, dividing time by a
constant γ, the resulting distribution is still a Weibull, so the family is closed
under acceleration of time.

For further details on this distribution see Cox and Oakes (1984) or
Kalbfleish and Prentice (1980), who prove the equivalence of the two Weibull
models.

7.3.4 Time-varying Covariates

So far we have considered explicitly only covariates that are fixed over time.
The local nature of the proportional hazards model, however, lends itself
easily to extensions that allows for covariates that change over time. Let us
consider a few examples.

Suppose we are interested in the analysis of birth spacing, and study the
interval from the birth of one child to the birth of the next. One of the
possible predictors of interest is the mother’s education, which in most cases
can be taken to be fixed over time.

Suppose, however, that we want to introduce breastfeeding status of the
child that begins the interval. Assuming the child is breastfed, this variable
would take the value one (‘yes’) from birth until the child is weaned, at
which time it would take the value zero (‘no’). This is a simple example of
a predictor that can change value only once.

A more elaborate analysis could rely on frequency of breastfeeding in
a 24-hour period. This variable could change values from day to day. For
example a sequence of values for one woman could be 4,6,5,6,5,4,. . .
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Let xi(t) denote the value of a vector of covariates for individual i at time
or duration t. Then the proportional hazards model may be generalized to

λi(t,xi(t)) = λ0(t) exp{xi(t)
′β}. (7.12)

The separation of duration and covariate effects is not so clear now, and on
occasion it may be difficult to identify effects that are highly collinear with
time. If all children were weaned when they are around six months old, for
example, it would be difficult to identify effects of breastfeeding from general
duration effects without additional information. In such cases one might still
prefer a time-varying covariate, however, as a more meaningful predictor of
risk than the mere passage of time.

Calculation of survival functions when we have time-varying covariates is
a little bit more complicated, because we need to specify a path or trajectory
for each variable. In the birth intervals example one could calculate a survival
function for women who breastfeed for six months and then wean. This
would be done by using the hazard corresponding to x(t) = 0 for months 0
to 6 and then the hazard corresponding to x(t) = 1 for months 6 onwards.
Unfortunately, the simplicity of Equation 7.11 is lost; we can no longer
simply raise the baseline survival function to a power.

Time-varying covariates can be introduced in the context of accelerated
life models, but this is not so simple and has rarely been done in applications.
See Cox and Oakes (1984, p.66) for more information.

7.3.5 Time-dependent Effects

The model may also be generalized to allow for effects that vary over time,
and therefore are no longer proportional. It is quite possible, for example,
that certain social characteristics might have a large impact on the hazard
for children shortly after birth, but may have a relatively small impact later
in life. To accommodate such models we may write

λi(t,xi) = λ0(t) exp{x
′
iβ(t)},

where the parameter β(t) is now a function of time.
This model allows for great generality. In the two-sample case, for ex-

ample, the model may be written as

λi(t|x) =

{

λ0(t) if x = 0
λ0(t)e

β(t) if x = 1
,

which basically allows for two arbitrary hazard functions, one for each group.
Thus, this is a form of saturated model.
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Usually the form of time dependence of the effects must be specified
parametrically in order to be able to identify the model and estimate the
parameters. Obvious candidates are polynomials on duration, where β(t) is
a linear or quadratic function of time. Cox and Oakes (1984, p. 76) show
how one can use quick-dampening exponentials to model transient effects.

Note that we have lost again the simple separation of time and covariate
effects. Calculation of the survival function in this model is again somewhat
complicated by the fact that the coefficients are now functions of time, so
they don’t fall out of the integral. The simple Equation 7.11 does not apply.

7.3.6 The General Hazard Rate Model

The foregoing extensions to time-varying covariates and time-dependent ef-
fects may be combined to give the most general version of the hazard rate
model, as

λi(t,xi(t)) = λ0(t) exp{xi(t)
′β(t)},

where xi(t) is a vector of time-varying covariates representing the charac-
teristics of individual i at time t, and β(t) is a vector of time-dependent
coefficients, representing the effect that those characteristics have at time or
duration t.

The case of breastfeeding status and its effect on the length of birth
intervals is a good example that combines the two effects. Breastfeeding
status is itself a time-varying covariate x(t), which takes the value one if
the woman is breastfeeding her child t months after birth. The effect that
breastfeeding may have in inhibiting ovulation and therefore reducing the
risk of pregnancy is known to decline rapidly over time, so it should probably
be modeled as a time dependent effect β(t). Again, further progress would
require specifying the form of this function of time.

7.3.7 Model Fitting

There are essentially three approaches to fitting survival models:

• The first and perhaps most straightforward is the parametric approach,
where we assume a specific functional form for the baseline hazard
λ0(t). Examples are models based on the exponential, Weibull, gamma
and generalized F distributions.

• A second approach is what might be called a flexible or semi-parametric

strategy, where we make mild assumptions about the baseline hazard
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λ0(t). Specifically, we may subdivide time into reasonably small inter-
vals and assume that the baseline hazard is constant in each interval,
leading to a piece-wise exponential model.

• The third approach is a non-parametric strategy that focuses on es-
timation of the regression coefficients β leaving the baseline hazard
λ0(t) completely unspecified. This approach relies on a partial likeli-
hood function proposed by Cox (1972) in his original paper.

A complete discussion of these approaches in well beyond the scope of these
notes. We will focus on the intermediate or semi-parametric approach be-
cause (1) it is sufficiently flexible to provide a useful tool with wide applica-
bility, and (2) it is closely related to Poisson regression analysis.

7.4 The Piece-Wise Exponential Model

We will consider fitting a proportional hazards model of the usual form

λi(t|xi) = λ0(t) exp{x
′
iβ} (7.13)

under relatively mild assumptions about the baseline hazard λ0(t).

7.4.1 A Piece-wise Constant Hazard

Consider partitioning duration into J intervals with cutpoints 0 = τ0 < τ1 <
. . . < τJ = ∞. We will define the j-th interval as [τj−1, τj), extending from
the (j − 1)-st boundary to the j-th and including the former but not the
latter.

We will then assume that the baseline hazard is constant within each
interval, so that

λ0(t) = λj for t in [τj−1, τj). (7.14)

Thus, we model the baseline hazard λ0(t) using J parameters λ1, . . . , λJ ,
each representing the risk for the reference group (or individual) in one
particular interval. Since the risk is assumed to be piece-wise constant, the
corresponding survival function is often called a piece-wise exponential.

Clearly, judicious choice of the cutpoints should allow us to approximate
reasonably well almost any baseline hazard, using closely-spaced boundaries
where the hazard varies rapidly and wider intervals where the hazard changes
more slowly.
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Figure 7.1: Approximating a Survival Curve Using a
Piece-wise Constant Hazard Function

Figure 7.1 shows how a Weibull distribution with λ = 1 and p = 0.8 can
be approximated using a piece-wise exponential distribution with bound-
aries at 0.5, 1.5 and 3.5. The left panel shows how the piece-wise constant
hazard can follow only the broad outline of the smoothly declining Weibull
hazard yet, as shown on the right panel, the corresponding survival curves
are indistinguishable.

7.4.2 A Proportional Hazards Model

let us now introduce some covariates in the context of the proportional haz-
ards model in Equation 7.13, assuming that the baseline hazard is piece-wise
constant as in Equation 7.14. We will write the model as

λij = λj exp{x
′
iβ}, (7.15)

where λij is the hazard corresponding to individual i in interval j, λj is
the baseline hazard for interval j, and exp{x′

iβ} is the relative risk for an
individual with covariate values xi, compared to the baseline, at any given
time.

Taking logs, we obtain the additive log-linear model

log λij = αj + x
′
iβ, (7.16)

where αj = log λj is the log of the baseline hazard. Note that the result
is a standard log-linear model where the duration categories are treated as
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a factor. Since we have not included an explicit constant, we do not have
to impose restrictions on the αj . If we wanted to introduce a constant
representing the risk in the first interval then we would set α1 = 0, as usual.

The model can be extended to introduce time-varying covariates and
time-dependent effects, but we will postpone discussing the details until we
study estimation of the simpler proportional hazards model.

7.4.3 The Equivalent Poisson Model

Holford (1980) and Laird and Oliver (1981), in papers produced indepen-
dently and published very close to each other, noted that the piece-wise
proportional hazards model of the previous subsection was equivalent to a
certain Poisson regression model. We first state the result and then sketch
its proof.

Recall that we observe ti, the total time lived by the i-th individual,
and di, a death indicator that takes the value one if the individual died and
zero otherwise. We will now define analogous measures for each interval that
individual i goes through. You may think of this process as creating a bunch
of pseudo-observations, one for each combination of individual and interval.

First we create measures of exposure. Let tij denote the time lived by
the i-th individual in the j-th interval, that is, between τj−1 and τj . If the
individual lived beyond the end of the interval, so that ti > τj , then the time
lived in the interval equals the width of the interval and tij = τj−τj−1. If the
individual died or was censored in the interval, i.e. if tj−1 < ti < τj , then the
timed lived in the interval is tij = ti − τj−1, the difference between the total
time lived and the lower boundary of the interval. We only consider intervals
actually visited, but obviously the time lived in an interval would be zero if
the individual had died before the start of the interval and ti < τj−1.

Now we create death indicators. Let dij take the value one if individual
i dies in interval j and zero otherwise. Let j(i) indicate the interval where
ti falls, i.e. the interval where individual i died or was censored. We use
functional notation to emphasize that this interval will vary from one indi-
vidual to another. If ti falls in interval j(i), say, then dij must be zero for
all j < j(i) (i.e. all prior intervals) and will equal di for j = j(i), (i.e. the
interval where individual i was last seen).

Then, the piece-wise exponential model may be fitted to data by treating
the death indicators dij ’s as if they were independent Poisson observations
with means

µij = tijλij ,
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where tij is the exposure time as defined above and λij is the hazard for
individual i in interval j. Taking logs in this expression, and recalling that
the hazard rates satisfy the proportional hazards model in Equation 7.15,
we obtain

logµij = log tij + αj + x
′
iβ,

where αj = log λj as before.
Thus, the piece-wise exponential proportional hazards model is equiva-

lent to a Poisson log-linear model for the pseudo observations, one for each
combination of individual and interval, where the death indicator is the re-
sponse and the log of exposure time enters as an offset.

It is important to note that we do not assume that the dij have indepen-
dent Poisson distributions, because they clearly do not. If individual i died
in interval j(i), then it must have been alive in all prior intervals j < j(i), so
the indicators couldn’t possibly be independent. Moreover, each indicator
can only take the values one and zero, so it couldn’t possibly have a Poisson
distribution, which assigns some probability to values greater than one. The
result is more subtle. It is the likelihood functions that coincide. Given a
realization of a piece-wise exponential survival process, we can find a realiza-
tion of a set of independent Poisson observations that happens to have the
same likelihood, and therefore would lead to the same estimates and tests of
hypotheses.

The proof is not hard. Recall from Section 7.2.2 that the contribution of
the i-th individual to the log-likelihood function has the general form

logLi = di log λi(ti)− Λi(ti),

where we have written λi(t) for the hazard and Λi(t) for the cumulative
hazard that applies to the i-th individual at time t. Let j(i) denote the
interval where ti falls, as before.

Under the piece-wise exponential model, the first term in the log-likelihood
can be written as

di log λi(ti) = dij(i) log λij(i),

using the fact that the hazard is λij(i) when ti is in interval j(i), and that the
death indicator di applies directly to the last interval visited by individual
i, and therefore equals dj(i).

The cumulative hazard in the second term is an integral, and can be
written as a sum as follows

Λi(ti) =

∫ ti

0
λi(t)dt =

j(i)
∑

j=1

tijλij ,



20 CHAPTER 7. SURVIVAL MODELS

where tij is the amount of time spent by individual i in interval j. To see
this point note that we need to integrate the hazard from 0 to ti. We split
this integral into a sum of integrals, one for each interval where the hazard is
constant. If an individual lives through an interval, the contribution to the
integral will be the hazard λij multiplied by the width of the interval. If the
individual dies or is censored in the interval, the contribution to the integral
will be the hazard λij multiplied by the time elapsed from the beginning of
the interval to the death or censoring time, which is ti − τj−1. But this is
precisely the definition of the exposure time tij .

One slight lack of symmetry in our results is that the hazard leads to one

term on dij(i) log λij(i), but the cumulative hazard leads to j(i) terms, one
for each interval from j = 1 to j(i). However, we know that dij = 0 for all
j < j(i), so we can add terms on dij log λij for all prior j’s; as long as dij = 0
they will make no contribution to the log-likelihood. This trick allows us to
write the contribution of the i-th individual to the log-likelihood as a sum
of j(i) contributions, one for each interval visited by the individual:

logLi =

j(i)
∑

j=1

{dij log λij − tijλij}.

The fact that the contribution of the individual to the log-likelihood is a
sum of several terms (so the contribution to the likelihood is a product of
several terms) means that we can treat each of the terms as representing an
independent observation.

The final step is to identify the contribution of each pseudo-observation,
and we note here that it agrees, except for a constant, with the likelihood
one would obtain if dij had a Poisson distribution with mean µij = tijλij .
To see this point write the Poisson log-likelihood as

logLij = dij logµij − µij = dij log(tijλij)− tijλij .

This expression agrees with the log-likelihood above except for the term
dij log(tij), but this is a constant depending on the data and not on the
parameters, so it can be ignored from the point of view of estimation. This
completes the proof.✷

This result generalizes the observation made at the end of Section 7.2.2
noting the relationship between the likelihood for censored exponential data
and the Poisson likelihood. The extension is that instead of having just one
‘Poisson’ death indicator for each individual, we have one for each interval
visited by each individual.
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Generating pseudo-observations can substantially increase the size of the
dataset, perhaps to a point where analysis is impractical. Note, however,
that the number of distinct covariate patterns may be modest even when
the total number of pseudo-observations is large. In this case one can group
observations, adding up the measures of exposure and the death indicators.
In this more general setting, we can define dij as the number of deaths and
tij as the total exposure time of individuals with characteristics xi in interval
j. As usual with Poisson aggregate models, the estimates, standard errors
and likelihood ratio tests would be exactly the same as for individual data.
Of course, the model deviances would be different, representing goodness of
fit to the aggregate rather than individual data, but this may be a small
price to pay for the convenience of working with a small number of units.

7.4.4 Time-varying Covariates

It should be obvious from the previous development that we can easily ac-
commodate time-varying covariates provided they change values only at in-
terval boundaries. In creating the pseudo-observations required to set-up a
Poisson log-likelihood, one would normally replicate the vector of covariates
xi, creating copies xij , one for each interval. However, there is nothing in our
development requiring these vectors to be equal. We can therefore redefine
xij to represent the values of the covariates of individual i in interval j, and
proceed as usual, rewriting the model as

log λij = αj + x
′
ijβ.

Requiring the covariates to change values only at interval boundaries may
seem restrictive, but in practice the model is more flexible than it might seem
at first, because we can always further split the pseudo observations. For
example, if we wished to accommodate a change in a covariate for individual
i half-way through interval j, we could split the pseudo-observation into two,
one with the old and one with the new values of the covariates. Each half
would get its own measure of exposure and its own death indicator, but both
would be tagged as belonging to the same interval, so they would get the
same baseline hazard. All steps in the above proof would still hold.

Of course, splitting observations further increases the size of the dataset,
and there will usually be practical limitations on how far one can push this
approach, even if one uses grouped data. An alternative is to use simpler
indicators such as the mean value of a covariate in an interval, perhaps lagged
to avoid predicting current hazards using future values of covariates.
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7.4.5 Time-dependent Effects

It turns out that the piece-wise exponential scheme lends itself easily to the
introduction of non-proportional hazards or time-varying effects, provided
again that we let the effects vary only at interval boundaries.

To fix ideas, suppose we have a single predictor taking the value xij for
individual i in interval j. Suppose further that this predictor is a dummy
variable, so its possible values are one and zero. It doesn’t matter for our
current purpose whether the value is fixed for the individual or changes from
one interval to the next.

In a proportional hazards model we would write

log λij = αj + βxij ,

where β represents the effect of the predictor on the log of the hazard at any
given time. Exponentiating, we see that the hazard when x = 1 is exp{β}
times the hazard when x = 0, and this effect is the same at all times. This
is a simple additive model on duration and the predictor of interest.

To allow for a time-dependent effect of the predictor, we would write

log λij = αj + βjxij ,

where βj represents the effect of the predictor on the hazard during interval
j. Exponentiating, we see that the hazard in interval j when x = 1 is
exp{βj} times the hazard in interval j when x = 0, so the effect may vary
from one interval to the next. Since the effect of the predictor depends on the
interval, we have a form of interaction between the predictor and duration,
which might be more obvious if we wrote the model as

log λij = αj + βxij + (αβ)jxij .

These models should remind you of the analysis of covariance models of
Chapter 2. Here α plays the role of the intercept and β the role of the
slope. The proportional hazards model has different intercepts and a com-
mon slope, so it’s analogous to the parallel lines model. The model with
a time-dependent effect has different intercepts and different slopes, and is
analogous to the model with an interaction.

To sum up, we can accommodate non-proportionality of hazards simply
by introducing interactions with duration. Obviously we can also test the
assumption of proportionality of hazards by testing the significance of the
interactions with duration. We are now ready for an example.
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7.5 Infant and Child Mortality in Colombia

We will illustrate the use of piece-wise exponential survival models using
data from an analysis of infant and child mortality in Colombia done by
Somoza (1980). The data were collected in a 1976 survey conducted as part
of the World Fertility Survey. The sample consisted of women between the
ages of 15 and 49. The questionnaire included a maternity history, recording
for each child ever born to each respondent the sex, date of birth, survival
status as of the interview and (if applicable) age at death.

7.5.1 Calculating Events and Exposure

As if often the case with survival data, most of the work goes into preparing
the data for analysis. In the present case we started from tables in Somoza’s
article showing living children classified by current age, and dead children
classified by age at death. Both tabulations reported age using the groups
shown in Table 7.1, using fine categories early in life, when the risk if high
but declines rapidly, and wider categories at later ages. With these two
bits of information we were able to tabulate deaths and calculate exposure
time by age groups, assuming that children who died or were censored in an
interval lived on the average half the length of the interval.

Table 7.1: Infant and Child Deaths and Exposure Time by
Age of Child and Birth Cohort, Colombia 1976.

Exact
Birth Cohort

Age
1941–59 1960–67 1968-76

deaths exposure deaths exposure deaths exposure

0–1 m 168 278.4 197 403.2 195 495.3
1–3 m 48 538.8 48 786.0 55 956.7
3–6 m 63 794.4 62 1165.3 58 1381.4
6–12 m 89 1550.8 81 2294.8 85 2604.5
1–2 y 102 3006.0 97 4500.5 87 4618.5
2–5 y 81 8743.5 103 13201.5 70 9814.5
5–10 y 40 14270.0 39 19525.0 10 5802.5

Table 7.1 shows the results of these calculations in terms of the number
of deaths and the total number of person-years of exposure to risk between
birth and age ten, by categories of age of child, for three groups of children
(or cohorts) born in 1941–59, 1960–67 and 1968–76. The purpose of our
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analysis will be to assess the magnitude of the expected decline in infant
and child mortality across these cohorts, and to study whether mortality
has declined uniformly at all ages or more rapidly in certain age groups.

7.5.2 Fitting The Poisson Models

Let yij denote the number of deaths for cohort i (with i = 1, 2, 3) in age
group j (for j = 1, 2, . . . , 7). In view of the results of the previous section,
we treat the yij as realizations of Poisson random variables with means µij

satisfying
µij = λijtij ,

where λij is the hazard rate and tij is the total exposure time for group i at
age j. In words, the expected number of deaths is the product of the death
rate by exposure time.

A word of caution about units of measurement: the hazard rates must
be interpreted in the same units of time that we have used to measure
exposure. In our example we measure time in years and therefore the λij

represent rates per person-year of exposure. If we had measured time in
months the λij would represent rates per person-month of exposure, and
would be exactly one twelfth the size of the rates per person-year.

To model the rates we use a log link, so that the linear predictor becomes

ηij = logµij = log λij + log tij ,

the sum of two parts, log tij , an offset or known part of the linear predictor,
and log λij , the log of the hazard rates of interest.

Finally, we introduce a log-linear model for the hazard rates, of the usual
form

log λij = x
′
ijβ,

where xij is a vector of covariates. In case you are wondering what happened
to the baseline hazard, we have folded it into the vector of parameters β. The
vector of covariates xij may include a constant, a set of dummy variables
representing the age groups (i.e. the shape of the hazard by age), a set
of dummy variables representing the birth cohorts (i.e. the change in the
hazard over time) and even a set of cross-product dummies representing
combinations of ages and birth cohorts (i.e. interaction effects).

Table 7.2 shows the deviance for the five possible models of interest,
including the null model, the two one-factor models, the two-factor additive
model, and the two-factor model with an interaction, which is saturated for
these data.



7.5. INFANT AND CHILD MORTALITY IN COLOMBIA 25

Table 7.2: Deviances for Various Models Fitted to
Infant and Child Mortality Data From Colombia

Model Name log λij Deviance d.f.

φ Null η 4239.8 20
A Age η + αi 72.7 14
C Cohort η + βj 4190.7 18
A+ C Additive η + αi + βj 6.2 12
AC Saturated η + αi + βj + (αβ)ij 0 0

7.5.3 The Equivalent Survival Models

The null model assumes that the hazard is a constant from birth to age ten
and that this constant is the same for all cohorts. It therefore corresponds to
an exponential survival model with no covariates. This model obviously does
not fit the data, the deviance of 4239.8 on 20 d.f. is simply astronomical.
The m.l.e. of η is −3.996 with a standard error of 0.0237. Exponentiating we
obtain an estimated hazard rate of 0.0184. Thus, we expect about 18 deaths
per thousand person-years of exposure. You may want to verify that 0.0184
is simply the ratio of the total number of deaths to the total exposure time.
Multiplying 0.0184 by the amount of exposure in each cell of the table we
obtain the expected number of deaths. The deviance quoted above is simply
twice the sum of observed times the log of observed over expected deaths.

The age model allows the hazard to change from one age group to an-
other, but assumes that the risk at any given age is the same for all cohorts.
It is therefore equivalent to a piece-wise exponential survival model with no

covariates. The reduction in deviance from the null model is 4167.1 on 6
d.f., and is extremely significant. The risk of death varies substantially with
age over the first few months of life. In other words the hazard is clearly not
constant. Note that with a deviance of 72.7 on 14 d.f., this model does not
fit the data. Thus, the assumption that all cohorts are subject to the same
risks does not seem tenable.

Table 7.3 shows parameter estimates for the one-factor models A and
C and for the additive model A + C in a format reminiscent of multiple
classification analysis. Although the A model does not fit the data, it is
instructive to comment briefly on the estimates. The constant, shown in
parentheses, corresponds to a rate of exp{−0.7427} = 0.4758, or nearly half
a death per person-year of exposure, in the first month of life. The estimate
for ages 1–3 months corresponds to a multiplicative effect of exp{−1.973} =
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0.1391, amounting to an 86 percent reduction in the hazard after surviving
the first month of life. This downward trend continues up to ages 5–10 years,
where the multiplicative effect is exp{−5.355} = 0.0047, indicating that the
hazard at these ages is only half-a-percent what it was in the first month
of life. You may wish to verify that the m.l.e.’s of the age effects can be
calculated directly from the total number of deaths and the total exposure
time in each age group. Can you calculate the deviance by hand?

Let us now consider the model involving only birth cohort, which as-
sumes that the hazard is constant from birth to age ten, but varies from
one birth cohort to another. This model is equivalent to three exponen-

tial survival models, one for each birth cohort. As we would expect, it is
hopelessly inadequate, with a deviance in the thousands, because it fails to
take into account the substantial age effects that we have just discussed.
It may of of interest, however, to note the parameter estimates in Table
7.3. As a first approximation, the overall mortality rate for the older co-
hort was exp{−3.899} = 0.0203 or around 20 deaths per thousand person-
years of exposure. The multiplicative effect for the cohort born in 1960–
67 is exp{−0.3020} = 0.7393, indicating a 26 percent reduction in over-
all mortality. However, the multiplicative effect for the youngest cohort is
exp{0.0742} = 1.077, suggesting an eight percent increase in overall mortal-
ity. Can you think of an explanation for this apparent anomaly? We will
consider the answer after we discuss the next model.

Table 7.3: Parameter Estimates for Age, Cohort and Age+Cohort Models
of Infant and Child Mortality in Colombia

Factor Category Gross Effect Net Effect

Baseline −0.4485
Age 0–1 m (−0.7427) –

1–3 m −1.973 −1.973
3–6 m −2.162 −2.163
6–12 m −2.488 −2.492
1–2 y −3.004 −3.014
2–5 y −4.086 −4.115
5–10 y −5.355 −5.436

Cohort 1941–59 (−3.899) –
1960–67 −0.3020 −0.3243
1968–76 0.0742 −0.4784
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Consider now the additive model with effects of both age and cohort,
where the hazard rate is allowed to vary with age and may differ from one
cohort to another, but the age (or cohort) effect is assumed to be the same
for each cohort (or age). This model is equivalent to a proportional hazards

model, where we assume a common shape of the hazard by age, and let cohort
affect the hazard proportionately at all ages. Comparing the proportional
hazards model with the age model we note a reduction in deviance of 66.5
on two d.f., which is highly significant. Thus, we have strong evidence of
cohort effects net of age. On the other hand, the attained deviance of 6.2
on 12 d.f. is clearly not significant, indicating that the proportional hazards
model provides an adequate description of the patterns of mortality by age
and cohort in Colombia. In other words, the assumption of proportionality
of hazards is quite reasonable, implying that the decline in mortality in
Colombia has been the same at all ages.

Let us examine the parameter estimates on the right-most column of
Table 7.3. The constant is the baseline hazard at ages 0–1 months for the
earliest cohort, those born in 1941–59. The age parameters representing the
baseline hazard are practically unchanged from the model with age only, and
trace the dramatic decline in mortality from birth to age ten, with half the
reduction concentrated in the first year of life. The cohort affects adjusted
for age provide a more reasonable picture of the decline in mortality over
time. The multiplicative effects for the cohorts born in 1960–67 and 1068–
76 are exp{−0.3243} = 0.7233 and exp{−0.4784} = 0.6120, corresponding
to mortality declines of 28 and 38 percent at every age, compared to the
cohort born in 1941–59. This is a remarkable decline in infant and child
mortality, which appears to have been the same at all ages. In other words,
neonatal, post-neonatal, infant and toddler mortality have all declined by
approximately 38 percent across these cohorts.

The fact that the gross effect for the youngest cohort was positive but
the net effect is substantially negative can be explained as follows. Because
the survey took place in 1976, children born between 1968 and 76 have been
exposed mostly to mortality at younger ages, where the rates are substan-
tially higher than at older ages. For example a child born in 1975 would
have been exposed only to mortality in the first year of life. The gross effect
ignores this fact and thus overestimates the mortality of this group at ages
zero to ten. The net effect adjusts correctly for the increased risk at younger
ages, essentially comparing the mortality of this cohort to the mortality of
earlier cohorts when they had the same ages, and can therefore unmask the
actual decline.

A final caveat on interpretation: the data are based on retrospective re-
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ports of mothers who were between the ages of 15 and 49 at the time of the
interview. These women provide a representative sample of both mothers
and births for recent periods, but a somewhat biased sample for older peri-
ods. The sample excludes mothers who have died before the interview, but
also women who were older at the time of birth of the child. For example
births from 1976, 1966 and 1956 come from mothers who were under 50,
under 40 and under 30 at the time of birth of the child. A more careful
analysis of the data would include age of mother at birth of the child as an
additional control variable.

7.5.4 Estimating Survival Probabilities

So far we have focused attention on the hazard or mortality rate, but of
course, once the hazard has been calculated it becomes an easy task to
calculate cumulative hazards and therefore survival probabilities. Table 7.4
shows the results of just such an exercise, using the parameter estimates for
the proportional hazards model in Table 7.3.

Table 7.4: Calculation of Survival Probabilities for Three Cohorts
Based on the Proportional Hazards Model

Age
Width

Baseline Survival for Cohort
Group Log-haz Hazard Cum.Haz <1960 1960–67 1968–76
(1) (2) (3) (4) (5) (6) (7) (8)
0–1 m 1/12 −0.4485 0.6386 0.0532 0.9482 0.9623 0.9676
1–3 m 2/12 −2.4215 0.0888 0.0680 0.9342 0.9520 0.9587
3–6 m 3/12 −2.6115 0.0734 0.0864 0.9173 0.9395 0.9479
6–12 m 1/2 −2.9405 0.0528 0.1128 0.8933 0.9217 0.9325
1–2 y 1 −3.4625 0.0314 0.1441 0.8658 0.9010 0.9145
2–5 y 3 −4.5635 0.0104 0.1754 0.8391 0.8809 0.8970
5–10 y 5 −5.8845 0.0028 0.1893 0.8275 0.8721 0.8893

Consider first the baseline group, namely the cohort of children born
before 1960. To obtain the log-hazard for each age group we must add the
constant and the age effect, for example the log-hazard for ages 1–3 months
is −0.4485 − 1.973 = −2.4215. This gives the numbers in column (3) of
Table 7.3. Next we exponentiate to obtain the hazard rates in column (4),
for example the rate for ages 1–3 months is exp{−2.4215} = 0.0888. Next
we calculate the cumulative hazard, multiply the hazard by the width of the
interval and summing across intervals. In this step it is crucial to express
the width of the interval in the same units used to calculate exposure, in
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this case years. Thus, the cumulative hazard at then end of ages 1–3 months
is 0.6386 × 1/12 + 0.0888 × 2/12 = 0.0680. Finally, we change sign and
exponentiate to calculate the survival function. For example the baseline
survival function at 3 months is exp{−0.0680} = 0.9342.

To calculate the survival functions shown in columns (7) and (8) for the
other two cohorts we could multiply the baseline hazards by exp{−0.3242}
and exp{−0.4874} to obtain the hazards for cohorts 1960–67 and 1968–76,
respectively, and then repeat the steps described above to obtain the survival
functions. This approach would be necessary if we had time-varying effects,
but in the present case we can take advantage of a simplification that obtains
for proportional hazard models. Namely, the survival functions for the two
younger cohorts can be calculated as the baseline survival function raised to
the relative risks exp{−0.3242} and exp{−0.4874}, respectively. For example
the probability of surviving to age three months was calculated as 0.9342 for
the baseline group, and turns out to be 0.9342exp{−0.3242} = 0.9520 for the
cohort born in 1960–67, and 0.9342exp{−0.4874} = 0.9587 for the cohort born
in 1968–76.

Note that the probability of dying in the first year of life has declined
from 106.7 per thousand for children born before 1960 to 78.3 per thousand
for children born in 1960–67 and finally to 67.5 per thousand for the most
recent cohort. Results presented in terms of probabilities are often more
accessible to a wider audience than results presented in terms of hazard
rates. (Unfortunately, demographers are used to calling the probability of
dying in the first year of life the ‘infant mortality rate’. This is incorrect
because the quantity quoted is a probability, not a rate. In our example the
rate varies substantially within the first year of life. If the probability of
dying in the first year of life is q, say, then the average rate is approximately
− log(1− q), which is not too different from q for small q.)

By focusing on events and exposure, we have been able to combine infant
and child mortality in the same analysis and use all available information.
An alternative approach could focus on infant mortality (deaths in the first
year of life), and solve the censoring problem by looking only at children
born at least one year before the survey, for whom the survival status at
age one is know. One could then analyze the probability of surviving to age
one using ordinary logit models. A complementary analysis could then look
at survival from age one to five, say, working with children born at least
five years before the survey who survived to age one, and then analyzing
whether or not they further survive to age five, using again a logit model.
While simple, this approach does not make full use of the information, relying
on cases with complete (uncensored) data. Cox and Oakes (1980) show that
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this so-called reduced sample approach can lead to inconsistencies. Another
disadvantage of this approach is that it focuses on survival to key ages, but
cannot examine the shape of the hazard in the intervening period.

7.6 Discrete Time Models

We discuss briefly two extensions of the proportional hazards model to dis-
crete time, starting with a definition of the hazard and survival functions
in discrete time and then proceeding to models based on the logit and the
complementary log-log transformations.

7.6.1 Discrete Hazard and Survival

Let T be a discrete random variable that takes the values t1 < t2 < . . . with
probabilities

f(tj) = fj = Pr{T = tj}.

We define the survivor function at time tj as the probability that the survival
time T is at least tj

S(tj) = Sj = Pr{T ≥ tj} =
∞
∑

k=j

fj .

Next, we define the hazard at time tj as the conditional probability of dying
at that time given that one has survived to that point, so that

λ(tj) = λj = Pr{T = tj |T ≥ tj} =
fj
Sj

. (7.17)

Note that in discrete time the hazard is a conditional probability rather than
a rate. However, the general result expressing the hazard as a ratio of the
density to the survival function is still valid.

A further result of interest in discrete time is that the survival function
at time tj can be written in terms of the hazard at all prior times t1, . . . , tj−1,
as

Sj = (1− λ1)(1− λ2) . . . (1− λj−1). (7.18)

In words, this result states that in order to survive to time tj one must
first survive t1, then one must survive t2 given that one survived t1, and
so on, finally surviving tj−1 given survival up to that point. This result is
analogous to the result linking the survival function in continuous time to
the integrated or cumulative hazard at all previous times.
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An example of a survival process that takes place in discrete time is
time to conception measured in menstrual cycles. In this case the possible
values of T are the positive integers, fj is the probability of conceiving in
the j-th cycle, Sj is the probability of conceiving in the j-th cycle or later,
and λj is the conditional probability of conceiving in the j-th cycle given
that conception had not occurred earlier. The result relating the survival
function to the hazard states that in order to get to the j-th cycle without
conceiving, one has to fail in the first cycle, then fail in the second given
that one didn’t succeed in the first, and so on, finally failing in the (j−1)-st
cycle given that one hadn’t succeeded yet.

7.6.2 Discrete Survival and Logistic Regression

Cox (1972) proposed an extension of the proportional hazards model to
discrete time by working with the conditional odds of dying at each time tj
given survival up to that point. Specifically, he proposed the model

λ(tj |xi)

1− λ(tj |xi)
=

λ0(tj)

1− λ0(tj)
exp{x′

iβ},

where λ(tj |xi) is the hazard at time tj for an individual with covariate values
xi, λ0(tj) is the baseline hazard at time tj , and exp{x′

iβ} is the relative risk
associated with covariate values xi.

Taking logs, we obtain a model on the logit of the hazard or conditional
probability of dying at tj given survival up to that time,

logitλ(tj |xi) = αj + x
′
iβ, (7.19)

where αj = logitλ0(tj) is the logit of the baseline hazard and x
′
iβ is the effect

of the covariates on the logit of the hazard. Note that the model essentially
treats time as a discrete factor by introducing one parameter αj for each
possible time of death tj . Interpretation of the parameters β associated with
the other covariates follows along the same lines as in logistic regression.

In fact, the analogy with logistic regression goes further: we can fit the
discrete-time proportional-hazards model by running a logistic regression on
a set of pseudo observations generated as follows. Suppose individual i dies
or is censored at time point tj(i). We generate death indicators dij that take
the value one if individual i died at time j and zero otherwise, generating
one for each discrete time from t1 to tj(i). To each of these indicators we
associate a copy of the covariate vector xi and a label j identifying the time
point. The proportional hazards model 7.19 can then be fit by treating



32 CHAPTER 7. SURVIVAL MODELS

the dij as independent Bernoulli observations with probability given by the
hazard λij for individual i at time point tj .

More generally, we can group pseudo-observations with identical covari-
ate values. Let dij denote the number of deaths and nij the total number of
individuals with covariate values xi observed at time point tj . Then we can
treat dij as binomial with parameters nij and λij , where the latter satisfies
the proportional hazards model.

The proof of this result runs along the same lines as the proof of the
equivalence of the Poisson likelihood and the likelihood for piece-wise expo-
nential survival data under non-informative censoring in Section 7.4.3, and
relies on Equation 7.18, which writes the probability of surviving to time tj
as a product of the conditional hazards at all previous times. It is important
to note that we do not assume that the pseudo-observations are independent
and have a Bernoulli or binomial distribution. Rather, we note that the like-
lihood function for the discrete-time survival model under non-informative
censoring coincides with the binomial likelihood that would be obtained by
treating the death indicators as independent Bernoulli or binomial.

Time-varying covariates and time-dependent effects can be introduced
in this model along the same lines as before. In the case of time-varying
covariates, note that only the values of the covariates at the discrete times
t1 < t2 < . . . are relevant. Time-dependent effects are introduced as in-
teractions between the covariates and the discrete factor (or set of dummy
variables) representing time.

7.6.3 Discrete Survival and the C-Log-Log Link

An alternative extension of the proportional hazards model to discrete time
starts from the survival function, which in a proportional hazards framework
can be written as

S(tj |xi) = S0(tj)
exp{x′

i
β},

where S(tj |xi) is the probability that an individual with covariate values xi

will survive up to time point tj , and S0(tj) is the baseline survival function.
Recalling Equation 7.18 for the discrete survival function, we obtain a similar
relationship for the complement of the hazard function, namely

1− λ(tj |xi) = [1− λ0(tj)]
exp{x′

i
β},

so that solving for the hazard for individual i at time point tj we obtain the
model

λ(tj |xi) = 1− [1− λ0(tj)]
exp{x′

i
β}.
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The transformation that makes the right hand side a linear function of the
parameters is the complementary log-log. Applying this transformation we
obtain the model

log(− log(1− λ(tj |xi))) = αj + x
′
iβ, (7.20)

where αj = log(− log(1− λ0(tj))) is the complementary log-log transforma-
tion of the baseline hazard.

This model can be fitted to discrete survival data by generating pseudo-
observations as before and fitting a generalized linear model with binomial
error structure and complementary log-log link. In other words, the equiv-
alence between the binomial likelihood and the discrete-time survival likeli-
hood under non-informative censoring holds both for the logit and comple-
mentary log-log links.

It is interesting to note that this model can be obtained by grouping time
in the continuous-time proportional-hazards model. To see this point let us
assume that time is continuous and we are really interested in the standard
proportional hazards model

λ(t|x) = λ0(t) exp{x
′
iβ}.

Suppose, however, that time is grouped into intervals with boundaries 0 =
τ0 < τ1 < . . . < τJ = ∞, and that all we observe is whether an individual
survives or dies in an interval. Note that this construction imposes some
constraints on censoring. If an individual is censored at some point inside
an interval, we do not know whether it would have survived the interval or
not. Therefore we must censor it at the end of the previous interval, which
is the last point for which we have complete information. Unlike the piece-
wise exponential set-up, here we can not use information about exposure to
part of an interval. On the other hand, it turns out that we do not need to
assume that the hazard is constant in each interval.

Let λij denote the discrete hazard or conditional probability that in-
dividual i will die in interval j given that it was alive at the start of the
interval. This probability is the same as the complement of the conditional
probability of surviving the interval given that one was alive at the start,
and can be written as

λij = 1− Pr{Ti > τj |Ti > τj−1}

= 1− exp{−

∫ τj

τj−1

λ(t|xi)dt}

= 1− exp{−

∫ τj

τj−1

λ0(t)dt}
exp{x′

i
β}
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= 1− (1− λj)
exp{x′

i
β},

where λj is the baseline probability of dying in interval j given survival to
the start of the interval. The second line follows from Equation 7.4 relating
the survival function to the integrated hazard, the third line follows from
the proportional hazards assumption, and the last line defines λj .

As noted by Kalbfleish and Prentice (1980, p. 37), “this discrete model
is then the uniquely appropriate one for grouped data from the continuous
proportional hazards model”. In practice, however, the model with a logit
link is used much more often than the model with a c-log-log link, probably
because logistic regression is better known that generalized linear models
with c-log-log links, and because software for the former is more widely
available than for the latter. In fact, the logit model is often used in cases
where the piece-wise exponential model would be more appropriate, probably
because logistic regression is better known than Poisson regression.

In closing, it may be useful to provide some suggestions regarding the
choice of approach to survival analysis using generalized linear models:

• If time is truly discrete, then one should probably use the discrete
model with a logit link, which has a direct interpretation in terms of
conditional odds, and is easily implemented using standard software
for logistic regression.

• If time is continuous but one only observes it in grouped form, then
the complementary log-log link would seem more appropriate. In par-
ticular, results based on the c-log-log link should be more robust to the
choice of categories than results based on the logit link. However, one
cannot take into account partial exposure in a discrete time context,
no matter which link is used.

• If time is continuous and one is willing to assume that the hazard
is constant in each interval, then the piecewise exponential approach
based on the Poisson likelihood is preferable. This approach is reason-
ably robust to the choice of categories and is unique in allowing the
use of information from cases that have partial exposure.

Finally, if time is truly continuous and one wishes to estimate the effects of
the covariates without making any assumptions about the baseline hazard,
then Cox’s (1972) partial likelihood is a very attractive approach.



Appendix A

Review of Likelihood Theory

This is a brief summary of some of the key results we need from likelihood
theory.

A.1 Maximum Likelihood Estimation

Let Y1, . . . , Yn be n independent random variables (r.v.’s) with probability
density functions (pdf) fi(yi;θ) depending on a vector-valued parameter θ.

A.1.1 The Log-likelihood Function

The joint density of n independent observations y = (y1, . . . , yn)
′ is

f(y;θ) =
n∏

i=1

fi(yi;θ) = L(θ;y). (A.1)

This expression, viewed as a function of the unknown parameter θ given
the data y, is called the likelihood function.

Often we work with the natural logarithm of the likelihood function, the
so-called log-likelihood function:

log L(θ;y) =
n∑

i=1

log fi(yi;θ). (A.2)

A sensible way to estimate the parameter θ given the data y is to maxi-
mize the likelihood (or equivalently the log-likelihood) function, choosing the
parameter value that makes the data actually observed as likely as possible.
Formally, we define the maximum-likelihood estimator (mle) as the value θ̂

such that

G. Rodŕıguez. Revised November 2001
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log L(θ̂;y) ≥ log L(θ;y) for all θ. (A.3)

Example: The Log-Likelihood for the Geometric Distribution. Consider a
series of independent Bernoulli trials with common probability of success π.
The distribution of the number of failures Yi before the first success has pdf

Pr(Yi = yi) = (1− π)yiπ. (A.4)

for yi = 0, 1, . . .. Direct calculation shows that E(Yi) = (1− π)/π.
The log-likelihood function based on n observations y can be written as

log L(π;y) =
n∑

i=1

{yi log(1− π) + log π} (A.5)

= n(ȳ log(1− π) + log π), (A.6)

where ȳ =
∑

yi/n is the sample mean. The fact that the log-likelihood
depends on the observations only through the sample mean shows that ȳ is
a sufficient statistic for the unknown probability π.
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Figure A.1: The Geometric Log-Likelihood for n = 20 and ȳ = 3

Figure A.1 shows the log-likelihood function for a sample of n = 20
observations from a geometric distribution when the observed sample mean
is ȳ = 3.✷
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A.1.2 The Score Vector

The first derivative of the log-likelihood function is called Fisher’s score

function, and is denoted by

u(θ) =
∂ log L(θ;y)

∂θ
. (A.7)

Note that the score is a vector of first partial derivatives, one for each element
of θ.

If the log-likelihood is concave, one can find the maximum likelihood
estimator by setting the score to zero, i.e. by solving the system of equations:

u(θ̂) = 0. (A.8)

Example: The Score Function for the Geometric Distribution. The score
function for n observations from a geometric distribution is

u(π) =
d log L

dπ
= n(

1

π
−

ȳ

1− π
). (A.9)

Setting this equation to zero and solving for π leads to the maximum likeli-
hood estimator

π̂ =
1

1 + ȳ
. (A.10)

Note that the m.l.e. of the probability of success is the reciprocal of the
number of trials. This result is intuitively reasonable: the longer it takes to
get a success, the lower our estimate of the probability of success would be.

Suppose now that in a sample of n = 20 observations we have obtained
a sample mean of ȳ = 3. The m.l.e. of the probability of success would be
π̂ = 1/(1 + 3) = 0.25, and it should be clear from Figure A.1 that this value
maximizes the log-likelihood.

A.1.3 The Information Matrix

The score is a random vector with some interesting statistical properties. In
particular, the score evaluated at the true parameter value θ has mean zero

E[u(θ)] = 0

and variance-covariance matrix given by the information matrix:

var[u(θ)] = E[u(θ)u′(θ)] = I(θ). (A.11)
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Under mild regularity conditions, the information matrix can also be
obtained as minus the expected value of the second derivatives of the log-
likelihood:

I(θ) = −E[
∂2 log L(θ)

∂θ∂θ′
]. (A.12)

The matrix of negative observed second derivatives is sometimes called
the observed information matrix.

Note that the second derivative indicates the extent to which the log-
likelihood function is peaked rather than flat. This makes the interpretation
in terms of information intuitively reasonable.

Example: Information for the Geometric Distribution. Differentiating the
score we find the observed information to be

−
d2 log L

dπ2
= −

du

dπ
= n(

1

π2
+

ȳ

(1− π)2
). (A.13)

To find the expected information we use the fact that the expected value of
the sample mean ȳ is the population mean (1− π)/π, to obtain (after some
simplification)

I(π) =
n

π2(1− π)
. (A.14)

Note that the information increases with the sample size n and varies with
π, increasing as π moves away from 2

3
towards 0 or 1.

In a sample of size n = 20, if the true value of the parameter was π = 0.15
the expected information would be I(0.15) = 1045.8. If the sample mean
turned out to be ȳ = 3, the observed information would be 971.9. Of course,
we don’t know the true value of π. Substituting the mle π̂ = 0.25, we
estimate the expected and observed information as 426.7. ✷

A.1.4 Newton-Raphson and Fisher Scoring

Calculation of the mle often requires iterative procedures. Consider expand-
ing the score function evaluated at the mle θ̂ around a trial value θ0 using
a first order Taylor series, so that

u(θ̂) ≈ u(θ0) +
∂u(θ)

∂θ
(θ̂ − θ0). (A.15)

LetH denote the Hessian or matrix of second derivatives of the log-likelihood
function

H(θ) =
∂2 log L

∂θ∂θ′
=

∂u(θ)

∂θ
. (A.16)
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Setting the left-hand-size of Equation A.15 to zero and solving for θ̂ gives
the first-order approximation

θ̂ = θ0 −H−1(θ0)u(θ0). (A.17)

This result provides the basis for an iterative approach for computing the
mle known as the Newton-Raphson technique. Given a trial value, we use
Equation A.17 to obtain an improved estimate and repeat the process until
differences between successive estimates are sufficiently close to zero. (Or
until the elements of the vector of first derivatives are sufficiently close to
zero.) This procedure tends to converge quickly if the log-likelihood is well-
behaved (close to quadratic) in a neighborhood of the maximum and if the
starting value is reasonably close to the mle.

An alternative procedure first suggested by Fisher is to replace minus
the Hessian by its expected value, the information matrix. The resulting
procedure takes as our improved estimate

θ̂ = θ0 + I−1(θ0)u(θ0), (A.18)

and is known as Fisher Scoring.

Example: Fisher Scoring in the Geometric Distribution. In this case setting
the score to zero leads to an explicit solution for the mle and no iteration is
needed. It is instructive, however, to try the procedure anyway. Using the
results we have obtained for the score and information, the Fisher scoring
procedure leads to the updating formula

π̂ = π0 + (1− π0 − π0ȳ)π0. (A.19)

If the sample mean is ȳ = 3 and we start from π0 = 0.1, say, the procedure
converges to the mle π̂ = 0.25 in four iterations. ✷

A.2 Tests of Hypotheses

We consider three different types of tests of hypotheses.

A.2.1 Wald Tests

Under certain regularity conditions, the maximum likelihood estimator θ̂

has approximately in large samples a (multivariate) normal distribution with
mean equal to the true parameter value and variance-covariance matrix given
by the inverse of the information matrix, so that
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θ̂ ∼ Np(θ, I
−1(θ)). (A.20)

The regularity conditions include the following: the true parameter value
θ must be interior to the parameter space, the log-likelihood function must
be thrice differentiable, and the third derivatives must be bounded.

This result provides a basis for constructing tests of hypotheses and con-
fidence regions. For example under the hypothesis

H0 : θ = θ0 (A.21)

for a fixed value θ0, the quadratic form

W = (θ̂ − θ0)
′var−1(θ̂)(θ̂ − θ0) (A.22)

has approximately in large samples a chi-squared distribution with p degrees
of freedom.

This result can be extended to arbitrary linear combinations of θ, includ-
ing sets of elements of θ. For example if we partition θ

′ = (θ′

1,θ
′

2), where θ2

has p2 elements,then we can test the hypothesis that the last p2 parameters
are zero

Ho : θ2 = 0,

by treating the quadratic form

W = θ̂2

′

var−1(θ̂2) θ̂2

as a chi-squared statistic with p2 degrees of freedom. When the subset has
only one element we usually take the square root of the Wald statistic and
treat the ratio

z =
θ̂j√

var(θ̂j)

as a z-statistic (or a t-ratio).

These results can be modified by replacing the variance-covariance matrix
of the mle with any consistent estimator. In particular, we often use the
inverse of the expected information matrix evaluated at the mle

v̂ar(θ̂) = I−1(θ̂).

Sometimes calculation of the expected information is difficult, and we
use the observed information instead.
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Example: Wald Test in the Geometric Distribution. Consider again our
sample of n = 20 observations from a geometric distribution with sample
mean ȳ = 3. The mle was π̂ = 0.25 and its variance, using the estimated
expected information, is 1/426.67 = 0.00234. Testing the hypothesis that
the true probability is π = 0.15 gives

χ2 = (0.25− 0.15)2/0.00234 = 4.27

with one degree of freedom. The associated p-value is 0.039, so we would
reject H0 at the 5% significance level. ✷

A.2.2 Score Tests

Under some regularity conditions the score itself has an asymptotic nor-
mal distribution with mean 0 and variance-covariance matrix equal to the
information matrix, so that

u(θ) ∼ Np(0, I(θ)). (A.23)

This result provides another basis for constructing tests of hypotheses and
confidence regions. For example under

H0 : θ = θ0

the quadratic form
Q = u(θ0)

′ I−1(θ0)u(θ0)

has approximately in large samples a chi-squared distribution with p degrees
of freedom.

The information matrix may be evaluated at the hypothesized value θ0

or at the mle θ̂. Under H0 both versions of the test are valid; in fact, they
are asymptotically equivalent. One advantage of using θ0 is that calculation
of the mle may be bypassed. In spite of their simplicity, score tests are rarely
used.

Example: Score Test in the Geometric Distribution. Continuing with our
example, let us calculate the score test of H0 : π = 0.15 when n = 20 and
ȳ = 3. The score evaluated at 0.15 is u(0.15) = −62.7, and the expected
information evaluated at 0.15 is I(0.15) = 1045.8, leading to

χ2 = 62.72/1045.8 = 3.76

with one degree of freedom. Since the 5% critical value is χ2
1,0.95 = 3.84 we

would accept H0 (just). ✷
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A.2.3 Likelihood Ratio Tests

The third type of test is based on a comparison of maximized likelihoods
for nested models. Suppose we are considering two models, ω1 and ω2, such
that ω1 ⊂ ω2. In words, ω1 is a subset of (or can be considered a special
case of) ω2. For example, one may obtain the simpler model ω1 by setting
some of the parameters in ω2 to zero, and we want to test the hypothesis
that those elements are indeed zero.

The basic idea is to compare the maximized likelihoods of the two models.
The maximized likelihood under the smaller model ω1 is

max
θ∈ω1

L(θ,y) = L(θ̂ω1
,y), (A.24)

where θ̂ω1
denotes the mle of θ under model ω1.

The maximized likelihood under the larger model ω2 has the same form

max
θ∈ω2

L(θ,y) = L(θ̂ω2
,y), (A.25)

where θ̂ω2
denotes the mle of θ under model ω2.

The ratio of these two quantities,

λ =
L(θ̂ω1

,y)

L(θ̂ω2
,y)

, (A.26)

is bound to be between 0 (likelihoods are non-negative) and 1 (the likelihood
of the smaller model can’t exceed that of the larger model because it is nested
on it). Values close to 0 indicate that the smaller model is not acceptable,
compared to the larger model, because it would make the observed data very
unlikely. Values close to 1 indicate that the smaller model is almost as good
as the large model, making the data just as likely.

Under certain regularity conditions, minus twice the log of the likelihood
ratio has approximately in large samples a chi-square distribution with de-
grees of freedom equal to the difference in the number of parameters between
the two models. Thus,

−2 log λ = 2 log L(θ̂ω2
, y)− 2 log L(θ̂ω1

, y) → χ2

ν , (A.27)

where the degrees of freedom are ν = dim(ω2) − dim(ω1), the number of
parameters in the larger model ω2 minus the number of parameters in the
smaller model ω1.
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Note that calculation of a likelihood ratio test requires fitting two mod-
els (ω1 and ω2), compared to only one model for the Wald test (ω2) and
sometimes no model at all for the score test.

Example: Likelihood Ratio Test in the Geometric Distribution. Consider
testing H0 : π = 0.15 with a sample of n = 20 observations from a geometric
distribution, and suppose the sample mean is ȳ = 3. The value of the like-
lihood under H0 is log L(0.15) = −47.69. Its unrestricted maximum value,
attained at the mle, is log L(0.25) = −44.98. Minus twice the difference
between these values is

χ2 = 2(47.69− 44.99) = 5.4

with one degree of freedom. This value is significant at the 5% level and we
would reject H0. Note that in our example the Wald, score and likelihood
ratio tests give similar, but not identical, results. ✷

The three tests discussed in this section are asymptotically equivalent,
and are therefore expected to give similar results in large samples. Their
small-sample properties are not known, but some simulation studies suggest
that the likelihood ratio test may be better that its competitors in small
samples.



Appendix B

Generalized Linear Model

Theory

We describe the generalized linear model as formulated by Nelder and Wed-
derburn (1972), and discuss estimation of the parameters and tests of hy-
potheses.

B.1 The Model

Let y1, . . . , yn denote n independent observations on a response. We treat
yi as a realization of a random variable Yi. In the general linear model we
assume that Yi has a normal distribution with mean µi and variance σ2

Yi ∼ N(µi, σ
2),

and we further assume that the expected value µi is a linear function of p
predictors that take values x′

i = (xi1, . . . , xip) for the i-th case, so that

µi = x′

iβ,

where β is a vector of unknown parameters.

We will generalize this in two steps, dealing with the stochastic and
systematic components of the model.

G. Rodŕıguez. Revised November 2001
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B.1.1 The Exponential Family

We will assume that the observations come from a distribution in the expo-
nential family with probability density function

f(yi) = exp{yiθi − b(θi)

ai(φ)
+ c(yi, φ)}. (B.1)

Here θi and φ are parameters and ai(φ), b(θi) and c(yi, φ) are known func-
tions. In all models considered in these notes the function ai(φ) has the
form

ai(φ) = φ/pi,

where pi is a known prior weight, usually 1.
The parameters θi and φ are essentially location and scale parameters.

It can be shown that if Yi has a distribution in the exponential family then
it has mean and variance

E(Yi) = µi = b′(θi) (B.2)

var(Yi) = σ2

i = b′′(θi)ai(φ), (B.3)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi). When
ai(φ) = φ/pi the variance has the simpler form

var(Yi) = σ2

i = φb′′(θi)/pi.

The exponential family just defined includes as special cases the normal,
binomial, Poisson, exponential, gamma and inverse Gaussian distributions.

Example: The normal distribution has density

f(yi) =
1√
2πσ2

exp{−1

2

(yi − µi)
2

σ2
}.

Expanding the square in the exponent we get (yi − µi)
2 = y2i + µ2

i − 2yiµi,
so the coefficient of yi is µi/σ

2. This result identifies θi as µi and φ as σ2,
with ai(φ) = φ. Now write

f(yi) = exp{yiµi − 1

2
µ2

i

σ2
− y2i

2σ2
− 1

2
log(2πσ2)}.

This shows that b(θi) = 1

2
θ2i (recall that θi = µi). Let us check the mean

and variance:

E(Yi) = b′(θi) = θi = µi,

var(Yi) = b′′(θi)ai(φ) = σ2.
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Try to generalize this result to the case where Yi has a normal distribution
with mean µi and variance σ2/ni for known constants ni, as would be the
case if the Yi represented sample means.✷

Example: In Problem Set 1 you will show that the exponential distribution
with density

f(yi) = λi exp{−λiyi}

belongs to the exponential family.✷

In Sections B.4 and B.5 we verify that the binomial and Poisson distri-
butions also belong to this family.

B.1.2 The Link Function

The second element of the generalization is that instead of modeling the
mean, as before, we will introduce a one-to-one continuous differentiable
transformation g(µi) and focus on

ηi = g(µi). (B.4)

The function g(µi) will be called the link function. Examples of link func-
tions include the identity, log, reciprocal, logit and probit.

We further assume that the transformed mean follows a linear model, so
that

ηi = x′

iβ. (B.5)

The quantity ηi is called the linear predictor. Note that the model for ηi
is pleasantly simple. Since the link function is one-to-one we can invert it to
obtain

µi = g−1(x′

iβ).

The model for µi is usually more complicated than the model for ηi.

Note that we do not transform the response yi, but rather its expected
value µi. A model where log yi is linear on xi, for example, is not the same
as a generalized linear model where logµi is linear on xi.

Example: The standard linear model we have studied so far can be described
as a generalized linear model with normal errors and identity link, so that

ηi = µi.

It also happens that µi, and therefore ηi, is the same as θi, the parameter in
the exponential family density.✷
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When the link function makes the linear predictor ηi the same as the
canonical parameter θi, we say that we have a canonical link . The identity
is the canonical link for the normal distribution. In later sections we will see
that the logit is the canonical link for the binomial distribution and the log
is the canonical link for the Poisson distribution. This leads to some natural
pairings:

Error Link

Normal Identity
Binomial Logit
Poisson Log

However, other combinations are also possible. An advantage of canoni-
cal links is that a minimal sufficient statistic for β exists, i.e. all the informa-
tion about β is contained in a function of the data of the same dimensionality
as β.

B.2 Maximum Likelihood Estimation

An important practical feature of generalized linear models is that they can
all be fit to data using the same algorithm, a form of iteratively re-weighted

least squares. In this section we describe the algorithm.

Given a trial estimate of the parameters β̂, we calculate the estimated
linear predictor η̂i = x′

iβ̂ and use that to obtain the fitted values µ̂i =
g−1(η̂i). Using these quantities, we calculate the working dependent variable

zi = η̂i + (yi − µ̂i)
dηi
dµi

, (B.6)

where the rightmost term is the derivative of the link function evaluated at
the trial estimate.

Next we calculate the iterative weights

wi = pi/[b
′′(θi)(

dηi
dµi

)2], (B.7)

where b′′(θi) is the second derivative of b(θi) evaluated at the trial estimate
and we have assumed that ai(φ) has the usual form φ/pi. This weight is
inversely proportional to the variance of the working dependent variable zi
given the current estimates of the parameters, with proportionality factor φ.
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Finally, we obtain an improved estimate of β regressing the working
dependent variable zi on the predictors xi using the weights wi, i.e. we
calculate the weighted least-squares estimate

β̂ = (X′WX)−1X′Wz, (B.8)

where X is the model matrix, W is a diagonal matrix of weights with entries
wi given by (B.7) and z is a response vector with entries zi given by (B.6).

The procedure is repeated until successive estimates change by less than
a specified small amount. McCullagh and Nelder (1989) prove that this
algorithm is equivalent to Fisher scoring and leads to maximum likelihood
estimates. These authors consider the case of general ai(φ) and include φ in
their expression for the iterative weight. In other words, they use w∗

i = φwi,
where wi is the weight used here. The proportionality factor φ cancels out
when you calculate the weighted least-squares estimates using (B.8), so the
estimator is exactly the same. I prefer to show φ explicitly rather than
include it in W.

Example: For normal data with identity link ηi = µi, so the derivative is
dηi/dµi = 1 and the working dependent variable is yi itself. Since in addition
b′′(θi) = 1 and pi = 1, the weights are constant and no iteration is required.✷

In Sections B.4 and B.5 we derive the working dependent variable and the
iterative weights required for binomial data with link logit and for Poisson
data with link log. In both cases iteration will usually be necessary.

Starting values may be obtained by applying the link to the data, i.e.
we take µ̂i = yi and η̂i = g(µ̂i). Sometimes this requires a few adjustments,
for example to avoid taking the log of zero, and we will discuss these at the
appropriate time.

B.3 Tests of Hypotheses

We consider Wald tests and likelihood ratio tests, introducing the deviance

statistic.

B.3.1 Wald Tests

The Wald test follows immediately from the fact that the information matrix
for generalized linear models is given by

I(β) = X′WX/φ, (B.9)
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so the large sample distribution of the maximum likelihood estimator β̂ is
multivariate normal

β̂ ∼ Np(β, (X
′WX)−1φ). (B.10)

with mean β and variance-covariance matrix (X′WX)−1φ.
Tests for subsets of β are based on the corresponding marginal normal

distributions.

Example: In the case of normal errors with identity link we have W = I

(where I denotes the identity matrix), φ = σ2, and the exact distribution
of β̂ is multivariate normal with mean β and variance-covariance matrix
(X′X)−1σ2.

B.3.2 Likelihood Ratio Tests and The Deviance

We will show how the likelihood ratio criterion for comparing any two nested
models, say ω1 ⊂ ω2, can be constructed in terms of a statistic called the
deviance and an unknown scale parameter φ.

Consider first comparing a model of interest ω with a saturated model Ω
that provides a separate parameter for each observation.

Let µ̂i denote the fitted values under ω and let θ̂i denote the correspond-
ing estimates of the canonical parameters. Similarly, let µ̃O = yi and θ̃i
denote the corresponding estimates under Ω.

The likelihood ratio criterion to compare these two models in the expo-
nential family has the form

−2 log λ = 2
n
∑

i=1

yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

ai(φ)
.

Assume as usual that ai(φ) = φ/pi for known prior weights pi. Then we
can write the likelihood-ratio criterion as follows:

−2 log λ =
D(y, µ̂)

φ
. (B.11)

The numerator of this expression does not depend on unknown parameters
and is called the deviance:

D(y, µ̂) = 2
n
∑

i=1

pi[yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)]. (B.12)

The likelihood ratio criterion −2 logL is the deviance divided by the scale
parameter φ, and is called the scaled deviance.
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Example: Recall that for the normal distribution we had θi = µi, b(θi) =
1

2
θ2i ,

and ai(φ) = σ2, so the prior weights are pi = 1. Thus, the deviance is

D(y, µ̂) = 2
∑

{yi(yi − µ̂i)−
1

2
y2i +

1

2
µ̂i

2}

= 2
∑

{1
2
y2i − yiµ̂i

2 +
1

2
µ̂i

2}

=
∑

(yi − µ̂i)
2

our good old friend, the residual sum of squares.✷
Let us now return to the comparison of two nested models ω1, with p1

parameters, and ω2, with p2 parameters, such that ω1 ∈ ω2 and p2 > p1.
The log of the ratio of maximized likelihoods under the two models can

be written as a difference of deviances, since the maximized log-likelihood
under the saturated model cancels out. Thus, we have

−2 log λ =
D(ω1)−D(ω2)

φ
(B.13)

The scale parameter φ is either known or estimated using the larger model
ω2.

Large sample theory tells us that the asymptotic distribution of this
criterion under the usual regularity conditions is χ2

ν with ν = p2−p1 degrees
of freedom.

Example: In the linear model with normal errors we estimate the unknown
scale parameter φ using the residual sum of squares of the larger model, so
the criterion becomes

−2 log λ =
RSS(ω1)− RSS(ω2)

RSS(ω2)/(n− p2)
.

In large samples the approximate distribution of this criterion is χ2

ν with
ν = p2−p1 degrees of freedom. Under normality, however, we have an exact
result: dividing the criterion by p2 − p1 we obtain an F with p2 − p1 and
n − p2 degrees of freedom. Note that as n → ∞ the degrees of freedom in
the denominator approach ∞ and the F converges to (p2 − p1)χ

2, so the
asymptotic and exact criteria become equivalent.✷

In Sections B.4 and B.5 we will construct likelihood ratio tests for bi-
nomial and Poisson data. In those cases φ = 1 (unless one allows over-
dispersion and estimates φ, but that’s another story) and the deviance is
the same as the scaled deviance. All our tests will be based on asymptotic
χ2 statistics.
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B.4 Binomial Errors and Link Logit

We apply the theory of generalized linear models to the case of binary data,
and in particular to logistic regression models.

B.4.1 The Binomial Distribution

First we verify that the binomial distribution B(ni, πi) belongs to the expo-
nential family of Nelder and Wedderburn (1972). The binomial probability
distribution function (p.d.f.) is

fi(yi) =

(

ni

yi

)

πyi
i (1− πi)

ni−yi . (B.14)

Taking logs we find that

log fi(yi) = yi log(πi) + (ni − yi) log(1− πi) + log

(

ni

yi

)

.

Collecting terms on yi we can write

log fi(yi) = yi log(
πi

1− πi
) + ni log(1− πi) + log

(

ni

yi

)

.

This expression has the general exponential form

log fi(yi) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

with the following equivalences: Looking first at the coefficient of yi we note
that the canonical parameter is the logit of πi

θi = log(
πi

1− πi
). (B.15)

Solving for πi we see that

πi =
eθi

1 + eθi
, so 1− πi =

1

1 + eθi
.

If we rewrite the second term in the p.d.f. as a function of θi, so log(1−πi) =
− log(1 + eθi), we can identify the cumulant function b(θi) as

b(θi) = ni log(1 + eθi).
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The remaining term in the p.d.f. is a function of yi but not πi, leading to

c(yi, φ) = log

(

ni

yi

)

.

Note finally that we may set ai(φ) = φ and φ = 1.
Let us verify the mean and variance. Differentiating b(θi) with respect

to θi we find that

µi = b′(θi) = ni
eθi

1 + eθi
= niπi,

in agreement with what we knew from elementary statistics. Differentiating
again using the quotient rule, we find that

vi = ai(φ)b
′′(θi) = ni

eθi

(1 + eθi)2
= niπi(1− πi),

again in agreement with what we knew before.
In this development I have worked with the binomial count yi, which

takes values 0(1)ni. McCullagh and Nelder (1989) work with the propor-
tion pi = yi/ni, which takes values 0(1/ni)1. This explains the differences
between my results and their Table 2.1.

B.4.2 Fisher Scoring in Logistic Regression

Let us now find the working dependent variable and the iterative weight
used in the Fisher scoring algorithm for estimating the parameters in logistic
regression, where we model

ηi = logit(πi). (B.16)

It will be convenient to write the link function in terms of the mean µi, as:

ηi = log(
πi

1− πi
) = log(

µi

ni − µi
),

which can also be written as ηi = log(µi)− log(ni − µi).
Differentiating with respect to µi we find that

dηi
dµi

=
1

µi
+

1

ni − µi
=

ni

µi(ni − µi)
=

1

niπi(1− πi)
.

The working dependent variable, which in general is

zi = ηi + (yi − µi)
dηi
dµi

,
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turns out to be

zi = ηi +
yi − niπi

niπi(1− πi)
. (B.17)

The iterative weight turns out to be

wi = 1/

[

b′′(θi)(
dηi
dµi

)2
]

,

=
1

niπi(1− πi)
[niπi(1− πi)]

2,

and simplifies to

wi = niπi(1− πi). (B.18)

Note that the weight is inversely proportional to the variance of the
working dependent variable. The results here agree exactly with the results
in Chapter 4 of McCullagh and Nelder (1989).

Exercise: Obtain analogous results for Probit analysis, where one models

ηi = Φ−1(µi),

where Φ() is the standard normal cdf. Hint: To calculate the derivative of
the link function find dµi/dηi and take reciprocals.✷

B.4.3 The Binomial Deviance

Finally, let us figure out the binomial deviance. Let µ̂i denote the m.l.e. of
µi under the model of interest, and let µ̃i = yi denote the m.l.e. under the
saturated model. From first principles,

D = 2
∑

[yi log(
yi
ni

) + (ni − yi) log(
ni − yi

ni
)

−yi log(
µ̂i

ni
)− (ni − yi) log(

ni − µ̂i

ni
)].

Note that all terms involving log(ni) cancel out. Collecting terms on yi and
on ni − yi we find that

D = 2
∑

[yi log(
yi
µ̂i

) + (ni − yi) log(
ni − yi
ni − µi

)]. (B.19)

Alternatively, you may obtain this result from the general form of the
deviance given in Section B.3.
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Note that the binomial deviance has the form

D = 2
∑

oi log(
oi
ei
),

where oi denotes observed, ei denotes expected (under the model of interest)
and the sum is over both “successes” and “failures” for each i (i.e. we have
a contribution from yi and one from ni − yi).

For grouped data the deviance has an asymptotic chi-squared distribu-
tion as ni → ∞ for all i, and can be used as a goodness of fit test.

More generally, the difference in deviances between nested models (i.e.
the log of the likelihood ratio test criterion) has an asymptotic chi-squared
distribution as the number of groups k → ∞ or the size of each group
ni → ∞, provided the number of parameters stays fixed.

As a general rule of thumb due to Cochrane (1950), the asymptotic chi-
squared distribution provides a reasonable approximation when all expected
frequencies (both µ̂i and ni − µ̂i) under the larger model exceed one, and at
least 80% exceed five.

B.5 Poisson Errors and Link Log

Let us now apply the general theory to the Poisson case, with emphasis on
the log link function.

B.5.1 The Poisson Distribution

A Poisson random variable has probability distribution function

fi(yi) =
e−µiµyi

i

yi!
(B.20)

for yi = 0, 1, 2, . . .. The moments are

E(Yi) = var(Yi) = µi.

Let us verify that this distribution belongs to the exponential family as
defined by Nelder and Wedderburn (1972). Taking logs we find

log fi(yi) = yi log(µi)− µi − log(yi!).

Looking at the coefficient of yi we see immediately that the canonical
parameter is

θi = log(µi), (B.21)
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and therefore that the canonical link is the log. Solving for µi we obtain the
inverse link

µi = eθi ,

and we see that we can write the second term in the p.d.f. as

b(θi) = eθi .

The last remaining term is a function of yi only, so we identify

c(yi, φ) = − log(yi!).

Finally, note that we can take ai(φ) = φ and φ = 1, just as we did in the
binomial case.

Let us verify the mean and variance. Differentiating the cumulant func-
tion b(θi) we have

µi = b′(θi) = eθi = µi,

and differentiating again we have

vi = ai(φ)b
′′(θi) = eθi = µi.

Note that the mean equals the variance.

B.5.2 Fisher Scoring in Log-linear Models

We now consider the Fisher scoring algorithm for Poisson regression models
with canonical link, where we model

ηi = log(µi). (B.22)

The derivative of the link is easily seen to be

dηi
dµi

=
1

µi
.

Thus, the working dependent variable has the form

zi = ηi +
yi − µi

µi
. (B.23)

The iterative weight is

wi = 1/

[

b′′(θi)(
dηi
dµi

)2
]

= 1/

[

µi
1

µ2

i

]

,
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and simplifies to

wi = µi. (B.24)

Note again that the weight is inversely proportional to the variance of
the working dependent variable.

B.5.3 The Poisson Deviance

Let µ̂i denote the m.l.e. of µi under the model of interest and let µ̃i =
yi denote the m.l.e. under the saturated model. From first principles, the
deviance is

D = 2
∑

[yi log(yi)− yi − log(yi!)

−yi log(µ̂i) + µ̂i + log(yi!)].

Note that the terms on yi! cancel out. Collecting terms on yi we have

D = 2
∑

[yi log(
yi
µ̂i

)− (yi − µ̂i)]. (B.25)

The similarity of the Poisson and Binomial deviances should not go un-
noticed. Note that the first term in the Poisson deviance has the form

D = 2
∑

oi log(
oi
ei
),

which is identical to the Binomial deviance. The second term is usually zero.
To see this point, note that for a canonical link the score is

∂ logL

∂β
= X′(y− µ),

and setting this to zero leads to the estimating equations

X′y = X′µ̂.

In words, maximum likelihood estimation for Poisson log-linear models—and
more generally for any generalized linear model with canonical link—requires
equating certain functions of the m.l.e.’s (namely X′µ̂) to the same functions
of the data (namely X′y). If the model has a constant, one column of X
will consist of ones and therefore one of the estimating equations will be

∑

yi =
∑

µ̂i or
∑

(yi − µ̂i) = 0,
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so the last term in the Poisson deviance is zero. This result is the basis
of an alternative algorithm for computing the m.l.e.’s known as “iterative
proportional fitting”, see Bishop et al. (1975) for a description.

The Poisson deviance has an asymptotic chi-squared distribution as n →

∞ with the number of parameters p remaining fixed, and can be used as a
goodness of fit test. Differences between Poisson deviances for nested models
(i.e. the log of the likelihood ratio test criterion) have asymptotic chi-squared
distributions under the usual regularity conditions.



Appendix C

Modelling Over-Dispersed

Count Data

C.1 Extra-Poisson Variation

A key assumption of the Poisson regression model is that the variance equals
the mean

var(Y ) = E(Y ) = µ.

However, count data often exhibit over-dispersion, with a variance larger
than the mean. We now consider models that accommodate the excess
residual variation.

An interesting feature of the IRSL algorithm used in generalized linear
models is that it depends only on the mean and variance of the observations.
Nelder and Wedderburn proposed specifying just the mean and variance and
then applying the algorithm. The resulting estimates are called maximum
quasi-likelihood estimates (MQLE), and have been shown to share many
of the nice properties of maximum likelihood estimates (MLE) under fairly
general conditions.

In the present context, suppose we were to assume that the variance is
proportional to the mean, say

var(Y ) = φE(Y ) = φµ.

If φ = 1 then the variance equals the mean. If φ > 1, we have over-dispersion.
It turns out that applying the IRLS algorithm with this variance struc-

ture leads to exactly the same estimates as Poisson maximum likelihood.
This implies that Poisson estimates are consistent when the variance is pro-
portional (not just equal) to the mean.

1
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However, the variance of the estimator in the more general case is

var(β̂) = φ(X ′WX)−1.

Under the Poisson assumption φ = 1. Thus, Poisson standard errors tend
to be conservative in the presence of over-dispersion.

If we knew φ we could, of course, correct the standard errors. Several
authors have proposed estimating φ using Pearson’s chi-squared statistic
divided by its degrees of freedom:

φ̂ =
χ2
p

n− p
.

A word of caution in using this approach is in order. Normally one would
consider a large χ2

p as evidence of lack of fit. What we are doing here,
put rather crudely, is relabelling lack of fit as extra-Poisson variation, and
inflating our standard errors accordingly.

This suggests that one should be reasonably sure that the lack of fit is
not due to poor specification of the systematic part of the model.

C.2 Negative Binomial Regression

An alternative approach to modelling over-dispersion is to start from a stan-
dard Poisson regression model and add a random effect θi to represent un-
observed heterogeneity.

Suppose then, that the conditional distribution of the outcome Yi given
θi is indeed Poisson with mean (and variance) θiµi,

Yi ∼ P (θiµi).

The idea is that if we observed θi the data would be Poisson. Unfortunately,
we do not observe θi. Instead, we assume that it has a given distribution.
It turns out to be convenient to assume that θi has a gamma distribution
with parameters α = β = 1/σ2, where σ2 represents the variance of the
unobservable.

With this information we can compute the unconditional distribution of
the outcome, which happens to be a negative binomial distribution, with
density

Pr{Y = y} =
Γ(α+ y)

y!Γ(α)

βαµy

(µ+ β)α+y
,
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where α = β = 1/σ2.
The negative binomial distribution is best known as the distribution of

the number of failures before k successes in a series of Bernoulli trials with
common probability of success π. The resulting density can be obtained
from the expression above setting α = k and π = β/(µ+ β).

The negative binomial distribution with α = β = 1/σ2 has mean

E(Y ) = µ

and variance

var(Y ) = µ(1 + σ2µ)

If σ2 is zero we obtain the Poisson variance. If σ2 > 0 then the variance
is larger than the mean. Thus, the negative binomial distribution is over-
dispersed relative to the Poisson.

Interestingly, one can derive the same mean and variance without assum-
ing that the unobservable has a gamma distribution. One can then proceed
to estimate the parameters affecting µ for a fixed value of σ2 using maxi-
mum quasi-likelihood. This strategy has been implemented in Stata’s glm

procedure. This doesn’t solve the problem of estimating σ2 itself. Breslow
has proposed a strategy based on Pearson’s chi-square, but we won’t pursue
this further.

The alternative is to use maximum likelihood, which requires assuming
a gamma distribution for the unobservable, so that the outcome has a nega-
tive binomial distribution. This strategy, which makes stronger assumptions
but yields estimates of both σ2 and the parameters affecting µ, has been
implemented in Stata’s nbreg procedure.

Because the Poisson model is a special case of the negative binomial,
namely the case with σ2 = 0, one can use a standard likelihood ratio test to
compare them. There is, however, one small difficulty. Because the Poisson
model is in a boundary of the parameter space, the test statistic does not
have the standard χ2 distribution with one d.f. Some research suggests that
the distribution is better approximated as a 50:50 mixture of zero and a
chi-squared with one d.f., and this is what Stata does.

We note in closing that there are alternative formulations of the negative
binomial model that lead to slightly different models, including one that
leads to the over-dispersed Poisson of the previous section. The formulation
given here, however, is the one in common use.
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1 Introduction

The most important assumption we have made in this course is that the
observations are independent. Situations where this assumption is not ap-
propriate include

• Longitudinal data, where we have repeated observations on each indi-
vidual, for example on multiple waves of a survey

• Clustered data, where the observations are grouped, for example data
on mothers and their children

• Multilevel data, where we have multiple levels of grouping, for example
students in classrooms in schools.

This is a large subject worthy of a separate course. In these notes I will
review briefly the main approaches to the analysis of this type of data,
namely fixed and random-effects models. I will deal with linear models for
continuous data in Section 2 and logit models for binary data in section 3.
I will describe the models in terms of clustered data, using Yij to represent
the outcome for the j-th member of the i-th group. The same procedures,
however, apply to longitudinal data, so Yij could be the response for the i-th
individual on the j-th wave. There is no requirement that all groups have
the same number of members or, in the longitudinal case, that all individuals
have the same number of measurements.

The Stata section of the course website has relevant logs under ‘panel
data models’, including an analysis of data on verbal IQ and language scores
for 2287 children in 131 schools in the Netherlands, and a study of the rela-
tionship between low birth weight and participation in the Aid to Families
with Dependent Children (AFDC) welfare program using state-level data
for 1987 and 1990. For binary data we use an example in the Stata manual.
A short do file is included at the end of this document.
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2 Continuous Data

Suppose that Yij is a continuous outcome for the j-th member of group i.
We are willing to assume independence across groups, but not within each
group. The basic idea is that there may be unobserved group characteristics
that affect the outcomes of the individuals in each group. We consider two
ways to model these characteristics.

2.1 Fixed Effects

The first model we will consider introduces a separate parameter for each
group, so the observations satisfy

Yij = αi + x′ijβ + eij (1)

Here αi is a group-specific parameter representing the effect of unob-
served group characteristics, the β are regression coefficients representing
the effects of the observed covariates, and the eij are independent error
terms, say eij ∼ N(0, σ2

e).
You can think of the αi as equivalent to introducing a separate dummy

variable for each group. It is precisely because we have controlled for (all)
group characteristics that we are willing to assume independence of the ob-
servations. Unfortunately this implies that we cannot include group-level
covariates among the predictors, as they would be collinear with the dum-
mies. Effectively this means that we can control for group characteristics,
but we cannot estimate their effects.

This model typically has a large number of parameters, and this causes
practical and theoretical problems.

In terms of theory the usual OLS estimator of αi is consistent as the num-
ber of individuals approaches infinity in every group, but is not consistent
if the number of groups approaches infinity but the number of individuals
per group does not, which is the usual case of interest. Fortunately the OLS
estimator of β is consistent in both cases.

On the practical side, introducing a dummy variable for each group may
not be feasible when the number of groups is very large. Fortunately it is
possible to solve for the OLS estimator of β without having to estimate the
αi’s explicitly through a process known as absorption.

An alternative is to remove the αi from the model by differencing or
conditioning. This is very easy to do if you have two observations per group,
as would be the case for longitudinal data from a two-wave survey. Suppose

2



Yi1 and Yi2 follow model (1). The difference would then follow the model

Yi2 − Yi1 = (xi2 − xi1)
′β + (ei2 − ei1)

which is a linear model with exactly the same regression coefficients as (1).
Moreover, because the eij are independent, so are their differences. This
means that we can obtain unbiased estimates of β by simply differencing
the Y ’s and the x’s and using ordinary OLS on the differences.

The same idea can be extended to more than two observations per group,
and it involves working with a transformation of the data reflecting essen-
tially differences with respect to the group means. The same estimator can
also be obtained by working with the conditional distribution of the obser-
vations given the group totals Yi =

∑
j Yij .

Looking at the model in terms of differences shows clearly how it can con-
trol for unobserved group characteristics. Suppose the ‘true’ model includes
a group-level predictor zi with coefficient γ, so

Yij = z′iγ + x′ijβ + eij

When you difference the y’s the term z′iγ drops out. Therefore you can
estimate effects of the x’s controlling for z even though you haven’t observed
z! Unfortunately, this also means that in a fixed-effects model we can’t
estimate γ even if we have observed zi, as noted earlier.

2.2 Random Effects

An alternative approach writes a model that looks almost identical to the
previous one:

Yij = ai + x′ijβ + eij (2)

Here ai is a random variable representing a group-specific effect, β is a
vector of regression coefficients and the eij are independent error terms.

You can think of the ai and eij as two error terms, one at the level of the
group and the other at the level of the individual. As usual with error terms
we assign them distributions; specifically we assume that ai ∼ N(0, σ2

a) and
eij ∼ N(0, σ2

e). We also assume that eij is independent of ai.
Another way to write the model is by combining the two error terms in

one:
Yij = x′ijβ + uij

where uij = ai + eij . This looks like an ordinary regression model, but
the errors are not independent. More precisely, they are independent across

3



groups but not within a subgroup because the uij ’s for members of group i
share ai.

We can write the correlation between any two observations in the same
group as

ρ = cor(Yij , Yij′) =
σ2

a

σ2
a + σ2

e

.

a result that follows directly from the usual definition of correlation; the
covariance between Yij and Yij′ is σ

2

a and the variance of either is σ2

a + σ2

e .
This coefficient is often called the intra-class correlation coefficient.

Because the variance of the observations has been partitioned into two
components these models are also called variance components models. The
term σ2

a represents variation across groups (usually called between groups,
even if we have more than two) and the term σ2

e represents variation within

groups.
If we were to use OLS estimation in the model of equation (2) we would

obtain consistent estimates for the regression coefficients β, but the esti-
mates would not be fully efficient because they do not take into account the
covariance structure, and the standard errors would be biased unless they
are corrected for clustering.

Fortunately maximum likelihood estimation is pretty straightforward,
and yields fully-efficient estimates. We also obtain as by-products estimates
of the error variances σ2

a and σ2

e and the intra-class correlation ρ. (Stata
also computes these quantities for fixed-effect models, where they are best
viewed as components of the total variance.)

2.3 Fixed Versus Random Effects

There is a lot of confusion regarding fixed and random-effects models. Here
are five considerations that may help you decide which approach may be
more appropriate for a given problem.

First let us note the obvious, in one case the αi are fixed but unknown
parameters to be estimated (or differenced out of the model), in the other
the ai are random variables and we estimate their distribution, which has
mean zero and variance σ2

a. This distinction leads to one traditional piece
of advice: use random effects if you view the groups as a sample from
a population, and fixed effects if you are interested in inferences for the
specific groups at hand. I find this advice to be the least useful of all. (It is
particularly baffling to Bayesians, who view all parameters as random.)

Second, note that the ai are assumed to be independent across groups,
which is another way of saying that they have to be uncorrelated with ob-
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served group covariates, as all well-behaved error terms are supposed to
do. In contrast, the αi can be seen to control for all unobserved group
characteristics that are shared by group members, whether or not they are
correlated with the observed covariates. This is a very useful distinction.
Econometricians often view fixed effects as random effects which happen to
be correlated with the observed covariates.

Third, note that the fixed-effects estimator cannot estimate the effects
of group-level variables, or more generally variables that are constant across
group members. Otherwise you might think that all we need is the fixed-
effects estimator, which is valid under more general conditions. (Incidentally
there is a Hausman especification test for random effects which compares
the two estimators of the effects for individual-level variables. Just bear in
mind that when this test rejects the random specification it doesn’t mean
that the fixed specification is valid, just that the random is not.)

Fourth, fixed-effect models deal with just two levels, whereas random-
effects models can be generalized easily to more than two levels. This can
become an important consideration if you have three-level data, for example
children, families and communities, and want to study the dependence at
all levels.

Fifth, in a random-effects framework we can let any of the coefficients
vary from group to group, not just the constant, moving from so-called
random-intercept models to more interesting random-slope models. You can
think of a random slope as interacting an individual covariate with unob-
served group characteristics. Of particular interest are treatment effects that
may vary from group to group. (Or from individual to individual if you have
repeated measurements on each person.)

2.4 Between and Within Groups

There’s one more way to look at these models. Let us start from the random-
effects model and consider the group means, which follow the model

Ȳi = ai + x̄′iβ + ēi (3)

where we have also averaged the covariates and the error terms for all mem-
bers of each group. The key fact is that the means follow a linear model
with the same regression coefficients β as the individual data.

If the error terms are independent across groups then we can obtain a
consistent estimator of β using OLS, or WLS if the number of observations
varies by group. (If the ai are correlated with the x’s, however, we have the
usual endogeneity problem.) We call this the between-groups estimator.
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We can also look at deviations from the group means, which follow the
model

Yij − Ȳi = (xij − x̄i)
′β + (eij − ēi)

The interesting thing here is that the deviations from the mean also follow
a linear model with the same regression coefficients β. The errors are not
independent across subjects, but the dependence arises just from subtracting
the mean and is easily corrected. We call the resulting estimator the within-
groups estimator.

It can be shown that the fixed-effects estimator is the same as the within-
groups estimator, and that the random-effects estimator is an average or
compromise between the between and within estimators, with the precise
weight a function of the intra-class correlation.

In the context of multilevel models it is possible to reconcile the fixed
and random-effects approaches by considering the group means as additional
predictors. Specifically, consider the model

Yij = ai + x̄′iβB + (xij − x̄i)
′βW + eij

where the group mean and the individual’s deviation from its group mean
appear as predictors. The estimate of βB, representing the effect of the
group average on individual outcomes, coincides with the between-group
estimator. The estimate of βW , representing the effect of an individual’s
deviation from the group average, coincides with the within-groups or fixed-
effects estimator. The random-effects estimator is appropriate only if both
coefficients are equal, in which case it is appropriate to average the two
estimates.

This more general model can be fitted by OLS to obtain consistent if
not fully efficient parameters estimates, but to obtain correct standard er-
rors you would need to correct for clustering at the group level. A much
better approach is to fit the model as a random-effects model, in which case
maximum likelihood will yield fully-efficient estimates and correct standard
errors.

2.5 Examples

We consider two examples, one where the fixed and random-effect approaches
lead to similar estimates and one where they differ substantially.

Example 1. Snijders and Bosker (1999) have data for 2287 eighth-
grade children in 131 schools in the Netherlands. We are interested in the
relationship between verbal IQ and the score in a language test. The table
below compares OLS, fixed-effects and random-effects estimators.
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-----------------------------------------------------

Variable | ols re fe

-------------+---------------------------------------

#1 |

iq_verb | 2.6538956 2.488094 2.4147722

_cons | 9.5284841 11.165109 12.358285

-------------+---------------------------------------

sigma_u |

_cons | 3.0817186

-------------+---------------------------------------

sigma_e |

_cons | 6.4982439

-----------------------------------------------------

The differences among the three approaches in this particular example
are modest. The random-effects model estimates the correlation between the
language scores of children in the same school as 0.18. This is equivalent to
saying that 18% of the variance in language scores is across schools, and of
course 82% is among students in the same school.

The Stata logs also show the regression based on school means, with a
coefficient of 3.90, and separate regressions for each school, indicating that
the relationship between verbal IQ and language scores varies by school.

Example 2. Wooldridge (2002) has an interesting dataset with the
percentage of births classified as low birth weight and the percentage of the
population in the AFDC welfare program in each of the 50 states in 1987
and 1990.

We consider models predicting low birth weight from AFDC participa-
tion and a dummy for 1990. For simplicity we ignore other controls such as
physicians per capita, beds per capita, per capita income, and population
(all logged), which turn out not to be needed in the fixed-effects specifica-
tion. Here are the results:

-----------------------------------------------------

Variable | ols re fe

-------------+---------------------------------------

#1 |

d90 | .03326679 .14854716 .21247362

afdcprc | .26012832 -.01566323 -.16859799

_cons | 5.6618251 6.6946585 7.2673958

-------------+---------------------------------------
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sigma_u |

_cons | 1.1478165

-------------+---------------------------------------

sigma_e |

_cons | .19534447

-----------------------------------------------------

The OLS estimate suggests that AFDC has a pernicious effect on low
birth weight: a higher percentage of the population in AFDC is associated
with increased prevalence of low birth weight. The random-effects estimator
shows practically no association between AFDC participation and low birth
weight. The intra- state correlation is 0.972, indicating that 97% of the
variation in low birth weight is across states and only 3% is within states over
time. Focusing on intra-state variation, the fixed-effects estimator shows
that an increase in the percent of the population in AFDC is associated
with a reduction in the percent of low birth-weight births, a much more
reasonable result.

My interpretation of these results is that there are unobserved state char-
acteristics (such as poverty) that increase both AFDC participation and the
prevalence of low birth weight, inducing a (spurious) positive correlation
that masks or reverses the (true) negative effect of AFDC participation on
low birth weight. By controlling (implicitly) for all persistent state charac-
teristics, the fixed-effects estimator is able to unmask the negative effect.

The Stata log expands on these analysis using all the controls mentioned
above. It also shows how one can reproduce the fixed effects estimate by
working with changes between 1987 and 1990 in AFDC participation and
in the percent low birth weight, or by working with the original data and
introducing a dummy for each state.

3 Binary Data

We now consider extending these ideas to modeling binary data, which pose
a few additional challenges. In this section Yij is a binary outcome which
takes only the values 0 and 1.

3.1 Fixed-Effects Logits

In a fixed-effects model we assume that the Yij have independent Bernoulli
distributions with probabilities satisfying

logit(πij) = αi + x′ijβ
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Effectively we have introduced a separate parameter αi for each group, thus
capturing unobserved group characteristics.

Introducing what may be a large number of parameters in a logit model
causes the usual practical difficulties and a twist on the theory side. In the
usual scenario, where we let the number of groups increase to infinity but
not the number of individuals per group, it is not just the estimates of αi

that are not consistent, but the inconsisteny propagates to β as well! This
means that there is not point in introducing a separate dummy variable for
each group, even if we could.

There is, however, an alternative approach that leads to a consistent
estimator of β. We calculate the total number of successes for each group,
say Yi =

∑
j Yij , and look at the distribution of each Yij given the total Yi.

It turns out that this conditional distribution does not involve the αi but
does depend on β, which can thus be estimated consistently.

In the linear case the dummy and conditioning approaches were equiva-
lent. Here they are not. The conditioning approach requires the existence
of a minimal sufficient statistic for the αi. In logit models the totals have
this property. Interestingly, in probit models there is no minimal sufficient
statistic for the αi, which is why there is no such thing as a fixed-effects
probit model.

We will skip the details here except to note that conditioning means
that groups were all observations are successes (or all are failures) do not
contribute to the conditional likelihood. In some situations this can lead to
estimating the model in a small subset of the data. This is worrying, but
advocates of fixed-effects models argure that those are the only cases with
revelant information.

An example may help fix ideas. Suppose one was interested in studying
the effect of teenage pregnancy on high school graduation. In order to
control for unobserved family characteristics, you decide to use data on
sisters and fit a fixed-effects model. Consider families with two sisters. If
both graduate from high school, the conditional probability of graduation is
one for each sister, and hence the pair is uninformative. If neither graduates
the conditional probability of graduation is zero, and thus the pair is also
uninformative. It is only when one of the sisters graduates and the other
doesn’t that we have some information.

So far we have considered variation in the outcome but it turns out that
we also need variation in the predictor. If both sisters had a teenage preg-
nancy the pair provides no information regarding the effect of pregnancy on
graduation. The same is true if neither gets pregnant. The only families
that contribute information consist of pairs where one sister get pregnant
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and the other doesn’t, and where one graduates from high school and the
other doesn’t. The question then becomes whether the one who graduates
is the one who didn’t get pregnant, an event that can be shown to depend
on the parameter of interest and is not affected by unobserved family char-
acteristics.

The concern is that very few pairs meet these conditions, and those
pairs may be selected on unobserved individual characteristics. To see why
this is a problem suppose the effect of teenage pregnancy on high school
graduation varies with an unobserved individual attribute. The estimated
effect can still be interpreted as an average, but the average would be over
a selected subset, not the entire population.

3.2 Random-Effects Logits

In a random-effects logit model we postulate the existence of an unobserved
individual effect ai such that given ai the Yij are independent Bernoulli
random variables with probability πij such that

logit(πij) = ai + x′ijβ

In other words the conditional distribution of the outcomes given the ran-
dom effects ai is Bernoulli, with probability following a standard logistic
regression model with coefficients ai and β.

Just as before we treat ai as an error term and assume a distribution,
namely N(0, σ2

a). One difficulty with this model is that the unconditional

distribution of Yij involves a logistic-normal integral and does not have a
closed form.

This lead several authors to propose approximations, such as marginal
quasi-likelihood (MQL) or penalized quasi-likelihood (PQL), but unfortu-
nately these can lead to substantial biases (Rodŕıguez and Goldman, 1995).

Fortunately it is possible to evaluate the likelihood to a close approx-
imation using Gaussian quadrature, a procedure that relies on a weighted
sum of conditional probabilities evaluated at selected values of the random
effect. These values can be pre-determined or tailored to the data at hand
in a procedure known as adaptive Gaussian quadrature, the latest Stata
default.

The model can also be formulated in terms of a latent variable Y ∗

ij such
that Yij = 1 if and only if Y ∗

ij > 0, by assuming that the latent variable
follows a random-effects linear model

Y ∗

ij = ai + x′ijβ + eij
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where eij has a standard logistic distribution. The unconditional distribu-
tion of Y ∗ is then logistic-normal and, as noted above, does not have a closed
form.

Recall that the variance of the standard logistic is π2/3. This plays
the role of σ2

e , the individual variance. We also have the group variance
σ2

a. Using these two we can compute an intraclass correlation for the latent
variable:

ρ =
σ2

a

σ2
a + π2/3

Computing an intra-class correlation for the manifest outcomes is a bit more
complicated, as the coefficient turns out to depend on the covariates, see
Rodŕıguez and Elo, 2000) and their xtrho command.

3.3 Subject-Specific and Population-Average Models

A common mistake is to believe that all one needs to do with clustered
or longitudinal data is to run ordinary regression or logit models and then
correct the standard errors for clustering.

This is essentially correct in the linear case, where OLS estimators are
consistent but not fully effcient, so all one sacrifices with this approach is a
bit of precision. But with logit models, ignoring the random effect introduces
a bias in the estimates as well as the standard errors.

To see this point consider a random-effects model, where the expected
value of the outcome Yij given the random effect ai is

E(Yij |ai) = logit−1(ai + x′ijβSS)

An analyst ignoring the random effects would fit a model where the expected
value is assumed to be

E(Yij) = logit−1(x′ijβPA)

Note that we have been careful to use different notation for the coefficients.
We call βSS the subject-specific effect and βPA the population-average effect,
because we have effectively averaged over all groups in the population.

In the linear case (just ignore the inverse logit in the above two equations)
taking expectation with respect to ai in the first equation leads to the second,
so βSS = βPA and both approaches estimate the same parameter.

Because of the non-linear nature of the logit function, however, taking
expectation in the first equation does not lead to the second. In fact, if
the first model is correct the second usually isn’t, except approximately.
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Typically |βPA| < |βSS |, so population-average effects are smaller in mag-
nitude than subject-specific effects, with the difference increasing with the
intra-class correlation.

One could make a case for either model, the main point here is that
they differ. From a policy point of view, for example, one could argue that
decisions should be based on the average effect. I find this argument more
persuasive with longitudinal data, where the averaging is for individuals over
time, than with hierarchical data. Suppose you are evaluating a program
intended to increase the probability of high school graduation and the model
includes a school random effect. Are you interested in the increase in the
odds of graduation for students in the school they attend or an hypothetical
increase averaged over all the schools in the population?

3.4 Example

Our example comes from the Stata manual and is based on data from the
National Longitudinal Survey (NLS) for 4,434 women who were 14-24 in
1968 and were observed between 1 and 12 times each. We are interested in
union membership as a function of age, education (grade), and residence,
represented by dummy variables for ‘not a standard metropolitan area’ and
the south, plus an interaction between south and time (coded as zero for
1970). We fit ordinary, random-effects, and fixed-effects logit models.

-----------------------------------------------------

Variable | logit relogit felogit

-------------+---------------------------------------

#1 |

age | .00999311 .00939361 .00797058

grade | .04834865 .08678776 .08118077

not_smsa | -.22149081 -.25193788 .02103677

south | -.71444608 -1.1637691 -1.0073178

southXt | .0068356 .02324502 .02634948

_cons | -1.8882564 -3.3601312

-------------+---------------------------------------

lnsig2u |

_cons | 1.7495341

-----------------------------------------------------

Compare first the logit and random-effects logit models. We see that,
except for age, the subject-specific effects are larger in magnitude than the
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population-average effects, as we would expect. For example a woman living
in the south in 1970 has 69% lower odds of being a union member than one
living elsewhere, everything else being equal. The logit model, however,
estimates the average effect as 51% lower odds in 1970. The intraclass
correlation measured in a latent scale of propensity to belong to a union is
0.636.

The fixed-effects estimates are in general agreement with the random-
effects results except for the indicator for living outside a standard metropoli-
tan area, which changes from −0.252 to +0.021. This suggests that the neg-
ative association between living outside a SMA and belonging to a union is
likely to be spurious, due to persistent unobserved characteristics of women
that are associated with both SMA residence and union membership. If we
estimate the effect by comparing union membership for the same women
when they lived in and outside a SMA we find no association.

Note in closing that we had a total of 26,200 observations on 4,434
women. However, the fixed-effects logit analysis dropped 14,165 observa-
tions on 2,744 women because they had no variation over time in union
membership.
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4 Appendix: Stata Commands

Here’s a copy of the do file used to produce the results in this handout.

// WWS 509 - Fall 2008 - G. Rodriguez <grodri@princeton.edu>

// Models for Clustered and Longitudinal Data

// Verbal IQ and language scores

use http://data.princeton.edu/wws509/datasets/snijders, clear

reg langpost iq_verb

estimates store ols

xtreg langpost iq_verb, i(schoolnr) mle

estimates store re

xtreg langpost iq_verb, i(schoolnr) fe

estimates store fe

estimates table ols re fe, eq(1 1 1)

// AFDC participation and low birth weight

use http://www.stata.com/data/jwooldridge/eacsap/lowbirth, clear

encode stateabb, gen(stateid)

reg lowbrth d90 afdcprc

estimates store ols

xtreg lowbrth d90 afdcprc, i(stateid) mle

estimates store re

xtreg lowbrth d90 afdcprc, i(stateid) fe

estimates store fe

estimates table ols re fe, eq(1 1 1)

// Union membership

use http://data.princeton.edu/wws509/datasets/union, clear

logit union age grade not_smsa south southXt

estimates store logit

xtlogit union age grade not_smsa south southXt, i(id) re

estimates store relogit

xtlogit union age grade not_smsa south southXt, i(id) fe

estimates store felogit

estimates table logit relogit felogit, eq(1 1 1)
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