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1 Introduction

This is some sort of appendix associated to the paper and matlab package �expint �
A matlab package for exponential integrators�, [2], listing the problems included in the
matlab package and also listing all the coe�cient schemes. Parts of this �les contents of
this �le may also be found in the Technical Report [3].
We assume that the reader has read the accompanying paper [2].

2 Matlab requirements

The package requires matlab release 13 (version 6.5). The following features, introduced
in matlab 6.5, are needed

• dynamic structure �eld-names

• short-circuiting logical operators

• regular expression support

• the mat2cell function which, although present in the neural networks toolbox prior
to matlab 6.5, was not introduced into the core language until version 6.5.

• multiple argument version of functions warning and error

These can certainly be circumvented so that the package would work on versions prior
to 6.5 if necessary.

3 Version 1.1 release notes

This section describes user visible changes from version 1.0 to 1.1 of the expint package.
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• The �le integrator.m has changed name to expglm.m. This is for easier integration
of this package into other existing matlab frameworks, where the name �integrator�
could mean something more general than our specialized integrator for exponential
general linear methods.

• More exponential integrators have been added. Most notably the eglm* and pec*
schemes, from [19, 22]

4 Included problems

4.1 The 1D nonlinear Schrödinger equation � nls.m

This problem is the equation

iyt = −yxx + (V (x) + λ|y|2)y, x ∈ [−π, π].

with some initial condition and with periodic boundary conditions. The problem �le in-
cludes the (spectral) semi-discretization of the problem. Upon initialising of the problem
in matlab, di�erent choices of the potential, the initial condition and λ may be chosen.

4.2 The 1D KdV�equation � kdv.m

The Korteweg�de Vries equation with periodic boundary conditions in 1D is

yt = −yxxx − yyx, x ∈ [−π, π].

This is semi-discretized spectrally and integrated from t = 0 to t = 2π/625 by default,
the linear part is the diagonal matrix with entries Lkk = ik3, k = −ND/2 + 1, . . . , ND/2
and the nonlinear function is

N(y(k), t) = − i
2
kF(F−1(y)2).

The default value of ND is 128. The eigenvalues of L are complex and therefore, the prob-
lem exhibits rapid oscillations for high wave number modes. Various initial conditions
are supported, a well known choice, taken from [14] is

y(x, 0) = 3λ sech2
(√

λx/2
)

.

4.3 The Kuramoto�Sivashinsky equation � kursiv.m

The Kuramoto�Sivashinsky equation has been used to study many reaction-di�usion
systems, in 1D it is written as

yt = −yxx − yxxxx − yyx, x ∈ [0, 32π].

We use a spectral discretization with periodic boundary conditions and ND equal to 128.
The problem is integrated from t = 0 to t = 65 by default. The linear term is diagonal
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with elements Lkk = k2 − k4, k = −ND/2 + 1, . . . , ND/2, which results in rapid decay for
high wave numbers. The nonlinear function is

N(y(k), t) = − i
2
kF(F−1(y)2).

Various choices of initial condition are supported, the choice of smooth initial condition
is taken from [13]

y(x, 0) = cos(x/16) (1 + sin(x/16)) .

4.4 Burgers' equation � burgers.m

This equation, dating back to 1915, has been used in the study of turbulence and shock
formation, it reads

yt = λyxx −
1
2
(y2)x, x ∈ [−π, π].

We use a spectral discretisation with ND equal to 128 as default spatial resolution and
various choices of initial condition are supported. The most commonly used for this
equation, see [13], is

y(x, 0) = exp(−10 sin2(x/2)).

The rapid oscillations apparent in this problem come from the λyxx term, where λ = 0.03
is the default value.

4.5 Heat equation with source term � hochost.m

This particular equation appeared in [10] and is a good indicator of sti� order of expo-
nential integrators.

yt = yxx +
1

1 + y2
+ Φ, x ∈ [0, 1],

where Φ is chosen so that the exact solution is y(x, t) = x(1−x)et. Boundary conditions
are homogeneous Dirichlet. The problem is discretized in space using a standard �nite
di�erence scheme, with ND by default set to 200. The resulting ODE is integrated from
t = 0 to t = 1, with various initial conditions supported. This problem results in a
reduction in order for almost all schemes.

4.6 The Allen�Cahn equation � allencahn.m

The Allen�Cahn equation is a parabolic problem, which reads

yt = λyxx + y − y3, x ∈ [−1, 1],
y(x, 0) = 0.53x + 0.47 sin(−1.5πx),

we choose to implement this equation with the Dirichlet boundary conditions y(−1, t) =
−1 and y(1, t) = 1. The linear part λyxx is discretized using a Chebyshev di�erentiation
matrix, resulting in a full matrix L. Further details may be found in [13]. In order to
deal with the boundary conditions, one de�nes y = w + x and works with the variable
w which has homogeneous boundary values. The default parameter values are ND = 64
and λ = 0.001.
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4.7 The 2D complex Ginzburg�Landau equations � cginzland2d.m

This equation describes reaction-di�usion equations close to a Hopf bifurcation and gen-
erates spiral wave fronts

yt = y + (1 + iα)∇2y − (1 + iβ)y|y|2, x, y ∈ [0, 200].

Both smooth (a series of Gaussian pulses) and random initial conditions are supported,
see [12] or the source code for more details. We implement this equation using a Fourier
spectral discretisation in 2D, this is

ŷt = (1− (1 + iα)(k2 + l2))ŷ −F((1 + iβ)y|y|2).

By default we use ND equal to 128 and integrate from t = 0 to t = 150, with bifurcation
parameters α = 0 and β = 1.3.

4.8 The Gray�Scott equations in 2D � grayscott2d.m

The Gray�Scott equation is a reaction-di�usion equation which exhibits a wide variety
of interesting patterns. In non-dimensional form the system is

ut = Du∇2u− uv2 + α(1− u),

vt = Dv∇2v + uv2 − (α + β)v,

where the positive di�usion parameters Du, Dv are generally chosen so that the ratio
Du/Dv = 2. The default choice is Du = 2 · 10−5 and Dv = 1 · 10−5. The constants α
and β can be viewed as bifurcation parameters. As a default choice we set α = 0.065
and β = 0.035. De�ning y = [u, v]T , represents the equations in the appropriate form.
Note that the transformed equations in Fourier space are very similar to the original
equations, they read

ût = −Du(k2 + l2)û(l, k)−F(uv2 − α(1− u)),

v̂t = −Dv(k2 + l2)v̂(l, k) + F(uv2 − (α + β)v).

The initial conditions we choose can be found in the source code, the smooth initial
condition we have implemented are scaled Gaussian pulses. By default ND is chosen to be
128 on the grid x, y ∈ [0, 2.5]. The package also includes discretizations of this problem in
one and three space dimensions. We refer the reader to the source code in grayscott.m
and grayscott3d.m respectively for more details. In the directory tests you will �nd
�les testgrayscott2d.m and testgrayscott3d.m, which can be viewed as typical test
scripts.

4.9 The sine-Gordon equation

This is a nonlinear wave equation, here in 1D,
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utt = uxx − sin(u)
u(x, 0) = u0(x)
ut(x, 0) = v0(x)

This package requires di�erential equations to be written in the format yt = Ly +
N(y, t), for this we introduce the extended phase space variable ẏ = [u, ut]

T . We use
spectral discretization in space.
Two initial conditions are included, one stationary soliton solution (which requires

the length parameter to be at least 40 to avoid boundary conditions interfering. The
other initial condition is in the unstable regime of the equation and requires the length
parameter to be 2

√
2π , see [11]. The corresponding Hamiltonian function

H(u, v) =
∫ L

0

1
2
v2 +

1
2
u2

x + 1− cos(u) dx (1)

is implemented in the function sinegordon_hamilt.m

5 Coe�cient functions for included schemes

In this section we list all schemes implemented in this package, with reference to their
origin. For space and æstethic reasons we adopt the notation

ϕi,j = ϕi(cjz) i = 0, 1, . . . , and j = 1, . . . , s (2)

where ϕ0(z) = ez. Also we use 1 to represent the identity matrix. All schemes with
relevant �gures describing their performance are listed in Table 1.

5.1 Lawson schemes

Lawson schemes are constructed by applying the Lawson transformation [15] to the semi-
linear problem, then solving the transformed equation by a standard numerical scheme
then back transforming. This whole process can be written in the original variables see
[8], and results in the coe�cients of the method involving exponentials. Below we include
some Adam�Bashforth�Lawson and Runge�Kutta�Lawson schemes of low order.

5.1.1 Lawson�Euler � lawsoneuler.m

This is the simplest example of a Lawson scheme, which we choose to call Lawson�Euler.
It has also occasionally been called the �exponential Euler scheme�, but this is confusing
given that the Nørsett�Euler scheme also goes by this name. This scheme has sti� order
one.

0 1
ϕ0 ϕ0
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Name Nonsti� p Sti� p Stages s Output r #ϕ matvecs
Lawson�Euler 1 1 1 1 1 1
ABLawson4 4 1 1 4 4 4
Lawson4 4 1 4 1 2 6
Nørsett�Euler 1 1 1 1 2 2
ABNørsett4 4 4 1 4 5 5
ETD4RK 4 2 4 1 6 10
Krogstad 4 3 4 1 7 11
Hochbruck�Ostermann 4 4 5 1 8 13
Cfree4 4 2 4 1 4 9
RKMK4t 4 2 4 1 4 9
GenLawson43 4 4 4 3 8 16
ModGenLawson43 4 4 4 3 9 17
PEC423 4 4 2 3 5 8
PECEC433 4 4 3 3 5 10

Table 1: Selected integrators included in the package, along with relevant �gures de-
scribing their properties. #ϕ is the number of distinct ϕ functions needed to be
evaluated for each scheme. Note that counting the number of ϕ functions and
matrix-vector products does not give a complete description of the e�ciency of
the scheme.

5.1.2 ABLawson2 � ablawson2.m

This scheme is based on the Adams�Bashforth scheme of order two, we represent the
scheme in this form so that the incoming approximations are y[n−1] = [yn−1, hNn−2], in
accordance with the starting procedure implemented in expglm.m. This scheme has sti�
order one.

0 1 0
1 3

2ϕ0 ϕ0 −1
2ϕ2

0
3
2ϕ0 0 ϕ0 −1

2ϕ2
0

1 0 0 0

5.1.3 ABLawson3 � ablawson3.m

This scheme has sti� order one and is based on the Adams�Bashforth scheme of order
three and is represented in this way so that the incoming approximation has the form
y[n−1] = [yn−1, hNn−2, hNn−3]T .
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0 1 0 0
1 23

12ϕ0 ϕ0 −4
3ϕ2

0
5
12ϕ3

0
23
12ϕ0 0 ϕ0 −4

3ϕ2
0

5
12ϕ3

0

1 0 0 0 0
0 0 0 1 0

5.1.4 ABLawson4 � ablawson4.m

This scheme has sti� order one and is based on the Adams�Bashforth scheme of order
four and is represented in this way so that the incoming approximation has the form

y[n−1] = [yn−1, hNn−2, hNn−3, hNn−4]T .

0 1 0 0 0
1 55

12ϕ0 ϕ0 −59
24ϕ2

0
37
24ϕ3

0 −3
8ϕ4

0
55
12ϕ0 0 ϕ0 −59

24ϕ2
0

37
24ϕ3

0 −3
8ϕ4

0

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

5.1.5 Lawson2a � lawson2a.m

Based on the midpoint rule see [5, Eq. (232b)], this scheme has sti� order one.

0 1
1
2

1
2ϕ0,2 ϕ0,2

0 ϕ0,2 ϕ0

5.1.6 Lawson2b � lawson2b.m

Based on the trapezoidal rule see [5, Eq. (232a)], this scheme has sti� order one.

0 1
1 ϕ0 ϕ0

1
2ϕ0

1
2 ϕ0

5.1.7 Lawson4 � lawson4.m

Based on the classical fourth order scheme of Kutta see [5, Eq. (235i)], this scheme has
sti� order one.
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0 1
1
2

1
2ϕ0,2 ϕ0,2

1
2

1
2 ϕ0,2

1 ϕ0,2 ϕ0
1
6ϕ0

1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0

(3)

5.2 ETD-schemes

ETD schemes are based on algebraic approximations to the nonlinear term in the vari-
ation of constants formula. ETD means �Exponential Time Di�erencing� and the name
stems from [7]. This is not a particularly good name for this type of scheme as the
name does not indicate anything about this type of schemes distinguishing it from other
exponential integrators. Nevertheless, we still adopt the term for the time being.
Nørsett [18] developed a class of schemes which reduced to the Adams�Bashforth

methods when the linear part of the problem is zero. The Adam�Bashforth�Nørsett
schemes have recently been reinvented by Cox and Matthews [7] and Beylkin, Keiser
and Vozovoi [4]. Many ETD schemes based on Runge�Kutta methods have also been
developed, below we give some of the well known schemes.

5.2.1 Nørsett�Euler � norsetteuler.m

The most well known exponential version of the Euler method was �rst found by Nørsett
in [18]. It is also known as the exponentially �tted Euler, ETD Euler, ETD1RK, �ltered
Euler scheme, or Lie�Euler as it is the simplest Lie group integrator with the a�ne Lie
group, it has sti� order one.

0 1
ϕ1 ϕ0

5.2.2 ABNørsett2 � abnorsett2.m

This sti� order two scheme of Nørsett [18], is implemented in this way so that the
incoming approximation has the same form as in ABLawson2.

0 1 0
1 ϕ1 + ϕ2 ϕ0 −ϕ2

ϕ1 + ϕ2 0 ϕ0 −ϕ2

1 0 0 0

5.2.3 ABNørsett3 � abnorsett3.m

This sti� order three scheme of Nørsett [18], is implemented in this way so that the
incoming approximation has the same form as in ABLawson3.
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0 1 0 0
1 ϕ1 + 3

2ϕ2 + ϕ3 ϕ0 −2ϕ2 − 2ϕ3
1
2ϕ2 + ϕ3

ϕ1 + 3
2ϕ2 + ϕ3 0 ϕ0 −2ϕ2 − 2ϕ3

1
2ϕ2 + ϕ3

1 0 0 0 0
0 0 0 1 0

5.2.4 ABNørsett4 � abnorsett4.m

This sti� order four scheme of Nørsett [18], is implemented in this way so that the
incoming approximation has the same form as in ABLawson4.

0 1 0 0 0
1 ϕ1 + 11

6 ϕ2 + 2ϕ3 + ϕ4 ϕ0 −3ϕ2 − 5ϕ3 − 3ϕ4
3
2ϕ2 + 4ϕ3 + 3ϕ4 Φ

1 ϕ1 + 11
6 ϕ2 + 2ϕ3 + ϕ4 0 ϕ0 −3ϕ2 − 5ϕ3 − 3ϕ4

3
2ϕ2 + 4ϕ3 + 3ϕ4 Φ

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

where

Φ = −1
3
ϕ2 − ϕ3 − ϕ4.

5.2.5 PEC322 � pec322.m

The sti� order three scheme is based on an ABNørsett2 predictor and AMNørsett3 cor-
rector. This method was constructed in [19]. Methods in this class can be derived directly
from the order conditions by choosing the free parameter c2 = 1, which minimises the
number of ϕ function evaluations required.

0 1
1 ϕ1 + ϕ2 ϕ0 −ϕ2

ϕ1 − 2ϕ3
1
2ϕ2 + ϕ3 ϕ0 −1

2ϕ2 + ϕ3

1 0 0 0

5.2.6 PEC423 � pec423.m

The sti� order three scheme is based on an ABNørsett3 predictor and AMNørsett4 cor-
rector. This method was constructed in [19].

0 1
1 ϕ1 + 3

2ϕ2 + ϕ3 ϕ0 −2ϕ2 − 2ϕ3
1
2ϕ2 + ϕ3

ϕ1 + 1
2ϕ2 − 2ϕ3 − 3ϕ4

1
3ϕ2 + ϕ3 + ϕ4 ϕ0 −ϕ2 + ϕ3 + 3ϕ4

1
6ϕ2 − ϕ4

1 0 0 0 0
0 0 0 1 0

9



Also included in the package are the schemes pec524.m, pec625.m and pec726.m with
orders 5, 6 and 7 respectively. Note that pec221.m is not included as this is the same as
the scheme etd2rk.m.

5.2.7 PECEC332 � pecec332.m

The sti� order three scheme is based on an ABNørsett2 predictor and AMNørsett3 correc-
tor applied twice. Methods in this class can be derived directly from the order conditions
by choosing the free parameter c2 = 1 and c3 = 1, which minimises the number of ϕ
function evaluations required.

0 1
1 ϕ1 + ϕ2 ϕ0 −ϕ2

1 ϕ1 − 2ϕ3
1
2ϕ2 + ϕ3 ϕ0 −1

2ϕ2 + ϕ3

ϕ1 − 2ϕ3 0 1
2ϕ2 + ϕ3 ϕ0 −1

2ϕ2 + ϕ3

1 0 0 0 0

5.2.8 PECEC433 � pecec433.m

The sti� order three scheme is based on an ABNørsett2 predictor and AMNørsett3 correc-
tor applied twice. Methods in this class can be derived directly from the order conditions
by choosing the free parameter c2 = 1 and c3 = 1.

0 1
1 ϕ1 + 3

2ϕ2 + ϕ3 ϕ0 −2ϕ2 − 2ϕ3
1
2ϕ2 + ϕ3

1 ϕ1 + 1
2ϕ2 − 2ϕ3 − 3ϕ4

1
3ϕ2 + ϕ3 + ϕ4 ϕ0 −ϕ2 + ϕ3 + 3ϕ4

1
6ϕ2 − ϕ4

ϕ1 + 1
2ϕ2 − 2ϕ3 − 3ϕ4 0 Φ ϕ0 −ϕ2 + ϕ3 + 3ϕ4

1
6ϕ2 − ϕ4

1 0 0 0 0 0
0 0 0 0 1 0

where
Φ = 1

3ϕ2 + ϕ3 + ϕ4.

Also included in the package are the schemes pec534.m, pec635.m and pec736.m with
orders 5, 6 and 7 respectively.

5.2.9 EGLM332 � EGLM332.m

The sti� order three scheme is derived directly from the order conditions given the
absiccae values c2 = 1/2 and c3 = 1.

0 1
1
2

1
2ϕ1,2 + 1

4ϕ2,2 ϕ0 −1
4ϕ2,2

1 ϕ1 − ϕ2 − 4ϕ3
4
3ϕ2 + 8

3ϕ3 ϕ0 −1
3ϕ2 + 4

3ϕ3

ϕ1 − 2ϕ2 − 2ϕ3 + 12ϕ4
8
3ϕ2 − 16ϕ4 −1

2ϕ2 + ϕ3 + 6ϕ4 ϕ0 −1
6ϕ2 + ϕ3 − 2ϕ4

1 0 0 0 0
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Also included in the package are the schemes eglm433.m of order 4.

5.2.10 ETD2RK � etd2rk.m

This scheme �rst derived by Strehmel and Weiner [20, Eq. (3.6)], has roots in chemistry
[16, Section 3] and was recently derived by Cox and Matthews [7, Eq. (22)], it has sti�
order two.

0 1
1 ϕ1 ϕ0

ϕ1 − ϕ2 ϕ2 ϕ0

5.2.11 ETD3RK � etd3rk.m

This scheme was �rst derived by Friedli in [9, Section 4], and more recently appeared in
[7, Eq. (23)�(25)], it has sti� order three.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1 −ϕ1 2ϕ1 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3 ϕ0

5.2.12 Ehle�Lawson � ehlelawson.m

This is a scheme of Ehle and Lawson [8] made to remedy problems with the Lawson
schemes. It has four stages but only sti� order two.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 ϕ0,2

1 ϕ1 ϕ0

ϕ1 − 3ϕ2 + ϕ3 2ϕ2 − ϕ3 2ϕ2 − ϕ3 −ϕ2 + ϕ3 ϕ0

5.2.13 ETD4RK � etd4rk.m

This scheme due to Cox and Matthews in [7, Eq. (26)�(29)], was one of the schemes that
kick started the recent focus on exponential integrators, unfortunately it has only sti�
order two.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 ϕ0,2

1 1
2ϕ1,2(ϕ0,2 − 1) ϕ1,2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3 ϕ0
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5.2.14 Krogstad � krogstad.m

This scheme appeared in [14, Eq. (51)] as a variant of ETD4RK by adding the ϕ2-
function in the internal stages, it does not require stage splittings and has sti� order
three.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − ϕ2,2 ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 2ϕ2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3 ϕ0

5.2.15 Strehmel�Weiner � strehmelweiner.m

This scheme �rst appeared in [21, Example 4.5.5] one of the earliest exponential Runge�
Kutta methods, it has sti� order three.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − 1

2ϕ2,2
1
2ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 −2ϕ2 4ϕ2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 0 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3 ϕ0

5.2.16 Friedli � friedli.m

This scheme appeared in [9, Section 5], it is also one of the earliest exponential Runge�
Kutta methods, it has sti� order three.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − 1

2ϕ2,2
1
2ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 −26
25ϕ1 + 2

25ϕ2
26
25ϕ1 + 48

25ϕ2 ϕ0

ϕ1 − 3ϕ2 + 4ϕ3 0 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3 ϕ0

5.2.17 Hochbruck�Ostermann � hochost4.m

This scheme was developed by Hochbruck and Ostermann [10, Section 5], with �ve-stages
is the only known exponential Runge�Kutta method with sti� order four.
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0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − ϕ2,2 ϕ2,2 ϕ0,2

1 ϕ1 − 2ϕ2 ϕ2 ϕ2 ϕ0
1
2

1
2ϕ1,2 − 2a5,2 − a5,4 a5,2 a5,2 a5,4 ϕ0,2

ϕ1 − 3ϕ2 + 4ϕ3 0 0 −ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3 ϕ0

where

a5,2 =
1
2
ϕ2,2 − ϕ3 +

1
4
ϕ2 −

1
2
ϕ3,2, a5,4 =

1
4
ϕ2,2 − a5,2

5.2.18 ETD5RKF � etd5rkf.m

This is a non-sti� �fth order scheme developed in [1]. It usually performs worse than
other order four schemes presented here due to bad error constant. It is based on the six
stage �fth order scheme of Fehlberg.

c =
[

0 2
9

1
3

3
4 1 5

6

]T
ui1(z) = ϕ0,i(z) v11(z) = ϕ0(z)

A(z) =
− 2

3
ϕ2 + 10

9
ϕ̂2

569
11544

ϕ2 + 1355
11544

ϕ̂2 − 831
3848

ϕ2 + 2755
3848

ϕ̂2

− 77157
61568

ϕ2 + 143535
61568

ϕ̂2
587979
61568

ϕ2 − 821745
61568

ϕ̂2 − 405
64

ϕ2 + 675
64

ϕ̂2
655263
7696

ϕ2 − 2031205
23088

ϕ̂2 − 1148769
7696

ϕ2 + 1252665
7696

ϕ̂2
1593
40

ϕ2 − 405
8

ϕ̂2
144
5

ϕ2 − 80
3

ϕ̂2

− 2212835
277056

ϕ2 + 6888625
831168

ϕ̂2
477285
30784

ϕ2 − 496525
30784

ϕ̂2 − 39
16

ϕ2 + 65
16

ϕ̂2 − 4
9
ϕ2 + 20

27
ϕ̂2 − 185

96
ϕ2 + 575

288
ϕ̂2


b11(z) =

47
150

ϕ1 −
188
75

ϕ2 +
94
15

ϕ3 b12(z) = 0

b13(z) = −43
25

ϕ1 +
132
5

ϕ2 − 66ϕ3 b14(z) =
4124
75

ϕ1 −
6152
15

ϕ2 +
2704

3
ϕ3

b15(z) =
189
10

ϕ1 −
662
5

ϕ2 + 284ϕ3 b16(z) = −1787
25

ϕ1 +
12966

25
ϕ2 −

5628
5

ϕ3

where ϕ̂2(z) = ϕ2(3
5z). Note that the coe�cient in front of ϕ3 is di�erent from [1] due

to di�ering de�nitions of ϕi.

5.3 A�ne Lie group schemes

The construction of Lie group integrators for the solution of semi-discretized PDEs
started with the paper of Munthe�Kaas [17], where the a�ne Lie group was used. The
RKMK methods require the computation of the dexp−1 operator which involves iter-
ated commutators. To overcome the need for commutators which often result in stepsize
restrictions Celledoni, Martinsen and Owren [6], constructed the commutator-free meth-
ods.
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5.3.1 RKMK2e � rkmk2e.m

This scheme is a generalization of the trapezoidal rule, can be derived from [17, Ex. 4],
but is also a standard scheme found in the chemistry literature, known as the Pseudo-
Steady-State-Approximation (PASSA) scheme, see [23, Section 2], it has sti� order one.

0 1
1 ϕ1 ϕ0

1
2ϕ1

1
2ϕ1 ϕ0

5.3.2 ETD2CF3 � etd2cf3.m

This is a sti� order three ETD version [10] of a commutator-free scheme in [6].

0 1
1
3

1
3ϕ1,2 ϕ0,2

2
3

2
3ϕ1,3 − 4

3ϕ2,3
4
3ϕ2,3 ϕ0,3

ϕ1 − 9
2ϕ2 + 9ϕ3 6ϕ2 − 18ϕ3 −3

2ϕ2 + 9ϕ3 ϕ0

5.3.3 Cfree4 � cfree4.m

This scheme given in [6, Eq. (7)] assuming a�ne Lie group action is used, is of sti� order
two. Note that the internal stages are equivalent to those of ETD4RK.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 ϕ0,2

1 1
2ϕ1,2(ϕ0,2 − 1) ϕ1,2 ϕ0

1
2ϕ1 − 1

3ϕ1,2
1
3ϕ1

1
3ϕ1 −1

6ϕ1 + 1
3ϕ1,2 ϕ0

5.3.4 RKMK4t � rkmk4t.m

Using a suitable truncation of the dexp−1 operator leads to the method of Munthe�Kaas
[17, Ex. 4], which again is of sti� order two but su�ers from instabilities, especially when
non-periodic boundary conditions are used.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

z
8ϕ1,2

1
2(1− z

4)ϕ1,2 ϕ0,2

1 ϕ1 ϕ0
1
6ϕ1(1 + z

2) 1
3ϕ1

1
3ϕ1

1
6ϕ1(1− z

2) ϕ0
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5.4 Generalized Lawson schemes

Krogstad [14], constructed these schemes as a means of overcoming some of the un-
desirable properties of the Lawson schemes. The methods boil down to using a more
sophisticated transformation which better approximates the dynamics of the original
di�erential equation see [19] for more details. The transformation involves using approx-
imations of the nonlinear term from previous steps, resulting in an exponential general
linear method.
Two schemes are included in the package but not listed here due to space reasons, that

is the genlawson44.m and genlawson45.m.

5.4.1 GenLawson41 � genlawson41.m

This exponential Runge�Kutta scheme closely related to Lawson4 has sti� order two.

0 1
1
2

1
2ϕ1,2 ϕ0,2

1
2

1
2ϕ1,2 − 1

2
1
2 ϕ0,2

1 ϕ1 − ϕ0,2 ϕ0,2 ϕ0

ϕ1 − 2
3ϕ0,2 − 1

6
1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0

5.4.2 GenLawson42 � genlawson42.m

This scheme requires yn−1 and Nn−2 as initial data. At least one step of an alternative
method is needed to start the integration. The overall sti� order is three.

0 1 0
1
2

1
2ϕ1,2 + 1

4ϕ2,2 ϕ0,2 −1
4ϕ2,2

1
2

1
2ϕ1,2 + 1

4ϕ2,2 − 3
4

1
2 ϕ0,2 −1

4ϕ2,2 + 1
4

1 ϕ1 + ϕ2 − 3
2ϕ0,2 ϕ0,2 ϕ0 −ϕ2 + 1

2ϕ0,2

ϕ1 + ϕ2 − ϕ0,2 − 1
3

1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0 −ϕ2 + 1

3ϕ0,2 + 1
6

1 0 0 0 0 0

5.4.3 GenLawson43 � genlawson43.m

This scheme requires yn−1, Nn−2 and Nn−3 as initial data. At least two steps of an
alternative method are needed to start the integration. The overall sti� order is four and
for æsthetic reasons the method is broken into the individual matrices.
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c =
[

0 1
2

1
2 1

]T

A(z) =

 1
2ϕ1,2 + 3

8ϕ2,2 + 1
8ϕ3,2

1
2ϕ1,2 + 3

8ϕ2,2 + 1
8ϕ3,2 − 15

16
1
2

ϕ1 + 3
2ϕ2 + ϕ3 − 15

8 ϕ0,2 0 ϕ0,2



U(z) =


1 0 0

ϕ0,2 −1
4ϕ2,2 − 1

4ϕ3,2
1
8ϕ2,2 + 1

8ϕ3,2

ϕ0,2 −1
2ϕ2,2 − 1

4ϕ3,2 − 3
16

1
8ϕ2,2 + 1

8ϕ3,2 − 3
16

ϕ0 −ϕ2 − 2ϕ3 + 5
4ϕ0,2

1
2ϕ2 + ϕ3 − 3

8ϕ0,2



B(z) =

 ϕ1 + 3
2ϕ2 + ϕ3 − 5

4ϕ0,2 − 1
2

1
3ϕ0,2

1
3ϕ0,2

1
6

1 0 0 0
0 0 0 0


V (z) =

 ϕ0 −ϕ2 − 2ϕ3 + 5
6ϕ0,2 + 1

2
1
2ϕ2 + ϕ3 − 1

4ϕ0,2 − 1
6

0 0 0
0 1 0


5.5 Modi�ed generalized Lawson schemes

To overcome a loss of stability which some times occurs in the generalized Lawson schemes
a modi�cation is suggested in [19]. This modi�cation only a�ects the solution approxi-
mation but signi�cantly improves the accuracy of the schemes. Therefore, the following
listing only include the B(z) and V (z) matrices.
Two schemes are included in the package but not listed here due to space reasons, they

are modgenlawson44.m and modgenlawson45.m.

5.5.1 ModGenLawson41 � modgenlawson41.m

This scheme of sti� order two but performs signi�cantly better than its counterpart
GenLawson1.

B(z) =
[

ϕ1 − ϕ2 − 1
3ϕ0,2

1
3ϕ0,2

1
3ϕ0,2 ϕ2 − 1

2ϕ0,2

]
V (z) =

[
ϕ0

]
5.5.2 ModGenLawson42 � modgenlawson42.m

This scheme of sti� order three but performs signi�cantly better than its counterpart
GenLawson2. It requires yn−1 and Nn−2 to be passed from step to step.
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B(z) =

[
ϕ1 − 2ϕ3 − 1

2ϕ0,2
1
3ϕ0,2

1
3ϕ0,2

1
2ϕ2 + ϕ3 − 1

4ϕ0,2

1 0 0 0

]

V (z) =

[
ϕ0

1
2ϕ2 + ϕ3 − 1

4ϕ0,2

0 0

]

5.5.3 ModGenLawson43 � modgenlawson43.m

This scheme of sti� order four and does not have stability problems for large values of
the timestep. It requires yn−1, Nn−2 and Nn−3 to be passed from step to step.

B(z) =

 ϕ1 + 1
2ϕ2 − 2ϕ3 − 3ϕ4 − 5

8ϕ0,2
1
3ϕ0,2

1
3ϕ0,2

1
3ϕ2 + ϕ3 + ϕ4 − 5

24ϕ0,2

1 0 0 0
0 0 0 0


V (z) =

 ϕ0 −ϕ2 + ϕ3 + 3ϕ4 + 5
24ϕ0,2

1
6ϕ2 − ϕ4 − 1

24ϕ0,2

0 0 0
0 1 0


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